

*Corresponding author: Rajul Jain
Department of Computer Science, Mata Gujri Mahila Mahavidyalaya (Autonomous A+) Jabalpur (MP), India

ISSN: 0976-3031

Research Article

GLUE CODE ESTIMATION IN COMPONENT BASED SOFTWARE DEVELOPMENT
PROJECTS: A TOOL BASED APPROACH

*Rajul Jain1 and Pandey R. K2

1Department of Computer Science, Mata Gujri Mahila Mahavidyalaya (Autonomous A+)
Jabalpur (MP), India

2Department of Mathematics and Computer Science, Rani Durgavati Vishwavidyalaya,
Jabalpur (MP), India

DOI: http://dx.doi.org/10.24327/ijrsr.2017.0811.1115

ARTICLE INFO ABSTRACT

Estimation of effort for component based software has been in focus of researchers. Various models
have been suggested by number of scientists. The most popular model is Cocots model in which
major cost ingredients are integration cost i.e. the cost of glue codes, assessment costs and cost of
tailoring the components. Many researchers have proposed formulas for evaluating assessment and
tailoring costs theoretically. Major problem found in the existing work is calculation of integration
cost. This cost cannot be evaluated through some formula or theoretical calculations as the amount
of code required as glue code is not predictable using these methods. This paper proposes the
evaluation of the glue code cost using UML diagrams. A Java Parser Tool has been developed to
evaluate the glue code by parsing through the XMI file. For the support of the proposed system an
existing UCRS system used to evaluate cost through implementation of it.

INTRODUCTION

Effort estimation of software development is an important sub-
discipline in software engineering. It has been the focus of
much research mostly over the last couple of decades. In recent
years, software development turned into engineering through
the introduction of component-based software development
(CBSD). The industry has reported significant advantages in
using CBSD over traditional software development paradigms.
However, the introduction of CBSD has also brought a host of
unique challenges to software effort estimation which are quite
different from those associated with traditional software
development (Wijayasiriwardhane T. et al, 2011).

Owing to the increasing tendency to use the CBSD approach in
recent years, it is clear that effort estimation of CBSD is
particularly an important area of research with a direct
relevance to industry. (Wijayasiriwardhane T. et al, 2011).
CBSE is a process that emphasizes the design and construction
of computer based systems using reusable software
components. It provides the way of developing very large
software systems. It concentrates on both the Commercial-off-
the-shelf and in-house components. Component based software

engineering has been widely accepted as a new and latest
approach to software development. Today’s the software
systems are very difficult, bulky and unmanageable. This
causes in lesser productivity, higher risk management and
greater software quality. Software metrics measure different
aspects of software complexity and therefore play an important
role in analyzing and improving the quality of software.

Accurately predicting software development effort is a critical
concern of many organizations even today (Wijayasiriwardha -
ne T. et al, 2011).

Underestimating development cost and schedule can have a
detrimental impact on both the functionality and quality of
software products and therefore on the developer’s reputation
and competitiveness. In extreme, it can even cause to abandon
projects in the midstream. In contrast, overestimating the cost
and schedule can result in a waste of resources because of
redundant allocation or even a missed opportunity particularly
when bidding for software contracts.

CBSD requires focus on integration-centric activities named,
searching and identifying candidate components, assessing and
selecting components based on system requirements and

Available Online at http://www.recentscientific.com
 International Journal of

Recent Scientific

 Research International Journal of Recent Scientific Research
Vol. 8, Issue, 11, pp. 21653-21659, November, 2017

Copyright © Rajul Jain and Pandey R. K, 2017, this is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the
original work is properly cited.

DOI: 10.24327/IJRSR

CODEN: IJRSFP (USA)

Article History:

Received 15th August, 2017
Received in revised form 25th
September, 2017
Accepted 23rd October, 2017
Published online 28th November, 2017

Key Words:

Software Metrics, Size Metric, Component-
based software systems, Glue Codes,
Integration Cost, Tailoring Costs.

Rajul Jain and Pandey R. K., Glue Code Estimation In Component Based Software Development
Projects: A Tool Based Approach

21654 | P a g e

architectural and project constraints, tailoring and integrating
the selected components into a seamless software system and
upgrading the system as components evolve over time with
newer versions.(Wijayasiriwardhane T. et al, 2011).

Software Models considered in study are-

Algorithmic/model-base approaches

 SAIC model
 Stutzke’s model
 Ellis’s model
 Aoyama’s model
 ABB model
 COCOTS model

Integrated/composite models

 Adjustable cost model

Other Approaches

 Vector-based approach

Saic Model (Abts, C., Boehm, 2008, Wijayasiriwardhane T.
al, 2011)

Authors have shown that Science Application International
Corporation (SAIC) model mainly focuses on the end-user cost
of adopting a particular component into a larger system i.e.

EC = LC x N + TC + GC

Where EC is Estimated Cost
LC is Licensing Cost
N is Number of Licenses Required
TC is Training Cost
GC is Glue Code Cost

Advantages

It enlists cost factors of components i.e. Licensing Costs &
Training Costs

Disadvantage

It doesn’t take the effort of searching and selecting components
into account. It also does not provide details of determining the
effort of the glue code development. (Wijayasiriwardhane T. et
al, 2011).

Stutzke’s Model

This model (Abts, C., Boehm et al, 2000) mainly focused on
the volatility cost of components, which is the frequency with
which a vendor releases new versions of, the components:

EAC = CV x AC x IS (CS+CC)

Where EAC is estimated additional cost, CV is component
volatility cost, AC is architectural coupling cost, IS is interface
size, CS is cost of screening of components and CC is Cost of
changes components.

Advantage

Component Volatility.

Disadvantage

Not implemented (Wijayasiriwardhane T. et al, 2011).

Ellis’s Model (Abts, C .2004, Wijayasiriwardhane T. et al,
2011).

Loral Federal Systems, which proposed 17 cost drivers and
described the construction of an effort model for predicting the
effort of component integration.

WU = fn (size, drivers)
P = LM / WU
Estimated Cost = WU x P

P is Productivity, LM is Labour Months, WU is work units &fn
is a function that relates the size of glue code and ratings of
cost drivers to work units.

Advantage

Ellis’s model is an actual database application with a graphical
user interface.

It has been calibrated to a number of CBSD projects and claims
an accuracy of +/-15% against an internal dataset of Loral
projects.(Abts, 2004).

Disadvantage

Deep details of the modeling function and calibration dataset
remain proprietary (Wijayasiriwardhane T. et al, 2011).

Aoyama’s Model (Aoyama, M., 1996, Wijayasiriwardhane T.
et al, 2011)

In this model (Dagnino, A et al 2003) introduced Component
acquisition, compositional design and component integration
processes and wiped out unit testing process. Aoyama proposed
an economic model for CBSD

� = �(���	��)

�

���

Pi(Conv) = (1/n) for all processes of traditional process model
Pi(Comp) = Po (Conv) except for component acquisition
process of CBSD process model
Qi(Comp) = (1-Rr) Qi(Conv)
Cost Ration = 1-[C(Conv) - C(Comp)]
=0.84 - 0.48Rr + CA

Where Pi(Conv) Cost of Conventional Software development
Qi(Conv) unit cost of Conventional Software Development
Pi(Comp) Cost of CBSD process model
Qi(Comp) Unit cost of CBSD process model
C(Conv) cost of conventional software development
C(Comp) cost of CBSD software development
CA cost of component acquisition process

Advantage

Can reduce the total development cost by 50-70% at the best
effort. (Wijayasiriwardhane T. et al, 2011).

Disadvantage

1. Many assumptions and approximations has been done.
2. Cost of unit testing has been ignored.

(Wijayasiriwardhane T. et al, 2011)

ABB Model (Dagnino, A et al, 2003 Wijayasiriwardhane T. et
al, 2011)

International Journal of Recent Scientific Research Vol. 8, Issue, 11, pp. 21653-21659, November, 2017

21655 | P a g e

Researchers (Dagnino, A.et al ,2003) used goal-question-
metrics approach. Researchers identified the goals for CBSD
as:

Goal 1: Evaluate whether there is a reduction in cost as a
result of using CBSD.

Goal 2: Evaluate whether there is a reduction in effort as a
result of using CBSD.

Then questions are defined to achieve the goals and sub-
questions may be defined for answering the questions. The
questions are derived metric and for it they have proposed a
measure called measurable units (MU) and the relation for it is
as follows:

TENC = size of any fraction of system developed by custom
code in MU
TER = CSize X ERLM + CSize XERMM + CSize X ERNM
TESR = CSize X EWR
TECBSD = TENC + TER + TEWR
TECustom = System size in MU

Where TENC is total effort to develop any fraction of system
by new code

CSize is size of component in MU
ERLM represent the effort for reuse factors for components
that require less than or equal to 25%,
ERMM represent the effort for reuse factors for components
that require more than 25%,
ERNM represent the effort for reuse factors for components
that require no modifications.
TER is total effort to reuse components
TEWR is total effort to write reusable components
EWR represents the effort factor for developing a reusable
component
TECBSD is total effort required for CBSD
TECustom is total effort required for custom software
development

Advantage

This model focuses on measuring economic benefits and
performing a sensitivity analysis of the CBSD

It can be used as a comparative model to decide whether or not
to go for a CBS solution

Disadvantage

Does not provide the details for determining the most central
measure of the approach [9]

Cocots Model (Abts, C, et al 2000, Wijayasiriwardhane T. et
al, 2011)

It is an extension of COCOMO-II model. The model is based
on two defining characteristics of the components:
The source codes of components are not available to the
application developer

The future evolutions of components are beyond the control of
the application developer.

It is consisting of three different sub-models that estimate the
efforts of component assessment, tailoring and integration
activities of the CBSD.

CAE = �(CCF	X	MIEF) +�(CCA	X	MDAE)

CTE = �(NCT	X	MTE	X	TCQ)

CIE = A	(Esize)� �EM

Total Effort = CAE+CTE+CIE
Where CAE is efforts of component assessment
CTE is efforts of component tailoring
CIE is efforts of component integration

Advantages

The estimates are done by grouping components into classes as
opposed to the individual components or the system
(Minkiewicz, A. et al, 2004)

Disadvantages

1. It does not address schedule estimation directly or
allow users to customize the integration process,
which can differ from organization to organization
and even project to project

2. It does not account for lifecycle issues beyond initial
development or post development maintenance issues
for its estimation

3. Model has tendency to produce underestimates.

Adjustable Cost Model (Naunchan, P. et al, 2007,
Wijayasiriwardhane T. et al, 2011) It is an adjustable cost
model for estimating the effort and duration of the component
integration. The model (Naunchan, P et al, 2007) integrates
three approaches, namely effort multipliers of the COCOTS
model to identify and determine productivity factors, system
dynamics to simulate the software process and communication
overhead assumptions to adjust the development team’s
productivity.

EDT =
����(� + ��)

[��	�	��	(1 − ���)]

�� = �	�	���

Advantage

1. Model correlates the usage of workforce to
development time.

2. Model allows users to adapt the integration process
pattern and specify productivity factors as appropriate
for their organization

3. Model provides minimal effort needed as well as the
optimal team member allocation for the component
integration process.

4. It also addresses the absence of schedule estimation in
the COCOTS model.

Disadvantage

1. Model covers only it presumes that the team size
assigned at the beginning of a project does not change
throughout its development costs of CBSD.

2. Model assumes that the size of the glue code to be
written can be predictable in terms of LOC

Vector Based Approach (Wijayasiriwardhane T. et al, 2011)
This approach is to account for the increase of effort for writing
wrappers or adapters by means of glue code to make the
interaction assumptions of components compatible with those

Rajul Jain and Pandey R. K., Glue Code Estimation In Component Based Software Development
Projects: A Tool Based Approach

21656 | P a g e

of the system’s architecture to which components are
integrated.

In this approach (Yakimovich et al 1999) the interaction
assumptions of individual components and systems architecture
area presented as interaction vectors V = (P, C, I, S, B) where
variables P, C, I, S and B represent the inter-component
interaction assumptions for packaging, control information
flow, synchronization and biding respectively.

Advantage

1. The information required to employ it can be easily
obtained from the system’s architectural description
and components specification.

2. This approach can be used to decide whether or not of
go for a CBS solution to select the best components
and to determine the amount and type of the glue code
to be written.

Disadvantage

Only provides comparative results for the component
integration but not the required integration effort in terms of
any measurable unit such as man hours. (Wijayasiriwardhane
T. et al, 2011)

Problem Statement

COCOTS model provides a great details of the existing system
in the area of effort estimation for CBSE. Particularly the effort
estimation in before implementation, during implementation
and post implementation has been focused by the researchers.
The major costs contributing in effort estimation for CBSE
includes:

1. Assessment Cost of proper and selected components
2. Tailoring Cost of the components to fit to the

requirements of the new system
3. Integration Cost for Components

This is found from the existing system that evaluation of the
assessment cost is very much dependent on the new system.
Similarly tailoring cost is fully dependent on the new system.
Researchers have proposed formulas for evaluating assessment
and tailoring costs theoretically. Major problem found in the
existing works is calculation of integration costs. This cost
cannot be evaluated through some formula or theoretical
calculations as the amount of code required as glue code is not
predictable using these methods. This works proposes to
evaluate the glue code cost using UML diagrams. For the
support of the proposed system UCRS (Jawwad W.Shareef et
al 2012) has been implemented to evaluate LOC metric.

Proposed System

Integration cost is the cost of generating glue code for adding
two or more components to acquire a new working system.
This includes cost of integrating any existing system with the
new components to be used and cost of adding two or more
new components together. This cost is found to be most
difficult in calculating majorly when the cost and effort are to
be calculated before the inception of the project
implementation. In this research, focus is to evaluate the
complete effort required in implementation of any new
software system. The effort estimation in this work is pre

implementation so that the organization can predict the cost
beforehand. The cost of assessment and tailoring are being
taken from the formula and cost of integration through
generation of the glue code is being calculated by analyzing the
UML diagrams through XMI files. The complete work is
provided with the use of case study of UCRS detailed in next
section. The steps used in the work are as follows:

Step 1: Case Study of UCRS (Jawwad W.Shareef et al 2012)
has been taken and deployment diagram of the same has
been drawn using the ArgoUML tool available over the
internet.

Step 2: After drawing the deployment diagram XMI file of
the same has been generated using ArgoUML export to
XMI option. (About XMI files, its usage and advantages
have been elaborated in the coming section)

Step 3: A Java Parser tool has been implemented to parse
through the XMI file and collected information from
XMI file such as components, interfaces, operations,
parameters etc.

Step 4: The collected information has been analyzed and
processed to evaluate amount of glue code required for
each interface based on parameter processing detailed in
section followed.

Step 5: The amount of glue code values has been applied
with the weights to reduce the inaccuracies

 Step 6: The average of the weighted glue code amount for
all interfaces is taken to calculate the final expected
occurring if any. glue code effort required to implement
the system.

Step 7: Total effort has been evaluated using the formula
provided in COCOTs model

Figure 1 Flow of the proposed system

Glue Code Calculation

Glue code is measured in this work as lines of code required to
integrate two components based on per interface per parameter.

START

STOP

Create and draw UML Diagram in Argo UML

Export XMI File for the diagram in ArgoUML

Implement XMI File Parser using JAVA

From the exported file extract information such as
Components, Interfaces, Operations, and Parameters etc.

Calculate Glue Code from Parameters & Interfaces

Calculate Total Effort by Applying COCOTs Formula

International Journal of Recent Scientific Research Vol. 8, Issue, 11, pp. 21653-21659, November, 2017

21657 | P a g e

For including the possibilities all parameters are taken to be
both single values parameters and multi-valued parameters.
The assumption is justifiable as during the integration a
component cost of the single values parameters is taken as
follows:

Every single value will be either assigned to receiving
parameter directly which will include a single assignment
statement. If type conversion is required then every language
provides a set of statements for converting types of values,
which is found to be between 2-3 additional statements e.g., in
JAVA we have wrapper classes to convert types which requires
two statements to convert from one type to another. Most
involved type conversion is from String type to any primitive
type which requires parsing of String i.e. O(c) processing time
where c is number of digits, hence requiring n number of
statements in conversion.

The processing may need to receive a simple value or a
compound value from other components. Since evaluation of
these parameters might be complex therefore it is being
assumed further that the component implementation handles
these complexities during further processing but do not provide
any type of conversions required between two components in
respects of values and types. For reducing the possible error,
weighted processing has been considered.

The processing cost of compound values is a combination of
the ingredients of the compound types which themselves are
single values or compound values. Therefore cost of these can
be k * cost of single values where k is number of single values
involved in each compound values.

After summing up we get the following formula for evaluating
the glue code cost:

Glue Code Cost

n1 + n2*c + n3 * s + k1 + k2 * s + k3 * c;

Where
n1 is number of single values parameters
n2 is number of single values requiring type conversion
c is cost of conversion
n3 is number of single values requiring conversion from String
to numeric values
s is cost of conversion from String to numeric
k1 is number of single values requiring no conversion and
involved in multi-values parameter
k2 is number of single values requiring conversion and
involved in multi-values parameter
k3 is number of single values requiring conversion from String
to numeric and involved in multi-values parameter

Application of weight mechanism:

Since glue code cost evaluated using parameters may involve
some complex processing during assignment on receiving
parameters therefore we need to apply some weight to reduce
the possible error. The weight value should be higher than one
always and must be kept as small as possible. As the weight is
increased the value is considered to be more on assumption
based then on the actual cost i.e.
Weight 1/ Accuracy

Calculation of weight in this work is being done again on the
basis of the number of parameters and it is being found that as
the numbers of parameters are increased weight value is
reduced.

About Argouml & XMI

ArgoUML is an UML diagramming application written in Java
and released under the open-source Eclipse Public License. By
virtue of being a Java application, it is available on any
platform supported by Java SE.

XMI is a compressed file format created by XMill. XMI files
are XML files, which usually contain metadata information,
which have been compressed. XMI stands for “XML Metadata
Interchange.” While .XML files tend to be very large, the
compression used by XMill into .XMI files will make the files
around half the size of other compression techniques. XMI files
can be decompressed using XMill or similar XML compression
software.

About UCRS

UCRS (Jawwad W.Shareef et al 2012) is a automation system
for the universities and provides various facilities to the
students, faculties and staff. Within this system, a student
registers for classes. Once given access, the students may select
a term and build a class schedule from the offered classes. The
system passes information about a student’s schedule to the
billing system. A student can also register, add, or drop a
course. An instructor may use the registration system to print a
student class list and to submit grades for her/his class. The
administrator may maintain student and teacher information.
This model provides an overall view of the system and helps to
demonstrate the extraction of existing component assembly
complexity metrics.

The component, Registration System, has seven provided
interfaces namely, IMakeSchedule, IUpdateSchedule,
IRegisterCourse, IView Result, ISubmitGrades and ILogin
which in ArgoUML tool are linked by an arrow known as
(Abstraction). Similarly there are four required interfaces of
component ‘Registration System’, linked by an arrow known as
(Dependency). These required interfaces serve as provided
interfaces for the following.

 ICourseMgt by component ‘Course Management’
 ITermMgt by component ‘Term Management’
 IPersonMgt by component ‘Person Management’
 IBillMgt by component ‘Billing System’

After the modeling of UCRS(Jawwad W. Shareef et al 2012) is
completed, the metrics are derived using ArgoUML tool, the
XMI 1.2 file is generated with the help of Export XMI option
(ArgoUML using Netbeans XMI Writer version 1.0),. Using
this XMI file, the metrics are derived by parsing the XMI 1.2
file.

Rajul Jain and Pandey R. K., Glue Code Estimation In Component Based Software Development
Projects: A Tool Based Approach

21658 | P a g e

Figure 2 Component Diagram of UCRS Registration System
(Mehmood& Lai, 2006)

The UCRS model in XMI is identified by a unique id
(UML:Modelxmi.id). The XMI file contains information of all
components by assigning a unique (UML: Component xmi.id)
to each component.

The component provided and required interfaces are shown as
a link pointed to a stereotype <<interface>>, here in XMI file
the component which provides an interface to other
components is identified by (UML: Dependency.client) by
assigning a unique (UML: Componentxmi.idref)to each
component, the link which carries this dependency to the
stereotype<<interface>> is identified by (UML: Abstraction)
assigning a unique(xmi.idref), similarly for a required interface
of a component the link whichcarries this dependency to the
stereotype <<interface>> is identified by(UML: Dependency.
supplier) in the system.

The XMI files stores all necessary information regarding
UCRS model (Jawwad W.Shareef et al 2012). This file is
parsed through Java Parser tool developed with the help of
ArgoUML parser; to derive different metrics related to
component assembly, using a Java API tool.

Figure 3 Various Interfaces with Operations and Parameters of UCRS
Registration System (Mehmood& Lai, 2006)

IMPLEMENTATION AND RESULTS

A JAVA based application has been developed to evaluate the
glue code for the case study of UCRS [(Jawwad W.Shareef et
al 2012) to estimate the cost of glue code.

Figure 4 Java Tool showing the various Components, Interfaces, Operations
and parameters in the exported XMI file.

The implementation has been done to list all the components,
interfaces, operations and parameters in the system by parsing
the XMI file. As proposed in section above for evaluation of
glue code formula, various statistics regarding the parameters,
their types and their requirement of lines of codes has been
calculated as stated.

Figure 5 Java Tool showing the various types of parameters evaluated from the
parsing of XMI file and estimated lines of code required for glue code

generation for the components of the registration system of UCRS.

From the figure 5 above, it is shown that estimated lines of
code to be written for integration of the components of
registration system of UCRS (Jawwad W.Shareef et al 2012)
are 178. The implementation provides an idea of tentative cost
of glue code before actual implementation of the system. This
is useful in calculating the tentative overall cost of the system
in advance and helpful in making organizational decisions.

CONCLUSION

Calculation of glue code cost i.e. the cost of integration has
been proposed to be based on number of parameters involved
in the various operations of the components of the system. The
parameters have been categorized in three categories and
method has been proposed to calculate the cost. The case study
of UCRS based calculation in this work evaluated glue code
cost in lines of codes, which can be used to calculate the efforts
using the existing methods. The categories of the parameters

International Journal of Recent Scientific Research Vol. 8, Issue, 11, pp. 21653-21659, November, 2017

21659 | P a g e

have been done to match the most practical requirements of the
implementation and hence after weighted adjustments cost is
found to be realistic. The glue code cost can be combined with
assessment and tailoring cost to get the full effort. The work is
providing the estimation before actual implementation and
therefore they are going to be helpful in pre-implementation
estimations of the software.

Future Research

 The tool developed work for only component models

developed in Argo UML, this can be further upgraded
for other UML tools like Rational Rose, Magic Draw
UML, etc.

 The tool can be further upgraded for estimation of
Assessment cost and tailoring cost for component-based
systems.

 Other metrics related to Component-based systems can
be included in enhanced version of the tool proposed.

References

Abts, C.: ‘Extending the COCOMO II software cost model to
estimate effort and schedule for software systems using
commercial-off-the-shelf (COTS) software components:
the COCOTS model’. PhD thesis, University of Southern
California, 2004

Abts, C., Boehm, B.W.: ‘COTS software integration cost
modeling study’ (Centre for Systems and Software
Engineering, University of Southern California),
http://sunset.usc.edu/csse/TECHRPTS/1998/usccse98-
520/usccse98-520.pdf, accessed August 2008

Abts, C., Boehm, B.W., Clark, E.B.: ‘COCOTS: a COTS
software integration lifecycle cost model - model overview
and preliminary data collection findings’. Proc. 11th
European Software Control and Metrics Conf. and Third
Software Certification Programme in Europe,

Abts, C., Boehm, B.W., Clark, E.B.: ‘Empirical observations
on COTS software integration effort based on the initial
COCOTS calibration database’. Proc. Second Workshop
on Commercial Off-The-Shelf Software - in Conjunction
with 22nd Int. Conf. on Software Engineering, (ICSE
2000), Limerick, Ireland, 2000, pp. 99-104

Albrecht, A.J., Gaffney, J.E.: ‘Software function, source lines
of code and development effort prediction: a software
science validation’, IEEE Trans. Softw. Eng., 1983, 9, (6),
pp. 639-648.

Aoyama, M.: ‘A component-based software development
methodology ’, IPSJ SIG Notes, 1996, 96, (84), pp. 33-40

Aoyama, M.: ‘Process and economic model of component-
based software development: a study from software CALS
next generation software engineering program’. Proc. Fifth
Int. Symp. on Assessment of Software Tools, (SAST ’97),
Pittsburgh, PA, June 1997, pp. 100-103

Boehm, B.W., Clark, B., Horowitz, E., Westland, J.C.,
Madachy, R.J., Selby, R.W.: ‘Cost models for future
software life cycle processes: COCOMO 2.0’, Ann. Softw.
Eng., 1995, 1, (1), pp. 57-94

Dagnino, A., Srikanth, H., Naedele, M., Brantly, D.: ‘A model
to evaluate the economic benefits of software components
development’. Proc. Int. Conf. on Systems, Man and
Cybernetics, October 2003,pp. 3792-3797

Ellis, T.: ‘COTS integration in Software solutions - a cost
model’. Proc. Fifth Int. Symp. Int. Council on Systems
Engineering (INCOSE) -Systems Engineering in the
Global Marketplace, St. Louis, MO, 1995,pp. 170-177

 Fenton, N.E., Pfleeger, S.L.: ‘Software metrics: a rigorous and
practical approach’ (PWS Publishing, 1998)

Hastings, T.E., Sajeev, A.S.M.: ‘A vector-based approach to
software size measurement and effort estimation’, IEEE
Trans. Softw. Eng.,2001, 27, (4), pp. 337-350

Jawwad W. Shareef, Pandey Rajesh Kumar, “Dependency
Analysis using UML for Component Based Software
System: an XMI Approach”, International Journal of
Computer Applications (0975-888), Vol. 47, No. 18, June
2012

Karpowich, M., Sanders, T., Verge, R.: ‘An economic analysis
model for determining the custom versus commercial
software tradeoffs,’ in Gulledge, T.R., Hutzler, W.P. (Eds):
‘Analytical methods software engineering economics’,
(Springer-Verlag, 1993), pp. 237-252

Lai, R., Huang, S.J.: ‘A model for estimating the size of a
formal communication protocol specification and its
implementation’, IEEE Trans. Softw. Eng., 2003, 29, (1),
pp. 46-62

Mahmood, S., Lai, R., Kim, Y.S., Kim, J.H., Park, S.C., Oh,
H.S.: ‘A survey of component based System quality
assurance and assessment’, Inf. Softw. Technol., 2005, 47,
(10), pp. 693-707

Minkiewicz, A.F.:‘Are software COTS solutions an Affordable
alternative’.Proc. Aerospace Conf Piscataway, NJ, March
2004, pp. 4073-4082.

Naunchan, P., Sutivong, D.: ‘Adjustable cost estimation model
for COTS-based development’.Proc. 18th Australian
Software Engineering Conf., (ASWEC 2007), Melbourne,
Victoria, April 2007,pp. 341-348.

Reifer, D.J., Basili, V.R., Boehm, B.W., Clark, B.: ‘Eight
lessons learned during COTS-based systems
maintenance’, IEEE Softw., 2003,20, (5), pp. 94-96

 Stutzke, R.: ‘Costs impact of COTS volatility’. Proc.
Knowledge Summary: Focused Workshop on COCOMO
2.0, Los Angeles, CA, 1995.

T. Wijayasiriwardhane, R Lai, K.C. Kang, “Effort estimation
of component-based software development - a survey”,
IET Software, 2011, Vol. 5, Issue 2, pp. 216-228 doi:
10.1049/ietsen. 2009.0051

Verner, J.M., Tate, G.:‘A software size model’, IEEE Trans.
Softw. Eng., 1992, 18, (4), pp. 265-278.

Yakimovich, D., Bieman, J.M., Basili, V.R.: ‘Software
Architecture classification for estimating the cost of
COTS integration’. Proc.21stInt. Conf. on Software
Engineering, Los Angeles, CA, May 1999,pp. 296-302.
