
* Corresponding author: R. Arulpavai 
E-mail address: r_arulpavai@yahoo.co.in 
 
 

 
 
 
 

ISSN: 0976-3031 
RESEARCH ARTICLE  

 

PARAMETRIC AND NON-PARAMETRIC ESTIMATION OF INCOMPLETE MANPOWER DATA USING 
COX’S APPROACH  

 

*Arulpavai, R and 2Elangovan, R 
 

*Department of Statistics, Government Arts College, C.Mutlur, Chidambaram – 608 001  
12Department of Statistics, Annamalai University, Annamalai Nagar – 608 002 

 

 
ARTICLE INFO                                                ABSTRACT 

 
In manpower planning the data are often incomplete due to left truncation as well 
as right censoring occurs when a number of people have not yet left when data 
collection is terminated. Left truncation arises when some people are already in 
service at the commencement of data collection. Several models have been 
suggested to describe the internal and external movements of staff in a 
commercial or industrial organization relating to censored data. In manpower 
planning, one of the most important variables is completed length of service on 
leaving a job, since it enables us to predict staff turnover. The most widely used 
distributions for completed length of service until leaving are the mixed 
exponential distribution and the lognormal distribution. The Weibull distribution 
is a particularly important life distribution and a large body of literature on 
statistical methods has evolved for it. In place of the Weibull distribution, it is 
often more convenient to work with the equivalent extreme value distribution 
when the observation are censored. In this paper a parametric and non-parametric 
estimate of the survivor function which extends Kaplan and Meier’s estimate to 
include left truncation as well as right censoring has been discussed. A suitable 
model is also developed, to analyze and predict the pattern of manpower wastage 
and the basis of all possible individual characteristics responsible for the wastage 
on the basis of Cox’s approach using Weibull and Extreme value distribution. A 
real industrial data has been used to validate the above models.   
 
 
 

INTRODUCTION  
 

Mathematicians and statistician have done much work on the 
development of models of manpower systems in the years 
since the paper by Seal (1945). Manpower planning had been 
commonly described as a process consisting of three elements 
(i) predicting the future demand for manpower; (ii) predicating 
the future supply of manpower; (iii) looking at policies to 
reconcile any difference between the results of (a) and (b), 
often known as “closing the manpower gap”. Predicating 
demand may involve looking at productivity changes, 
technological changes, market forces and trends and the 
corporate strategy: predicating supply involves a knowledge of 
the current manpower stocks and looking at future 
recruitment, wastage, working conditions, promotion policies 
and labour market trends: closing the gap means examining 
training, remuneration, career planning, redundancies and 
further consideration of all the factors under the other 
headings. For a detailed study refer to Edwards (1983)  
 
It is a common phenomenon that some personnel leave an 
organization after completing a certain period of services to 
that  organization either voluntarily or due to death, retirement 

or termination, known as ‘turnover’ or ‘wastage’. Wastage 
creates vacancies to be filled up either by promotion from the 
lower cadres or by direct recruitment or by a combination of 
both. The problem of manpower planners therefore, is to 
estimate the extent to which skilled or trained personnel are 
likely to leave over future points of time, given that the status 
quo viz., the present service condition and the personnel 
characteristics of the individuals is maintained, with a view to 
implement suitable measures for future recruitment, training . 
This kind of exercise is important in manpower planning, 
especially, in a situation where vacancies cannot be 
immediately filled up. Wastage of trained and experienced 
personnel cause loss to an organization in terms of money, 
time, efficiency and business and technological secrecy. Thus 
another major problem for manpower planners is to identify 
the individual characteristics of the personnel basis of all 
possible individual characteristics responsible for the wastage. 
This can possible throw some light into the trend in the 
recruitment process, especially, while leaving and recruitment 
may run simultaneously but vacancies may not be filled up 
immediately following an attrition or wastage.  
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In any organization, wastage occurs mainly in two forms – 
voluntary or involuntary wastage. Voluntary wastage may be 
due to an individual’s decision to quit the job or due to 
voluntary retirement whereas involuntary wastage may happen 
due to retrenchment, retirement or death of the person. The 
reasons for wastage provide additional information to Human 
Resource Development (HRD) about the leaving process of 
the personnel in the organization so that the organization, if 
need be, suitably modify the existing policies for the future. 
Wastage can be studied on the basis of an individual’s 
exposure in his profession. Several authors including 
Bartholomew (1982), Bartholomew and Forbes (1979) have 
studied the concept of wastage and its relation to the 
Completed Length of Service (CLS). Some interesting results 
can also seen in Sathiyamoorthi et al. (2005), Elangovan et al. 
(2005), Anantharaj et al. (2006), Vijayasankar et al. (2008), 
Elangovan et al. (2008), Susiganeshkumar and Elangovan 
(2009a), Susiganeshkumar and Elangovan (2009b), 
Arivazhgan and Elangovan (2010), Susiganeshkumar and 
Elangovan (2012). 
 
The propensity of leaving the job is quantified based on CLS 
only and it sometimes leads to unrealistic prediction of 
manpower attrition. In addition to CLS, at the micro level, 
other factors such as socio-economic indicators or personal 
and/or familial factors influence the propensity to leave the 
job. The Cox’s regression model (1972) is being used to 
describe the manpower attrition by considering both CLS and 
personal cofactors where CLS is described by a quantitative 
variable while personal cofactors are described by qualitative 
variables. When both quantitative and qualitative characters 
are taken into account for studying manpower wastage and 
attrition the results are realistic and gives a meaningful 
prediction of manpower attrition. 
 
In manpower planning, one of the most important variables is 
Completed Length of Service (CLS) on leaving a job, since it 
enables us to predict staff turnover. It is often the case that 
failure time data is right censored, i.e. for some of the data we 
know only that failure takes place after a certain time but not 
exactly when it occurs. In the medical literature this 
corresponds to there being patients in the sample who are still 
alive when data collection is terminated, so we know only that 
their lifetime is greater than a certain value. For such data 
much work has been done on both non-parametric and 
parametric estimation of the survivor function. A maximum 
likelihood non-parametric estimate of the survivor function 
was derived by Kaplan and Meier (1958) and, as discussed by 
Kalbfleisch and Prentice (1980) this has been extended by 
various authors. Parametric models have also been fitted to 
right censored failure time data. In particular, maximum 
likelihood estimation for the exponential distribution is 
discussed by Kalbfleish and Prentice (1980) for medical data 
and by Tuma and Hannan (1979) for event history data in the 
sociological literature. Some interesting results can also be 
seen in McClean et.  al. (1991).  
 
For censored data, the data are often incomplete due to left 
truncation as well as right censoring. Right censoring occurs 
when a number of people have not yet left when data 
collection is terminated. Left truncation arises when some 
people are already in service at the commencement of data 

collection. A more general formula for obtaining a maximum 
likelihood estimate of the survivor functions has been found 
by Turnbull (1976) for arbitrarily grouped, censored and 
truncated data. Several models have been suggested to 
describe the internal and external movements of staff in a 
commercial or industrial organization. Of these, the Weibull 
model of Lane and Andrew (1955) which relates an 
employee’s probability of leaving to his length of service, and 
the transition model of Young and Almond (1961), which 
considers the various grades in the company hierarchy, and the 
state of having left, to be the states of a Markov Chain, are 
among the simplest and easiest to apply. These models appear 
to give satisfactory results for most companies under normal 
conditions. In this paper a suitable model is developed, to 
analyze and predict the pattern of manpower wastage and the 
basis of all possible individual characteristics responsible for 
the wastage on the basis of incomplete manpower data and 
predicting the CLS using Cox’s approach. 
 
This paper is organized as follows. In Section 2 Cox’s partial 
likelihood is discussed, the estimation of the longevity of 
service is discussed in Section 3. The parametric and non-
parametric estimation which includes the Kaplan and Meier 
non-parametric estimation of the survival function and its 
confidence interval, the goodness of fit test has been discussed 
in Section 4 and Section 5. The factor affecting wastage is 
highlighted in Section 6. The result exhibiting goodness of fit 
test of prediction of leavers for different grades using Weibull 
and Extreme value distribution have been discussed in Section 
7. A real data example is used to illustrate the Cox’s approach 
is also discussed in Section 7. A summary of results is also 
highlighted in Section 8.  
 

Cox’s Partial Likelihood 
 

The Cox’s regression model (1975) based on the method of 
‘Partial likelihood’ plays a very important role in analyzing 
the data in a more realistic way on survival or fertility on any 
other kind involving population characteristics using 
Stochastic models. The partial likelihood estimating the 
parameters by the method of maximum likelihood conjectured 
that the method would give estimates of 1, 2, …, p which 
would have otherwise the asymptotic properties of the 
maximum likelihood estimators. The instantaneous propensity 
of leaving a job (or profession) at time t is defined as the 
conditional probability of leaving a job (or profession) during 
an infinitesimal interval (t, t + dt) given that the person was in 
job till the time t. Denoting the hazard rate by h(t), we have 
 

   
 tR
dttf dt th       … (2.1) 

where R(t) is the Survival function or the probability of 
continuing the job at least upto a period t and f(t)dt is the 
probability of leaving the job between (t, t + dt). It can be 
shown that 

         tR 
dt
d  tF-1

dt
d  f(t)  and 

0
dh  exp  )(  



 t

tR    … (2.2) 

The Cox hazard model as indicated by (vide Gill (1984)). 

     kXXXX k      33  22  11 exp t0h  th      … (2.3) 
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Where  th0  represents the hazard rate or the rate of 
propensity of leaving at time t purely on the consideration of 

time or CLS in the profession.  th0  is called the base line 
hazard rate. The probability that the i-th person will leave the 
job at time t in (0, T) is given by 

 
 

      n , 2, 1,      i       ,
 eth 

e th 
n

1  i

      
0

      
0

332211

332211
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... (2.4) 

where      i3i2i1 XXX  are the scores of the covariates 1, 2 and 3 
respectively of the i-th person. Note that the ratio in eqn. (2.4) 
is independent of t, the length of service. If we take the 
product of all such terms for all the professionals with serial 
number 1, 2, …, k, we get a simplified form of Cox’s partial 
likelihood given by 
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Maximizing  LP logor   LP  with respect to 321   and   ,   ,   
respectively, we get three estimating equations for estimating 

321   and   ,   ,  (assuming         332211e iii XXX  

)3iX3  i22  i11  1 (   XX approximately both 

in the numerator and denominator of eqution (6.5)) as follows: 
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Having estimated the parameters 321   and   ,   ,   relating to 
the covariates, the parameters affecting the leaving from 
profession for personal reason or covariates, we estimate the 
parameter of the CLS corresponding to the base line hazard 
function. For a detailed study on the subject in this direction, 
refer to Biswas (1988), Biswas and Adhikari (1992) and Fang 
and Li (2005).  
 
Estimation of the Longevity of Service 
 

Once the parameters viz., time dependent parameters 
concerning the CLS as well the parameters concerning the 

personal covariates 321   and   ,   ,  are estimated 
independently, the expected length of service can be obtained 
by the relationship between survival function R(t) and the 
expected or average duration of service given by L as 

   
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Finally expected duration of service given by 

 
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0
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e LE 
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
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The proportion or the percentage of leavers between t and (t + 
1) is accordingly given by 

    100% x f(t)or  R(t)1
dt
d  tf                   … (3.3) 

For a detailed study refer to Biswas (1996), Cox (1972), Cox 
(1975), Sathiyamoorthy    et al. (2006d). 
 
NON-PARAMETRIC ESTIMATION 
 

We want to derive a non-parametric maximum likelihood 
estimate of the survivor function which uses all the data as 
fully as possible, including the incomplete left truncated and 
right censored data. The product limit estimate of the non-
parametric survivor function was derived by Kaplan and 
Meier(1958) for right censored data. Using the notation of 

Kalbfleish and Prentice (1980), let kttt  ......21  
represent the observed failure times in a sample from a 
homogeneous population with survivor function F(t), where 

00 t .  Suppose that jd  items fail at jt , ( j = 1, . . . , k ) 

and jm items are right censored in the interval ),[ 1jj tt  . Let 

)(...)( kkjjj dmdmn   be the number of items at 

risk at a time just prior to jt . Then the maximum likelihood 
estimate of F(t) is given by 













 


ttj j
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So we make the conditional probability of failure at each jt  
agree exactly with the observed conditional relative frequency 

of failure at jt  given by ./ jj nd  We now modify this result, 
to take into account the possibility of left truncation as well as 
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right censoring. The data now include jla  items which fail at 

jt  and are left truncated in ],( 1 ll tt   at times ,jlrs  where r = 

1, . . . , jla  and .jl   The data also include jlb  items 

censored in ),[ 1jj tt  at times jlrc , which are left truncated 

in ),[ 1 ll tt  at times jlprh  where      r = 1, . . . , jle and p = 1, . 

. . , jlrg , jlrg is the number of items truncated in ],( 1 ll tt   

which are censored at jlrc ; therefore 
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This results in the likelihood function being modified to take 
left truncation into account by dividing by F(x) for each 
observation left truncated at x. Taking a similar approach to 
that of Kalbfleisch and Prentice this likelihood function is 
maximized by 

taking )()()()( jjlprjlrjlr tFhFcFsF  .  Proceeding 
as for the Kaplan-Meier case, we now define 
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as the number of items at risk just prior to jt . Then  
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(i.e. those who fail at jt divided by those at risk immediately 

prior to jt ) is the maximum likelihood estimate of the hazard 

rate at jt . The product limit estimate of the survivor function 
is therefore 
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which is maximum likelihood. 
 An asymptotic ninety five percent confidence interval 

for )(ˆ tF , suitably transformed to ensure that value lie in [0, 
1], is  
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This result is similar to that given by Kalbfleisch and Prentice 
(1980), Kaplan and Meier (1958). The above estimator may be 
obtained by first estimating the values missing as a result of 
left truncation and then using the, now complete, set of data to 
estimate the survivor function in the usual way. Forbes (1971) 
considered a similar problem when the data set was arbitrarily 
grouped. The above procedure is discussed in detail, the paper 
by McClean and Gribbin (1987). For a detailed study, refer to 
McClean et. al. (1991).  
 

PARAMETRIC ESTIMATION 
 

The Weibull Distribution 
 

The Weibull distribution is a generalization of the exponential 
distribution that is appropriate for modeling lifetime having 
constant, strictly increasing, and strictly decreasing hazard 
functions. For a detailed study, refer to Leemisc (1995). The 
Weibull probability density function is given by  

0exp)(
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                                                             … (5.1) 
where 0 and 0  are parameters sometimes referred 
to as the shape and scale parameters of the distribution.  The 
survivor and hazard functions are respectively,  

   tts  exp)(      
                                                             … (5.2) 

  1)(   tth      
                                                          … (5.3) 
The hazard function approaches zero from infinity for 1 , 
is constant for 1 the exponential case, and increase from 
zero when 1 . For a detailed study refer to Leemisc 
(1995) and Lawless (1982).  
 
The Extreme Value Distribution 
 

In place of the Weibull distribution, it is often more 
convenient to work with the equivalent extreme value 
distribution with p.d.f. 
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where u  )(  u  and )0( bb  are parameters. If T 
has probability density function given in equ. (5.1), then 
X=log T has p.d.f. given in equ. (5.4), with logu  and 

1b . The main convenience in working with the extreme 
value distribution stems from the fact that u  and b are 
location and scale parameters. Any results derived in terms of 
one distribution are easily transferred to the other. The 
Weibull distribution is a particularly important life distribution 
and a large body of literature on statistical methods evolved 
for it. The survivor and hazard functions are respectively, 
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
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For a detailed study refer to Kalbfleisch (1980).  
 
Maximum Likelihood Estimation  
 
Let Ti  represents the lifetime and Li the fixed censoring time 
of the i th individual in a random sample of n individuals. One 
observes only ti=min (Ti, Li) and whether the observation is a 
lifetime or a censoring time. The Ti ‘s are assumed to have a 
Weibull distribution or, equivalently,      Xi=log Ti has an 
extreme value distribution, with parameter u and b. Let 

iiii txL log,log   and 0or1i , according to 

whether  ii Tt   or   ,ii Lt  respectively; 
The likelihood function is given by  
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where ti is a lifetime, Li is a censoring time and  
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By using equ. (5.7), the likelihood function becomes  
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Let  ir  denote the number of observed. 
We have  
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 The m.l.e’s bu ˆandˆ  can be obtained by simultaneously 
solving  
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One convenient way do to this is to note that setting (5.10) 
equal to 0 gives 
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To find the ûand b̂ one can therefore determine b̂as the 
solution to (5.13) and then obtain ûfrom (5.12). Since (5.13) 

cannot solve analytically for b̂. The equation (5.13) can be 

solved iteratively using Newton’s method for   b̂, then 
ûcalculated from eqn. (5.12).  

The m.l.e.’s of the Weibull parameters  and   

are ûexpˆ   and 
1ˆˆ  b . If desired, the maximum 

likelihood equations (5.12) and (5.13) can be written in 

Weibull form and solved directly for ̂  and ̂ . If desired, 
the maximum likelihood equation (5.12) and (5.13) can be 

written in Weibull and solved directly for ̂ and ̂ . The log 
likelihood and maximum likelihood equations are 
respectively. 
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The Goodness of Fit Test 
 

We want to test whether our observed data could have come 
from a particular completed length of service distribution with 
distribution function F(.). This distribution function is fitted to 
data collected between times to and t1 and the model is then 
used to predict how many of the staff present at t1 will still be 
there at a later time t2. The goodness of fit is tested by 
comparing this prediction with the observed number there at 
t2. For each individual we may estimate his probability of 
surving to t2 given that he is there at t1 , and we develop a chi-
squared test to take this into account as follows. Let there be n 
observations, where person i has x; years' service at t for i = 1, 
. . . , n.  

Let 
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So Yi has a binomial distribution with parameters 1 and pi. The 
Yi s are independent, so E[Yi] = pi and Var(Yi) = pi(l – pi). We 
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Then under the null hypothesis that the completed length of 
service distribution is F(.) we have that 
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has a chi-squared distribution with one degree of freedom. 
This is the test statistic for the goodness of fit test suggested 
by MeClean and Gribbin (1987). One year Prediction and 
Estimation period from different grades and its goodness of 
fit, significance level are shown in Table 7.4, Table 7.5 and 
Table 7.6. The median and expected length of service for the 
different grades in the case of Weibull distribution, Extreme 
value distribution and Kaplan-Meier are shown on Table 7.7.  
 

 TESTING THE MODEL  
 

As an Estimator 
 

Let Nij be the number of people starting in year Yi who are still 
in service in year Yj ( i = 1, …,n;  j = i,…,n). Then Nii people 
are recruited in year Yi and Nin of these are still in service in 
year Yn. Let pi be the probability of surviving i years in the 
firm, and ip̂ an estimate of pi obtained using either the 
Weibull or Extreme value models. Then, since Nin ~ Binomial 
( Nii , pn-i ), we have 

      )1(2~ ˆ1ˆ2ˆ inpinpiiNinpiiNinN   
Then, since the behaviour of each year’s is independent of 
other, we have 
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                                                                                      … (5.16) 

This statistic can therefore be used to test the set  jp̂  as an 

estimator for jp  provided that the leaving probabilities are 
independent of time. The test statistic is suggested by 
McClean (1975).  
 

As a Predictor 
 

The model can also be tested as a predictor if the number of 
survivors from the last year, Yn, used in estimation, to the 
following year, Yn+1, is known. Thus if Nin is the number of 
people recruited in year Yi who are in service in year Yn and 
Mi is the observed number of these who survive one more year 
to Yn+1, them Mi has a binomial distribution B(Nin, ri) where 

inini Ppr  /1 . Therefore we have 

     )1(2~12 iririnNirinNiM   
and since the Nin are survivors from different entry and 
therefore independent it follows that 
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and this statistic can be used as a measure of the accuracy of 
prediction of the model. Obviously this is not just restricted to 
predictions for one year ahead and a similar statistic can be 
determined for testing predictions for any number of years 
ahead. The test statistic is suggested by McClean (1975). 
 

 
Factors Affecting Wastage  
 

Hedberg (1961) suggested that wastage is dependent on age, 
tenure, skill and responsibility, and sex. It is also reasonable 
that, within a company, or different functions, may vary. Each 
company was therefore tested to see if its wastage was 
dependent on each of tenure, sex, qualification and location, 

where appropriate this was done by means of an χ2 test for 
non-association of 2xk contingency table formed by the total 
stayers and leavers, over a period of six years, and the classes 
of each factor considered as suggested by McClean et al. 
(1991). 
 
 

Classes 1    2    3    4  .  . .  k Total 
Stayers s1    s2    s3    s4            sk S= Σ sk 
Leavers l1    l2    l 3    l 4            l k L= Σ l k 

  N=S+L 
 

For non-association, the probability of leaving is independent 
of class, the test statistic is given by 
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                                                                          … (6.1) 
The test statistics is suggested by McClean (1975).  
 
RESULTS 
 

Goodness of fit of prediction of leavers for different grades 
 

The goodness of fit test of prediction of leavers for the grades 
Team leader, SW Engineer and System Administrator for the 
Estimation period and Prediction period using test statistics 
discussed in eqn. (5.15) of section 5.4  are given in Table 7.1, 
Table 7.2 and Table 7.3.  
 

The estimator of the survivor function and confidence interval 
for different years using Kaplan Meier product limit estimator, 
Weibull distribution and Extreme value distribution as 
discussed in eqn. (4.2), eqn. (4.3), eqn. (5.1) and eqn. (5.2) of 
section 4 and section 5 respectively, and are shown in Fig. 7.1, 
Fig. 7.2 and Fig. 7.3 for different grades.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CLS as Weibull and Extreme value distribution 
 

The χ2 values for testing estimation as in eqn. (5.7) for 
Weibull and Extreme value distribution given in table 7.8 for 
the selected to companies of Tamilnadu. The χ2 values for 
testing the prediction as in eqn. (5.8) for the Weibull and  
Extreme value distribution are given in table 7.9 for the 
selected 10 companies of Tamilnadu Cognizant (CTS), Tata 
consultancy service (TCS), Wipro, Polaris, HCL, Infosys, IC 
Info Tech, Larsen & Toubro Infotech, Ramco Systems Ltd, 
Sutherland Global Services Pvt. Ltd. 
 
 
 

Table 7.1 Goodness of fit of prediction of leavers for Team 
leader 

 

Estimation 
Period 

Prediction 
Period 

Kaplan 
Meier 

Weibull 
Distribution 

Extreme 
Value 

Distribution 
100 100 0.4 1.6 14.1** 
100 290 0.2 41.3** 64.6** 
100 650 5.2* 210.0** 118.4** 
290 100 0.2 22.2** 37.0** 
290 290 0.1 0.3 1.4 
290 650 3.0 103.2** 27.4** 
650 100 0.0 0.2 2.1 
650 290 0.2 32.5** 7.6** 
650 650 12.2** 309.2** 89.9** 

*  significant at 5% level  

**  significant at 1% level  
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Factors Affecting Wastage 
 

The χ2 test for non-association of 2xk contingency table 
formed by the total stayers and leavers over a period of six 
years, and the classes of each factor given in table 7.10, for the 
selected 10 companies of Tamilnadu software namely 
Cognizant (CTS), Tata consultancy service (TCS), Wipro, 
Polaris, HCL, Infosys, IC Info Tech, Larsen & Toubro 
Infotech, Ramco Systems Ltd, Sutherland Global Services Pvt. 
Ltd. Stayers and Leavers over a period of six years 2006-2011 
given in table 7.10. 

     **74.2981)(
2

1

)(2 




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S
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Sk

i N
ilisSis  

** significant at 1% level. 
 

COX’S APPROACH 
 
Case (i): CLS as Weibull Distribution 
 

The propenstative to leave the job based on four personal 
covariate collected from the data is given in table 7.11. 
 






otherwise,0

expected asnot   wasceor workpla job The,1
1X  






otherwise,0

edsunrecogniz and devalued Feeling,1
2X  






otherwise,0

imbalance life- workandoverwork  from Stress,1
3X






otherwise,0

Priorities ategic Whims/StrShifting,1
4X  

The hazard rates for the Weibull distribution are 
given in the Table 7.12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the above data set, the parameter of the Weibull 
distribution given in eqn. (5.1), using the Maximum likelihood  
estimates in Section 5.3 and are estimated by using the 
Newton-Raphson method with the Statistical Analysis and 

Table 7.2 Goodness of fit of prediction of leavers for 
Software Engineer  

 
Estimation 

Period 
Prediction 

Period 
Kaplan 
Meier 

Weibull 
Distribution 

Extreme 
Value 

Distribution 
100 100 1.9 3.2 0.2 
100 290 2.2 3.1 5.5* 
100 650 0.6 2.0 38.5** 
290 100 0.4 0.1 0.2 
290 290 20.1** 1.3 13.0** 
290 650 47.5** 0.0 16.1** 
650 100 0.4 4.4* 1.4 
650 290 0.5 0.3 5.1* 
650 650 1.9 3.9* 21.7** 

*  significant at 5% level  

**  significant at 1% level  

Table 7.3 Goodness of fit of prediction of leavers for 
System Administrator   

 
Estimation 

Period 
Predictio
n Period 

Kaplan 
Meier 

Weibull 
Distribution 

Extreme Value 
Distribution 

100 100 0.9 0.3 3.9* 
100 290 0.5 3.4 8.4** 
100 650 0.2 25.8** 13.0** 
290 100 0.3 0.1 1.5 
290 290 1.2 2.5 10.9** 
290 650 0.2 6.9** 5.2* 
650 100 0.0 0.3 0.9 
650 290 1.3 1.8 5.2* 
650 650 2.4 3.7 9.5** 

*  significant at 5% level  

**  significant at 1% level  

(a) Weibull distribution and non-parametric 
 

(b) Extreme value distribution and non-parametric 
 

(c) Non-parametric survivor function: Upper limit and 
Lower limit 

 
Fig. 7.1 Estimates of the survivor functions for Weibull distribution; 
non-parametric, Extreme value distribution; non-parametric, 95 % 
confidence interval for Kaplan-Meier estimate, its upper and lower 

confidence limits for Grade 1 (Team Leader).    
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System (SAS) package, 5147.0ˆ,4123.1ˆ   . After 
the estimating the parameters of the Weibull distribution the 
The hazard rates for the Weibull distribution are given in table 
7.12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Fig. 7.3 Estimates of the survivor functions for Weibull 
distribution; non-parametric, Extreme value distribution; non-
parametric, 95 % confidence interval for Kaplan-Meier 
estimate, its upper and lower confidence limits for Grade 3 
(System Administrator). 
parameters 3 2, ,1i  given in eqn. (2.6), eqn. (2.7) and eqn. 
(2.8) relating to the covariates are estimated as 

3 2, ,1ˆ i (0.6348, 0.1289, 3.1846). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[ 
 
 
 
 
 
 

 
(a) Weibull distribution and non-parametric 

 
(b) Extreme value distribution and non-parametric  

 

 
(c) Non-parametric survivor function: Upper limit and Lower limit 

 

 
Fig. 7.2 Estimates of the survivor functions for Weibull distribution; 
non-parametric, Extreme value distribution; non-parametric, 95 % 
confidence interval for Kaplan-Meier estimate, its upper and lower 
confidence limits for Grade 2 (Software Engineer).    
 

(a) Weibull distribution and non-parametric  

 
(b) Extreme value distribution and non-parametric  

 
(c) Non-parametric survivor function: Upper limit and 

Lower limit 
 

Fig. 7.3 Estimates of the survivor functions for Weibull distribution; 
non-parametric, Extreme value distribution; non-parametric, 95 % 
confidence interval for Kaplan-Meier estimate, its upper and lower 
confidence limits for Grade 3 (System Administrator).    
  

 

Table 7.4 One year prediction and estimation periods for 
Grade 1 (Team leader) 

 

 Observed 
Expected 
Kaplan-
Mirer 

Expected 
Weibull 

Excepted 
Extreme 

Value 
Leavers 359 362.537 558.498 379.428 
Stayers 4005 4020.453 3806.825 3986.022 

2 with 1 d. f.  0.09903 81.57814** 1.190179 

For Weibull distribution,  1.4123,  0.5147 
For Extreme value distribution, b=3.5742, u=2.7439 
** -  1% level significant  

Table 7.5 One year prediction and estimation periods for 
Grade 2 (Software Engineer) 

 

 Observed 
Expected 
Kaplan-
Mirer 

Expected 
Weibull 

Excepted 
Extreme 

Value 
Leavers 1290 1386.228 1709.1 1376.724 
Stayers 6484 6388.652 6065.78 6398.156 

2 with 1 d. f.  8.102903** 131.6056** 6.614775* 

For Weibull distribution,  1,  0.3 
For Extreme value distribution, b=3, u=1.5 
*   -  5% level significant  
** -  1% level significant  
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The probability of leaving the job upto 6 years of service, 
given the personal covariates (0,0,0,0), (0,0,0,1), (0,0,1,0), 
(0,0,1,1), (0,1,0,0), (0,1,0,1), (0,1,1,0), (0,1,1,1), (1,0,0,0), 
(1,0,0,1), (1,0,1,0), (1,0,1,1), (1,1,0,0), (1,1,0,1), (1,1,1,0),  
(1,1,1,1) are given in the following table 7.13, table 7.14 as 
per the above estimates. 

 
Case (ii): CLS as Extreme Value distribution 
 

For the CLS distributed as Extreme value distribution given in 
eqn. (5.4), and the Maximum Likelihood estimates given in 
section 5.3 and are estimated by using the Newton-Raphson 
method with the Statistical Analysis and System (SAS)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 7.6 One year prediction and estimation periods for 
Grade 3 (System Administrator) 

 

 Observed 
Expected 
Kaplan-
Mirer 

Expected 
Weibull 

Excepted 
Extreme 

Value 
Leavers 239 265.416 316.368 278.352 
Stayers 2926 2899.235 2847.26 2886.14 

2 with 1 d. f.  2.876187 21.09792** 6.113887* 

For Weibull distribution,  0.5,  1.5 
For Extreme value distribution, b=5.5, u=2.5 
** -  1% level significant  

Table 7.9 χ2 values for testing prediction as in equ. (5.8) 
 

Company Weibull Extreme Value 
χ2 d.f. χ2 d.f. 

1 10.1412 9 15.1411 8 
2 7.3522 5 12.3522 6 
3 5.4533 7 15.5513 9 
4 4.4321 13 14.5314* 7 
5 3.4542 10 13.4582 7 
6 17.4451 11 19.4563* 10 
7 19.4622** 5 21.4724** 7 
8 12.4733 7 15.4845 8 
9 15.4744 12 19.4326* 10 
10 6.4521 8 10.8474 6 

*  significant at 5% level 

**  significant at 1% level 

 Table 7.10 Stayers and Leavers over a period of six years 
2006 – 2011 

 

Classes 1 2 3 4 5 6 Total 
Stayers 1158 1437 1528 1728 1324 1829 9004 
Leavers 230 241 304 344 264 324 1707 

       10711 

 

Table 7.8  χ2 values for testing estimation as in equ. (5.7) 
 

Company 
Weibull Extreme Value 

χ2 d.f. χ2 d.f. 

1 19.4362** 7 22.9272** 9 
2 16.1313* 6 16.1623** 5 
3 14.4374* 5 27.6143** 6 
4 10.7315* 3 27.5484** 5 
5 8.2623 4 18.9055** 4 
6 6.8314 3 16.0286** 3 
7 5.7175 2 14.7357** 2 
8 3.7912 4 14.0382** 3 
9 1.0532 3 12.8391* 4 
10 3.7312 2 5.4304 3 

*  significant at 5% level  

**  significant at 1% level  

Table 7.7 Median and expected lengths of service for one 
year estimation and prediction   

Grade 
Median 
Kaplan-
Mirer 

Median 
Weibull 

Median 
Extreme 

Value 

E(T) 
Kaplan
-Mirer 

E(T) 
Weibull 

E(T) 
Extreme 

Value 
1 0.9564 0.3971 4.0539 1.3425 0.4685 4.8069 
2 1.4534 0.2079 2.5995 1.9215 0.3000 3.2316 
3 2.8745 0.7206 4.5158 3.1247 3.0000 5.6746 

Table 7.11 Data set with three Personal Covariates 
 

Period in year No. of persons 
left Covariate 

2006-07 25 
(1,1,1,1) (1,0,1,1) (1,0,0,1) (1,0,0,0) (1,1,1,0) (1,1,0,0) (1,1,1,1) (1,0,0,0) (0,0,1,1) 
(0,0,0,1) (0,0,0,0) (0,1,1,1) (0,1,1,0) (0,0,0,0) (0,0,0,1) (0,0,0,0) (0,1,0,0) (0,0,1,0) 
(0,0,0,0) (0,0,0,0) (0,0,1,1) (0,1,1,0) (0,1,1,1) (0,0,0,0) (0,0,0,0) 

2007-08 36 

(0,0,0,0) (0,0,1,0) (0,0,0,0) (1,0,0,0) (0,1,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,1,1,0) 
(1,1,1,0) (0,0,0,0) (0,0,0,0) (0,1,0,0) (0,0,0,0) (0,0,0,0) (0,1,1,0) (1,1,1,0) (0,0,0,0) 
(0,0,0,0) (0,0,0,0) (0,1,0,0) (1,1,0,0) (0,1,1,0) (1,0,1,0) (0,1,0,0) (0,0,0,0) (0,0,0,0) 
(0,0,0,0) (0,0,1,0) (0,1,1,0) (1,1,1,0) (1,0,0,0) (1,1,0,0) (0,0,0,0) (0,0,0,0) (0,0,1,0) 

2008-09 79 

(1,1,1,1) (1,0,0,0) (1,1,0,1) (1,0,1,1) (1,1,1,0) (1,0,0,1) (1,0,0,0) (1,0,1,0) (1,1,0,0) 
(0,0,0,0) (1,1,0,1) (1,1,1,0) (1,0,0,0) (1,0,0,1) (1,0,0,0) (1,1,0,0) (1,0,1,0) (1,0,0,0) 
(0,0,0,0) (1,0,0,0) (1,0,1,1) (1,1,1,1) (0,0,0,0) (0,0,0,0) (1,0,1,0) (1,0,0,0) (1,1,1,0) 
(1,0,1,1) (1,1,0,1) (1,0,1,0) (1,1,1,1) (1,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,1) (0,0,1,1) 
(1,1,1,1) (1,1,0,0) (1,1,1,0) (1,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,1) (1,0,1,1) (1,0,1,0) 
(1,0,0,0) (1,0,0,0) (1,0,0,1) (1,0,0,0) (1,1,0,0) (1,0,1,0) (1,0,0,0) (0,0,0,0) (1,0,1,1) 
(1,1,1,0) (1,0,0,0) (1,0,0,0) (1,0,1,0) (1,1,0,1) (1,0,1,0) (1,0,0,1) (1,1,1,1) (1,0,0,0) 
(1,0,1,1) (1,0,0,1) (1,1,0,1) (1,1,1,0) (1,0,0,0) (1,0,1,0) (1,1,0,0) (1,0,0,0) (1,1,0,1) 
(1,1,1,0) (1,1,1,1) (1,0,0,0) (1,1,0,1) (1,0,1,1) (1,1,1,0) (1,0,0,1) 

2009-10 43 

(0,0,0,0) (0,0,0,1) (0,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,0) (0,0,0,0) (0,0,1,1) (0,1,1,0) 
(0,0,0,0) (0,0,0,0) (0,0,1,0) (0,1,0,1) (0,0,1,0) (0,0,0,1) (0,0,1,1) (0,1,0,0) (0,1,1,0) 
(0,0,0,0) (0,0,1,0) (0,1,1,1) (0,0,0,0) (0,1,0,1) (0,0,1,1) (0,1,1,0) (0,0,0,1) (0,0,0,0) 
(0,0,1,0) (0,1,0,0) (0,1,0,1) (0,0,0,0) (0,0,0,1) (0,1,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,1) 
(0,1,1,0) (0,0,0,0) (0,0,0,0) (0,0,1,0) (0,1,0,1) (0,0,1,0) (0,0,0,1) 

2010-11 18 (0,0,1,1) (0,1,1,0) (0,0,0,1) (0,0,0,0) (0,0,1,0) (0,1,0,0) (0,1,0,1) (0,0,0,0) (0,0,0,1) 
(0,1,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,1) (0,1,1,0) (0,0,0,0) (0,0,1,0) (0,1,0,1) (0,0,1,0) 

64 persons who did not have up to 6 
years of service 

(0,0,0,0) (0,0,0,1) (0,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,0) (0,0,0,0) (0,0,1,1) (0,1,1,0) 
(0,0,0,0) (0,0,0,0) (0,0,1,0) (0,1,0,1) (0,0,1,0) (0,0,0,1) (0,0,1,1) (0,1,0,0) (0,1,1,0) 
(0,0,0,0) (0,0,1,0) (0,1,0,1) (0,0,1,0) (0,0,0,1) (0,0,1,1) (0,1,0,0) (0,1,1,0) (0,0,0,0) 
(0,1,1,1) (0,0,0,0) (0,1,0,1) (0,0,1,1) (0,1,1,0) (0,0,0,1) (0,0,0,0) (0,0,1,0) (0,1,0,0) 
(0,1,0,1) (0,0,0,0) (0,0,0,1) (0,1,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,1) (0,1,1,0) (0,0,0,0) 
(0,0,0,0) (0,0,1,0) (0,1,0,1) (0,0,1,0) (0,0,0,1) (0,0,1,1) (0,1,0,0) (0,1,1,0) (1,0,0,0) 
(0,0,1,0) (0,1,0,0) (0,0,0,0) (0,1,0,0) (0,1,1,0) (0,0,0,0) (0,1,1,0) (0,0,0,1) (0,0,0,0) 
(0,0,1,0) 
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package, 5742.3,7439.2  bu . The hazard rate for the 
Extreme value distribution are given in table 7.15. 
 
After the estimating the parameters of the Extreme value 

distribution the parameters 3 2, ,1, ii  given in eqn. (2.6), 
eqn. (2.7) and eqn. (2.8) relating to the covariates are 

estimated as 3 2, ,1ˆ i (0.5387, 0.2135, 2.8162). 
 
The probability of leaving the job upto 6 years of service, 
given the personal covariates (0,0,0,0), (0,0,0,1), (0,0,1,0),  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (0,0,1,1), (0,1,0,0), (0,1,0,1), (0,1,1,0), (0,1,1,1), (1,0,0,0), 
(1,0,0,1), (1,0,1,0), (1,0,1,1), (1,1,0,0), (1,1,0,1), (1,1,1,0),               
( (1,1,1,1) are given in the following table 7.16, table 7.17 as 
per the above estimates. 
 

RESULT AND DISCUSSION   
 

The results from table 7.8 and table 7.9 shows that the 
Extreme value distribution is a better estimator of leaving 
pattern than the Weibull distribution. The chi-square value 
showed that Extreme value distribution could be used as a 
predictor for the company considered, 
 

Table 7.12 Hazard rate for the Weibull distribution 
 

t 1 2 3 4 5 6 
h0(t) 0.4353 0.3109 0.2554 0.2221 0.1993 0.1824 

 

Table 7.14 Probability of Leaving the Job between a Fixed Period of Time 
 

Pe
rs

on
al

 

C
ov

ar
ia

te
 

1846.3ˆ ,1289.0ˆ ,6348.0ˆ
321    

U
p 

to
 1

 Y
r 

B
et

w
ee

n 
   

1 
-2

 
Y

rs
 

B
et

w
ee

n 
   

2 
– 

3 
Y

rs
 

B
et

w
ee

n 
   

3 
– 

4 
Y

rs
 

B
et

w
ee

n 
   

4 
– 

5 
Y

rs
 

B
et

w
ee

n 
   

5 
– 

6 
Y

rs
 

T
ot

al
 

(1,1,1,1) 1.0000 - - - - - 1.0000 
(1,1,1,0) 0.2312 - - 0.7644 - - 0.9956 
(1,1,0,1) 0.1229 0.1243 - 0.2123 - 0.4512 0.9107 
(1,1,0,0) 0.7454 0.1968 - - - - 0.9422 
(1,0,1,1) 0.8121 - 0.1385 - - - 0.9506 
(1,0,1,0) 0.2325 0.1268 0.3175 0.2986 - - 0.9754 
(1,0,0,1) 0.6121 0.1125 0.0065 0.0231 0.0342 0.1276 0.9161 
(1,0,0,0) 0.1895 0.2699 0.3256 0.0678 0.0981 0.0491 1.0000 
(0,1,1,1) - - 1.0000 - - - 1.0000 
(0,1,1,0) 0.5435 0.0764 0.1535 - 0.1543 - 0.9277 
(0,1,0,1) 0.1129 0.2227 0.1821 0.0223 0.0245 0.3412 0.9057 
(0,1,0,0) 0.7372 0.1968 - - - - 0.9342 
(0,0,1,1) 0.6436 0.1989 0.1085 - -  0.9512 
(0,0,1,0) 0.1525 0.2568 0.3975 0.0986 0.0596 0.0350 1.0000 
(0,0,0,1) - - - 1.0000 - - 1.0000 
(0,0,0,0) 0.2295 0.3999 0.1256 0.0678 0.0281 0.1291 0.9812 

 

Table 7.15 Hazard rate for the Extreme Value distribution 
 

T 1 2 3 4 5 6 
h0(t) 0.1718 0.2272 0.3006 0.3976 0.5260 0.6958 

 
Table 7.13 Probability of Leaving a Job within 6 Years of Service 
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(1,1,1,1) 1.0000 1.0000 0.8177 1.0000 1.0000 1.0000 
(1,1,1,0) 0.8177 0.8177 1.0000 1.0000 1.0000 0.8177 
(1,1,0,1) 1.0000 0.2829 0.3141 0.4072 0.5635 0.6822 
(1,1,0,0) 0.7418 1.0000 1.0000 1.0000 1.0000 0.8177 
(1,0,1,1) 0.7613 0.8166 1.0000 0.8177 1.0000 1.0000 
(1,0,1,0) 0.2702 0.4745 0.5152 0.5163 0.7173 0.8177 
(1,0,0,1) 0.1021 0.3724 0.4042 0.6119 0.8176 0.8151 
(1,0,0,0) 0.1042 0.1829 0.3433 0.4725 1.0000 0.6628 
(0,1,1,1) 0.4486 0.1039 0.2873 0.1050 0.2873 0.2873 
(0,1,1,0) 0.9575 0.5618 0.1025 1.0000 0.1046 0.1050 
(0,1,0,1) 0.8894 0.9597 0.2915 0.5992 0.1049 0.2873 
(0,1,0,0) 0.3915 1.0000 0.6306 1.0000 0.2873 0.9501 
(0,0,1,1) 0.5098 0.7680 0.7680 0.7680 0.7680 0.5857 
(0,0,1,0) 0.5293 0.5846 0.7680 0.5857 0.7680 1.0000 
(0,0,0,1) 0.4382 1.0000 0.5832 0.5843 0.5853 1.0000 
(0,0,0,0) 0.3701 0.4404 0.5722 0.5799 0.5856 0.7680 
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Table 7.16 Probability of Leaving a Job within 6 Years of Service 
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(1,1,1,1) 0.9577 1.0000 0.9677 1.0000 1.0000 1.0000 

(1,1,1,0) 1.0000 1.0000 0.0641 0.1572 0.3135 0.4322 

(1,1,0,1) 0.4918 0.2347 0.7354 0.5677 0.5677 0.5677 

(1,1,0,0) 0.5113 0.5666 1.0000 1.0000 1.0000 1.0000 

(1,0,1,1) 0.4202 0.5245 0.5652 0.5663 0.5673 0.5677 

(1,0,1,0) 0.3521 0.42245 0.5542 0.5619 0.7676 0.8677 

(1,0,0,1) 0.2349 0.5431 0.5933 0.6225 0.7526 0.8128 

(1,0,0,0) 0.7568 0.7768 0.4468 0.1768 0.3768 1.0000 

(0,1,1,1) 0.8768 0.1091 0.8768 0.0902 0.8768 0.8768 

(0,1,1,0) 0.0132 0.1420 0.3732 0.4663 0.6226 0.7413 

(0,1,0,1) 0.8009 1.0000 1.0000 1.0000 1.0000 1.0000 

(0,1,0,0) 0.8204 0.8757 0.6668 1.0000 1.0000 0.8768 

(0,0,1,1) 0.7293 0.8336 0.8743 1.0000 0.8764 1.0000 

(0,0,1,0) 0.6612 0.7317 0.8633 0.8710 0.8767 1.0000 

(0,0,0,1) 0.1633 0.2420 0.4024 0.5316 0.6617 0.7219 

(0,0,0,0) 0.4577 1.0000 0.5677 1.0000 0.5677 0.5677 

 Table 7.17 Probability of Leaving the Job between a Fixed Period of Time 
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(1,1,1,1) 1.0000 -  - - - - 1.0000 

(1,1,1,0) 0.6454 0.3322 -  - - - 0.9776 

(1,1,0,1) 0.1334 0.0242 0.4235 0.1222 0.0145 0.2512 0.9690 

(1,1,0,0) 0.5654 0.4346 -  - - - 1.0000 

(1,0,1,1) 0.5324 0.0232 0.4143 -  - - 0.9699 

(1,0,1,0) 0.1435 0.2345 0.3678 0.0453 0.1768 0.0120 0.9799 

(1,0,0,1) 0.6535 0.1353 -  - 0.0324 0.1324 0.9536 

(1,0,0,0) 0.2773 0.1674 0.2753 0.1764 - 0.0343 0.9307 

(0,1,1,1) - 1.0000 - -  - - 1.0000 

(0,1,1,0) 0.2235 0.1233 0.1278 0.1453 0.2268 0.1012 0.9479 

(0,1,0,1) 0.3125 - 0.2742 0.1243 - 0.1569 0.8679 

(0,1,0,0) 0.1273 0.4674 - 0.1232 0.1668 0.0242 0.9089 

(0,0,1,1) 0.6535 - 0.0042 0.0243 0.1324 0.1249 0.9393 

(0,0,1,0) 0.2473 - 0.3753 0.0764 - 0.2186 0.9176 

(0,0,0,1) 0.7324 0.1232 0.1143 -  - - 0.9699 

(0,0,0,0) 0.5535 0.1145 0.1780 0.0453 0.0768 - 0.9681 
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with a reasonable degree of accuracy. From table 7.10 show 
that, the Chi-square value significant, the probability of 
leaving is dependent on the period of the stayers and leavers 
with respect to tenure, sex, qualification, location, etc.,. In the 
case of Cox’s approach, the CLS distribution as Extreme value 
distribution, the probability of leaving the job is a sure event 
in the case of category of workers (1,1,1,1). In the case of the 
categories (1,1,0,1),  (1,0,1,0) and (0,1,1,0) of persons, the 
probabilities are low but in all the cases the probabilities 
increase with the increase in the number of years of service. It 
is also seen that the category of workers under (1,0,1,0) have 
less probability of leaving in successive years but however the 
probabilities increase with the passage of time. 
  
It is interesting to note that in both the CLS distributions 
namely Weibull distribution and Extreme value distributions, 
the probabilities are very low initially and approach unity as 
the years pass by for the group with covariates (1,0,1,0) and 
(1,0,0,1). It is quite interesting to observe that, for the category 
of persons with personal covariates as (1,1,1,1) the propensity 
to leave the job is very high throughout with the passage of 
time or CLS. This implies that the travel time is tedious, the 
overall incentives are satisfactory and the quality of life is not 
satisfactory is quite justified. Considering the combination of 
the personal covariates as (1,0,1,0) and (1,0,0,1) the 
probabilities are very low initially and slowly approach unity 
with the passage of time. From this one can understand that if 
a person’s travel time is not tedious, the incentives are not 
satisfactory and the quality of life is not at all satisfactory, the 
propensity to leave the job is very much less initially but 
increases as the years pass by. Similar are the interpretations 
for all the combinations of personal covariates, the probability 
values depict the realities existing in practical life situations. 
The Extreme value distribution is better than the Weibull 
distribution particularly in estimation. However, this is not 
true in all cases and when predictions are being made for each 
company then they should examine to see which model is 
most appropriate.  
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