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This paper concerns the stability analysis of first order delay differential equations with constant 
coefficients. As stability is a very important problem in the theory and application of ordinary as 
well as delay differential equations and moreover stability analysis of delay differential equations 
have been investigated extensively, although not completely developed for more complicated cases 
yet, here we first introduce the concept of stability region and  stability boundaries of first order 
delay differential equation with constant coefficients. Finally we approximate the characteristics 
equation of first order linear delay differential equation with determinant of square matrices as 
constant coefficients, using inverse Laplace transform as well as Gamma function to determine the 
stability of the delay differential  equations. 
 
 
 
 
 

 
  

  

  
 
 

 
 

 
 

 
 
 
 
 
 

 
 

 
 

 
 
 

 
 

 
 

 
 
 
 
 

 
 

  

 
 

 

INTRODUCTION 
 

Delay differential equations (DDEs) are popular tools used by 
scientists in modeling real life systems. Delay Differential 
Equations (DDEs) are a large and important class of dynamical 
systems. DDEs are arise in either natural or technological 
problems. In these systems, a controller monitor the system and 
makes adjustment to the system based on its observation. Since 
these adjustments can never be made instantaneously, a delay 
arises between the observation and the control action. 
 

It is well-known that stability is a very important problem in 
the theory and application of differential equations. If the 
solutions of a differential equation describing a dynamical 
system or of any differential equation under consideration are 
known in closed form, one can determine the stability 
properties of the system or the solution of the differential 
equation under consideration appealing directly the definitions 
of stability. Moreover finding of solutions become more 
difficult for delay differential equations rather than the 
differential equations without delay. The stability analysis of 
DDEs have been investigated extensively, although not 

completely developed for more complicated cases yet. Now 
there has been a recent surge of interest in numerical and 
analytical characterization of stability properties of linear 
Delay Differential Equations (DDEs). Stability analysis of 
DDEs is particularly relevant in control theory. The stability, as 
the basic requirement of control systems, may be destroyed due 
to the presence of time delay. The important objective of 
stability analysis is to find the maximal delay region such that 
time delay system remains stable for the time varying delay 
with this region. The determination of such region requires 
suitable stability criteria. Here the stability analysis of systems 
with time varying delays has been becoming a hot topic in the 
past few decades. 
 

For the class of linear systems with constant coefficients and 
constant delay, the asymptotic analysis can be carried out by 
analyzing the characteristic equation. In case of scalar DDE,

)()()(  tbytayty  a complete and satisfactory 

description of the stability region is obtained for a fixed delay, 
both for real and  complex coefficients a and b. To date, the 
stability analysis of numerical methods for DDEs is almost 
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completely restricted to equations with constant delay and to 
methods advancing with constant step size. 
 

Some classical stability results for ordinary differential 
equation (ODE) methods   
 

The simplest concept of stability for ODE methods is that, 
consider the linear autonomous test equation: 
 











0)0(

0),()(

yty

tttayty
                … (1) 

 

where Ca . 
 

The  solution of (1), is given by  
 

0
)()( 0 yttaety   

0
)( 0)( yety tta 

 

,)( 0
))(( 0 yety ttaR  where R(a) is  the real part of 

Ca  
 

So, whenever 00 y , the condition 
 

0)( aaR 
 

 

is equivalent to 00
)( |,|)( 00 ttyety tta  

 

In particular, the condition R(a)<0 is equivalent to the 
asymptotic stability property, 
 

0)(lim 


ty
t  

 

whereas the slightly weaker condition 0)( aaR   is equivalent  

to the contractivity property 
 

00 |,|)( ttyty 
 

 

Linear Scalar test equations  
 

Consider the class of scalar linear DDEs with variable 
coefficients 
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and with constant coefficients 
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If delay   is constant, then equation (2) is a linear autonomous 
equation. 
For the constant delay equation (3), 
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              … (4) 

 

The stability analysis may be done directly by studying the 
roots of the characteristic equation: 

Let 
stcety )(  

 

So, the characteristic equation for equation (4) is  
 

)(  tsstst bceacecse  

  0 sst ebasce  

0 sebas                                 ...(5) 
 

It is known that (see El’sgol’t and Norkin [7]), the equation (5) 

has infinitely many roots of is , each of which has a certain 

multiplicity im . They lie in the complex half plane )(aR  

for some real   and their real parts accumulate at  . 
Therefore, in any vertical strip of the complex plane there are 
only a finite number of roots. 
A necessary and sufficient condition for the asymptotic 

stability of equation (4) is that all the roots is of characteristic 

equation (5) such that 0)( isR . 
 

Asymptotic stability region Sτ for the real coefficients  
 

We have the linear DDEs with constant coefficients 
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0
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Let a and b are real. 
The characteristic equation of (6) is  
 

0 sebas                                                              ...(7) 
 

Analysis of the roots of the equation (7) shows that, for a fixed 

value of the delay   , the region of stability S is larger than 

the cone 0||  ba  derived by the inequality 0||)(  baR  

and the region of asymptotic stability S is given by 
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Fig 1 Asymptotic stability region S  for the equation (6) with constant delay 

 in the real (a,b) plane. 
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0||)(  baR                   …(8) 
 

is not necessary for a fixed constant delay  .When we assume 

the delay  go to  , we reveal that the region of asymptotic 
stability tends to the region described by  
 

aba                    …(9) 
 

Therefore, the condition(9) is slightly weaker than the 
condition(8)which is necessary for the asymptotic stability of 
equation (6) for all constant delay. 
 

If we summarize the above stability conditions, it reflects in the 
following Table: 
 

Table 1 Asymptotic stability scheme for 

)()()(  tbytayty , with Rba , . 

0)(lim 


ty
t

 for all constant delay   





Sba

aba

),(

 

,0)(lim 


 ty
t

for fixed constant 

delay   
 

First order delay differential equation with constant 
coefficients and stability boundaries  
 

Consider








0),()(

0),()(det)()(det)(

ttty

ttyBtyAty

   

... (10) 

 

where  A and B are d×d matrices,  0  and  
 

  dRC ,0,0   
 

Also (det A) and (det B) are the determinants of square 
matrices A and B. 
 

Let ,det aA  ,det bB  1  

then equation (10) reduces to  
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             ... (11) 

 

which is a first order linear DDE with constant coefficients.  
 

 Put   
stecty )(  

 
stcsety  )( and

)1()1(  tsecty  

then equation (11) becomes 

 
)1(  tsstst bceacecse  

  0,   sts ebeas  

  0  sbeas ,               ... (12) 
 

which is the transcendental characteristic equation of  (10) 

Put  0,  yiys  in equation (12),  we get  

 0 iybeaiy  
  0)sin(cos  yiybaiy   

( ,sincos yiyeiy  which is the Euler’s identity) 

  0)sincos  yibybaiy  

   0)sin(cos  ybyiyba  

Equating real and imaginary parts, we get 
 

0cos  yba                 …(13) 
 

0sin  yby                … (14) 
 

From equations (13) and (14), we have 
 

yba cos ,     yyb sin  
  yba cos ,    yecyb cos  

  yecybyya cos,cot   

when 0a , from equation (13), 0cos yb  

 0cos  y , provided 0b  

 2


 y

 

when 
2


y ,  from equation (14),

2
sin

2





b  

2


b

 

So, when 
2

,0


 ba , 

when 0,0  ab  and  

when  0y , from equation (13), ab  . 

Thus, we see that a zero root 0y  occurs on the line 

ab   
For non-zero y, the stability curve (or family of curves ) is of 
the form  
 

   0,)1(,cos,cot),(  nnynyecyyybaSn   
….(15) 

 

 
 

Fig 2 Analytical stability chart of equation  (11) 

Here the Fig : 2 shows a portion ),( ba  parameter space with 

the analytically stability boundary, i.e, in which 0)( ty . 

Solution of equation (11) is marginally stable. 
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The upper and lower stability curves intersect at (1,-1). The 

lower stability curve 0S  meets the b-axis at 






 

2
,0  and 

then approaches to   ,  along the line ab  . 

The shaded region represents asymptotically stable solution of 
equation (11). 
 

Polynomial approximations of the characteristic equation of 
first order linear DDEs with stability  
 

Consider the linear first order DDE with constant coefficients 
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... (16) 

 

where A and B are dd   matrices, τ > 0 and 

  dRc ,0,0  . 
 

Also (det A) and (det B) are the determinants of square 
matrices A and B. 

1det,det  andbBaALet   
  

Then equation (16) becomes  
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From equation (17), 

 )1()()(  tbytayty  
  )1()()(  tbytayty                ...(18) 

 

Taking the Laplace transform of both sides of the equation 
(18),  
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 (using the Linearity property of Laplace transform) 
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 ( 0y is the initial condition at 0t ) 
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The Laplace transform on function f  is defined as  


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and this is equivalent to taking the Laplace transform of the 

function extended by zero on ),1(  . 

From equation (19), 
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For the first interval [0,1], the Laplace transform )(ty  can be 

expressed as  
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At the end of the interval )(],1,0[ yL  can be calculated by 

evaluating the inverse Laplace transform of )(yL  at 1t  

denoted by 
1
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In general, 
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From the above sequence of approximations, 
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The repeated application of the procedure terminates at 0Y  and 

we get, 
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(Using previous  equations and lastly using  equation (21)) 
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As )()(0  LsY  is the initial function and stability should not 

depend on the initial function, so we neglect the inverse 
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(Using the linearity property of inverse Laplace transform) 
For positive integer n, the equation (33) depends on all 
previous conditions. We  know 
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Using equation (34) in equation (33) , we get  
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To obtain characteristic equation of the Laplace transform of 
equation (35), 
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We have the Gamma function defined as 
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Continuing  the process (i.e, repeated application of integration 
byparts) we get,  
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The partial sum in equation (37) can be written as,  
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which is an nth order polynomial approximation to determine 
the stability of equation (16) 
 

Here, we replaced the original stability problem with that of a 
difference equation and  
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Convergence of nth order polynomial approximation to 
transcendental function  
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When n , the equation (39) becomes 
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Also, the characteristic equation of the original continuous 
problem in eq (10) is  
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which is equivalent to equation (41). Hence the characteristic 
equation of equation (10) is equivalent to the nth order 
polynomial approximation of the same equation (10) and the 
sequence of nth order polynomial approximation

  Nnfn  ,)( converges to transcendental function 

b
a

e


. 
 

CONCLUSION  
 

In this paper inverse Laplace transform is introduced for 
stability analysis of DDEs.  The stability analysis is dependent 

on stability region S and the convergence properties of the 

method are studied elegantly and it further can be implemented 
while discussing stability analysis of DDEs.
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