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Heterogeneous Survival time data can have two different   distributions before and after a certain 
time due to many factors which affects the life of the creatures or machines. For this purpose, we 
examine a mixture of two non-identical (different) distributions of Exponential, Gamma, Log-
normal, Weibull and Gompertz distributions. In addition to the previous studies, we propose the 
mixture of Gompertz distribution with the Exponential, Gamma, Weibull and Lognormal 
distributions. Some properties of the proposed parametric mixture of Exponential, Gamma, Weibull, 
Lognormal and Gompertzare investigated. Both simulated and real data set were used to estimate the 
maximum likelihood estimators of the model by employing the Expectation Maximization (EM) 
algorithm method. The simulations are performed by generating data, sampled from a population of 
two component parametric mixture of two different distributions. The parameters estimated by the 
proposed EM Algorithm which are closer to the parameters of the postulated model. To investigate 
the consistency and stability of the EM algorithm, the simulations are repeated several times. The 
repetitions of the simulation give estimators closer to the values of postulated models, with relatively 
small standard errors. Graphs, goodness of fit tests and the Akaike Information Criterion (AIC) were 
used to compare the proposed model with the pure classical parametric survival models 
corresponding to each component using real survival data. Results revealed that the proposed model 
showed that a parametric mixture models are more flexible and maintainthe features of the pure 
classical survival model and are better option for modelling heterogeneous survival data. 
 

 
  

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

1. INTRODUCTION 
 

Survival analysis is a method to analyze the occurrence of a given event in which the individuals will be observed from the time 
they experience a particular event. It can be a development or diagnosis of a disease, treatment outcome, recurrence of a disease, 
death etc. Survival analysis has been a widely used in diverse fields of research and development such as medicine, economics, 
political science, etc. It has broader applications in Medical Studies, Social Sciences, Engineering, and Biology. Both 
Nonparametric and classic parametric survival models are commonly used to handle survival data over the past. Various parametric 
families of models are most frequently used in the analysis of lifetime data. Among the univariate models, distributions like 
Exponential, Gamma and Weibull distributions take primary chance for their demonstrated applications in wide range of 
scenarios.(Lee and wang, 2013; Lawless, 2003; Kleinbanm and Klein, 2005). Besides these pure classical statistical distribution 
models, other novel models for survival data have been developed recently. Especially in cases of data with heterogeneous 
structure, mixture distributions are more convenient to handle such data. Mixture models are usually applied to model failure-time 
data in a variety of situations. As a flexible way of modeling data, the mixture approach is directly applicable in situations where the 
adoption of a single parametric family for the distribution of failure time is inadequate.  
 

Recently, a considerable number of authors applied mixture model technique to analyze survival time data.(Robert E. Colvert et al., 
1976) discussed a unique and different type of hazard rate function along with maximum likelihood estimation of the parameters 
from the resulting life time distribution by considering an illustrative example data dealing with failure times for oral 
irrigators.(Chen et al.,1985)used a two-component mixture model for the analysis of cancer survival data by generalizing an earlier 
idea formulated by (Berkson et al., 1952).The parameter of a mixed Weibull distribution using graphical cdf curves was estimated 
by (Jiang et al., 1992a). Also, (Jiang et al., 1992b) developed a new algorithm for estimating the parameters of a mixture model of 
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Weibull distributions for censored data.(Philips et al., 2002) suggested an idea for estimating cancer prevalence using mixture 
models.(Ng.S.K et al.,2004) proposed a two-component survival mixture model to analyze a set of ischaemic stroke-specific 
mortality data.(Erisoglu.M et al.,2011) showed that the mixture of the same and different distributions of Weibull, Gamma, and 
Exponential is the appropriate distributions for the earthquake inter occurrence times.(Erisoglu.U et al.,2011) proposed a mixture of 
two different distributions such as Exponential-Gamma, Exponential-Weibull and Gamma-Weibull are the appropriate distributions 
to model heterogeneous survival data.(Yusuf Abbakar Mohammed et al.,2013) developed a parametric mixture model of three 
different distributions namely, Exponential, Gamma and Weibull to analyze heterogeneous survival time data and applied these 
mixture models for Kidney Cather data (2015).(AyҫaHaticeTȕrkan et al.,2014) showed a comparison study of two-component 
Mixture model distribution for heterogeneous survival time dataset by taking a mixture of two identical (same kind of) distributions 
of Exponential, Gamma, Lognormal and Weibull and also all pairwise combinations of these distribution and analyzed which kind 
of mixture model distributions is more appropriate for the heterogeneous survival times.(Sri AstutiThamrin et al.,2014) developed 
and applied the Bayesian Weibull mixture approach to model dengue fever patient’s survival.(Tabasam Sultana et al., 2016) 
suggested a 3-component mixture of the inverse Rayleigh distributions under Bayesian perspective.(NavidFeroze, 2016) developed 
the Bayes estimation of the inverse Weibull mixture distributions under doubly censoring data. Also, we discussed mixture of two 
identical distributions of Exponential, Gamma, Lognormal, Weibull and Gompertz model to analyze heterogeneous survival time 
data. (Uma maheswari and Leo Alexander, 2017) 
 

In this paper, we investigate the consistency and stability of EM in estimating the parameters. Also it shows that the mixture of two 
different distributions is the appropriate distribution for heterogeneous survival data. Our paper is organized as follows: In Section 
2, we define the functions of Survival analysis. Also, parametric survival models that have been used to describe survival time 
namely Exponential, Gamma, Weibull, lognormal, Gompertz distributions are discussed and their properties are also summarized. 
Section 3, devoted to discussing mixture model of two different distributions in survival analysis and the maximum likelihood 
estimators of the parameters are obtained by employment of EM algorithm. In Section 4, Simulations are performed by generating 
data, sampled from a population of two component parametric mixture of two different distributions. Then the simulations will be 
repeated 500, 1000 and 5000 times with the sample size of 100 observations for each mixture model to investigate the convergence 
of the EM, consistency and stability of EM algorithm. Also mixture of two different distributions is applied on illustrative examples 
based on heterogeneous survival real dataset successfully. The data got from National Institute for Research in Tuberculosis, 
Chetput, Chennai. Finally in Section 5, the summary and conclusion were presented. All computations are carried out using R 
language. 
 

2. Basics of Survival Analysis 
 

Survival time data measure the time taken for a certain event to occur such as response, failure, death, relapse and the development 
of a given disease. These times are subject to random variations and form a distribution like any random variables. The distribution 
of survival times is usually described or characterized by three factors namely: 
 

i. The survival function )(tS , 
ii. The probability density function )(tf  and  

iii. The hazard function )(th .  
 

It is to be noted that these three functions are mathematically equivalent. If one of them is given, then other two can be derived. 
Let T denote the survival time. It is a non-negative and absolutely continuous random variable that represents the life time of 
individuals. If )(tF  is the cumulative distribution ofT , then survival function )(tS defined as, 

.0),()thanlongersurvivesindividualAn()(  ttTPtPtS  
Here )(tS is a non-increasing function of timetwith the probability of surviving at least at the time zero is 1 and that of surviving an 
infinite time is 0. Cumulative distribution function ),(tF  is defined as the probability that an individual fails before timet,that is

  .0,)(  ttTPtF  
 

The hazard function )(th of survival time T  gives the conditional failure rate. This is defined as the probability of failure during a 
very small time interval, given that the individual has survived to the beginning of the interval. It can be expressed as 
 
 
 
 
 

The cumulative hazard function is defined as,         .log
1

0
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2.1 Pure Parameteric Survival Models 
 

Pure parametric Survival models play an important role in Survival analysis and these models are preferred when the chosen 
probability distribution aptly represents the data. A parametric survival model is a model in which survival time, thus the outcome, 
is assumed to follow a known distribution. By reviewing the literature about modeling the survival data, it can be seen that the 
Exponential, Gamma, Weibull, Lognormal and Gompertz probability distribution functions are commonly used in survival analysis. 
The probability density function )(tf and the survival function )(tS of Exponential, Gamma, Weibull, Lognormal and Gompertz 
distributions are mentioned in the following Table 1 (Lee and wang, 2013; Lawless, 2003). 
 

Table 1 
 

Distribution Probability Density Function Survival function 
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Gompertz distribution 
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where  x is called an incomplete Gamma function and   is cumulative distribution function of normal probability distribution 
function . 
 

3. Parametric Mixture of Two Different Distributions  
 

Mixture models are frequently used to analyze Survival time data in a variety of situations, because of their high flexibility and they 
are good choice in situations where a single parametric distribution may not be sufficient. A mixture model of two different 
distributions is considered where it is assumed that it is sampled from a population consists of )2(g distinct subgroups or 
subclasses.  The mixture model can be written as  
 

,);()1();();( 22112,1  tftftf   
 

where the vector   ,ψ '   contains all the unknown parameters for  and '
21 ),(   in the mixture model(Mclachlan and 

Pell, 2000; Hogg Mckean Craig,2005). The function );( 11 tf is called mixture component density function for the first population 
with parameter 1 and );( 22 tf is called mixture component density function for the Second population with parameter .2  
In this study, to model heterogeneous Survival times, we consider mixture of two different distributions namely Exponential-
Gamma, Exponential-Weibull, Exponential-Lognormal,Exponential-Gompertz,Gamma-Weibull,Gamma-Lognormal,Gamma-
Gompertz,Weibull-Lognormal,Weibull-Gompertz and Lognormal-Gompertz which are represented as follows, 
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where  is the mixture weight of the distributions and )1,0( . The maximum likelihood estimators of parameters of these 
mixture distributions are estimated using Expectation-Maximization (EM) algorithm. 
 

3.1  Expectation Maximization Algorithm (Em) and Parameter Estimation 
 

EM (Expectation-Maximization) algorithm is one of the most effective method that is used to estimate the Maximum likelihood 
estimators in finite mixture models likelihood (Mclachlan and Pell, 2000; Hogg Mckean Craig, 2005; McLachlan and Krishnan, 
1997). Let nttt ,...,, 21 be a set of observations of n  incomplete data and 21 , zz  be a set of missing observations  where

1)(11  ii tzz for ni ,...,1 if the observation it belongs to 1st class and 0 otherwise. 

The EM algorithm is applied to the mixture distributions by treating iz as unobserved or missing data. It consists of two steps, E 
(for Expectation) and M (for Maximization). 
 
In E- step, to estimate the hidden variable vector  iii zzz 21 , , conditional expectation function  ii tZE 1

 and  ii tZE 2
 are used. 

 
 
 
 
 
 
 
 

In M-step,  ii tZE 1
and  ii tZE 2

 function which are calculated in E-step is maximized. The M-step and E- step should be iterated 

alternatively till the convergence criterion is met. The estimator of  2,1kk  is obtained as .
ˆ
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By using Eqs (1), (2),(3) and (4), the maximum likelihood estimator of   parameter can be obtained in Equation (11) for 
Exponential-Gamma, Exponential-Weibull, Exponential-Lognormal, Exponential-Gompertz mixture distributions. The MLE of   
parameter is given by,  
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The maximum likelihood estimators of  and   parameters can be obtained in Eqs (12) and (13) for Exponential-Gamma mixture 
distribution. The MLE of  and   parameter are as follows, 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

It is to be noted that r is the number of Newton-Raphson iterations within EM algorithm. Also (.) and (.)'  are a digamma and 
trigamma functions respectively.  
 
 
 

   
     

     
      .

;1;
;1

ˆand

;1;
;

ˆSo,

20,210,1

20,2
202

20,210,1

10,1
11 0













ii

i
iii

ii

i
iii

tftf
tf

tzEz

tftf
tf

tzEz









 

)12(
ˆˆ

ˆ
ˆ

1
2

1
2







 n

i
i

i

n

i
i

z

tz


  

 
)13(.

ˆ
ˆ
1

ˆ

logˆ

ˆ

ˆ
log)ˆ()ˆlog(

ˆˆand
'

1
2

1
2

1
2

1
2

'

1

r
r

n

i
i

n

i
ii

n

i
i

n

i
ii

rr

rr
z

tz

z

tz


















































 

 



International Journal of Recent Scientific Research Vol. 8, Issue, 10, pp. 20813-20824, October, 2017 
 

20817 | P a g e  

The maximum likelihood estimators of  and   parameters can be obtained in Eqs (14) and (15) for Exponential-Weibull and 
Gamma-Weibull mixture distributions. The MLE of  and   parameter are given by,  
 
 
 
 
 
 
 
 
 
 
 
The maximum likelihood estimators of  and   parameters can be obtained in Equation (16) for Exponential-Lognormal, 
Gamma-Lognormal, Weibull-Lognormal mixture distributions. The MLE of  and   parameter are as follows, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
By using Equations (5), (6) and (7), the maximum likelihood estimators of  and   parameters of Gamma-Weibull, Gamma-

Lognormal, Gamma-Gompertz mixture distributions are estimated using iz1ˆ instead of iz2ˆ in equations (12) and (13). 
By using Equations (8) and (9), the maximum likelihood estimators of  and   parameters of Weibull-Lognormal, Weibull-

Gompertz  mixture distributions are estimated using iz1ˆ instead of iz2ˆ in equations (14) and (15).  

Also by equation (10),the MLE of  and  parameters of Lognormal-Gompertz is estimated using iz1ˆ instead of iz2ˆ in equation 
(16). 
 

3.2   Criteria for Model Selection 
 

To find the appropriate distribution, we use two different goodness of fit tests: the mean square error (MSE) test and the 
Kolmogorov-Smirnov (KS) test. Let us first use the MSE test. The MSE value is defined as 
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The maximum likelihood estimators of a and b  parameters can be obtained in Equations (17) and (18) for Exponential-
Gompertz,Gamma-Gompertz,Weibull-Gompertz mixture distributions. The MLE of a and b  parameter are given as, 
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where )(tFe  is the empirical distribution and )(tF is the cumulative distribution function that is proposed to model the 

heterogeneous survival data set. Here k is the number of free parameters in the distribution. As it is known, the smallest MSE value 
reveals the most appropriate distribution. Then The Kolmogorov-Smirnov statistic KS is defined by 

.)()(max tFtFKS e   
It is known that the preferred distribution has the smallest value of KS. Also, we use AIC as goodness of fit test for model selection 
criteria. AIC value is as follows 
 

,2log2 dLAIC  where d represents estimated parameters (Mclachlan and Pell, 2000). The smallest AIC value represents 
the best model. 
 

4. Data analysis 
 

4.1   Simulated data 
 

In this section, samples of size 100 observations were generated from two component parametric mixture of two different 
distributions. The mixture modelsinclude Exponential-Gamma, Exponential-Weibull, Exponential-Lognormal, Exponential-
Gompertz, Gamma-Weibull, Gamma-Lognormal, Gamma-Gompertz, Weibull-Lognormal, Weibull-Gompertz and Lognormal- 
Gompertz. The simulations will be repeated 500, 1000 and 5000 times with the sample size of 100 observations for each mixture 
model to investigate the convergence of the EM, consistency and stability of EM algorithm.  
 

There is no restriction imposed on the maximum number of iterations and convergence was achieved when the differences between 
successive estimates were less than 10-4. The results from the simulated data sets are listed in the following Table 2 – 11which gives 
the averages of the maximum likelihood estimators )ˆ,ˆ( av and standard errors ).ˆ,ˆ( se Also, the graphs of mixture of two 
different distributions for simulation parameters are shown in the following Figures 1 -10. Figures 1 - 10, exhibits the comparison 
between the probability density function of the parametric mixture model and the probability density functions of each single 
distribution. Also it can be seen in the graph, the mixture model fits the simulated data far better than the single distributions. 
 

4.1.1 Mixture Model of Exponential- Gamma  
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1.2  Mixture Model of Exponential- Weibull 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 
 

Exponential – Gamma 
Parameters         

Postulated model 6.0  3  10  15  

5000 times   ˆ,ˆav  0.600 3.003 10.211 15.319 

  ˆ,ˆse  0.049 0.041 0.017 0.003 

 

 
Figure 1 

 

Table 3 
 

Exponential –Weibull 
Parameters         

Postulated model 6.0  75.0 1 5

5000 times   ˆ,ˆav 0.600 0.750 1.002 5.084 

  ˆ,ˆse  0.050 0.167 0.030 0.030 

 

 
 

Figure 2 
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4.1.3 Mixture Model of Exponential- Lognormal                                                                           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1.4 Mixture Model of Exponential- Gompertz 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1.5 Mixture Model of Gamma-Weibull 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1.6 Mixture Model of Gamma-Lognormal  
 
 
 
 
 
 
 
 
 
 
 

Table 4 
 

Exponential – Lognormal 
Parameters         

Postulated model 7.0  20.0  5.0 5.1

5000 times    ˆ,ˆav  0.700 0.200 0.499 1.492 

  ˆ,ˆse  0.046 0.576 0.263 0.193 

 

 
Figure 3 

 

Table 5 
 

Exponential-Gompertz 
Parameters     a  b  

Postulated model 6.0 2 9.0a 03.0b

5000 times    ˆ,ˆav 0.600 1.996 0.862 0.029 

  ˆ,ˆse  0.049 0.062 0.001 0.005 

 

 
Figure 4 

 

Table 6 
 

Gamma-Weibull 
Parameters           

Postulated model 3.0 12 2 15 4

5000 time    ˆ,ˆav 0.300 12.357 1.978 14.984 4.019 

  ˆ,ˆse  0.047 0.277 0.104 0.412 0.009 

 

 
Figure 5 

 

Table 7 
 

Gamma-Lognormal 
Parameters           

Postulated model 4.0 15 5 1 25.0  

5000 times   ˆ,ˆav  0.400 15.318 5.102 1.000 0.249 

  ˆ,ˆse  0.050 0.247 0.008 0.030 0.023 

 
 

 
Figure 6 
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4.1.7 Mixture Model of Gamma-Gompertz 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1.8 Mixture Model of Weibull-Lognormal 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1.9 Mixture Model of Weibull-Gompertz 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1.10  Mixture Model of Lognormal-Gompertz 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 8 
 

Gamma-Gompertz 
Parameters       a  b  

Postulated model 3.0 15 2 35.0a 05.0b  
5000 times 

  ˆ,ˆav  0.300 15.425 2.058 0.356 0.035 

  ˆ,ˆse  0.047 0.367 0.023 0.001 0.004 

 

 
 

Figure 7 
 

Table 9 
 

Weibull-Lognormal 
Parameters           

Postulated model 8.0  8 5.1 5.1 2

5000 times   ˆ,ˆav  0.800 7.891 1.511 1.502 1.993 

  ˆ,ˆse  0.040 0.543 0.003 0.444 0.314 

 

 
 

Figure 8 
 

Table 10 
 

Weibull-Gompertz 
Parameters       a  b  

Postulated model 6.0  1 3 10a 5b  

5000 times    ˆ,ˆav  0.600 1.001 3.034 9.864 5.049 

  ˆ,ˆse  0.050 0.041 0.002 0.002 0.796 

 

 
 

Figure 9 
 

Table 11 
 

Lognormal-Gompertz 
Parameters       a  b  

Postulated model 5.0  8.0 15.0 7a 10.0b
5000 times  

  ˆ,ˆav  0.500 0.800 0.150 6.967 0.198 

  ˆ,ˆse  0.051 0.020 0.015 0.041 0.024 

 

 
 

Figure 10 
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The results of the parameter estimation listed from Table 2- 11, show the averages of the estimated parameters of Exponential-
Gamma,Exponential-Weibull,Exponential-Lognormal,Exponential-Gompertz,Gamma-Weibull,Gamma-Lognormal,Gamma-
Gompertz,Weibull-Lognormal,Weibull-Gompertz and Lognormal- Gompertz mixture model and its corresponding standard error 
respectively. It can be observed that the estimators get closer to the true values (postulated model) of the mixture model as the 
number of repetitions increases i.e., the averages of the estimators are very close to the true values of the parameters and their 
standard errors are relatively small which suggests that the EM  algorithm estimators performed consistently. Convergence was 
achieved in all the cases, even though when the starting values are poor and this emphasizes the numerical stability of the EM 
algorithm. 
 

Figure 1 - 10exhibits the comparison between the probability density function of the parametric mixture model Exponential, 
Gamma, Weibull, Lognormal and Gompertz distributions and the probability density functions of each single distribution. As it can 
be seen in the graph, the mixture model fits the simulated data far better than the single distributions. Simulation results revealed 
that EM algorithm approach works well with Non- identical mixture proportions. 
 

4.2  AnApplication of Non-Identical Mixture Models 
 

Bone marrow survival data set consists of survival times of 137 patients. The data has been collected from National Institute for 
Research in Tuberculosis (NIRT), Chennai. Mixtures of Non-identical distributions have been fitted for the data set. The estimated 
parameter, Log-likelihood (LL), K-S test statistic, mean square error (MSE) values , Akaike information Criterion (AIC) for 
mixture of non-identical distribtuions such as Exponential-Gamma, Exponential-Weibull, Exponential-Lognormal, Exponential-
Gompertz, Gamma-Weibull, Gamma-Lognormal, Gamma-Gompertz,Weibull-Lognormal, Weibull-Gompertz and Lognormal- 
Gompertz are mentioned in Table 12 
 

From Table 12, it can be noted that based on KS statistic, MSE and AIC values, Exponential-Gamma mixture has the smallest KS 
test statistic and smallest MSE value and it is the best model for bone marrow survival data set. According to MSE and AIC 
comparison values Exponential-Weibull mixture has least value which is also considered another best model for the same data set. 
Therefore, it can be observed from Table 12, Exponential-Gamma and Exponential-Weibull mixture models are best models for 
bone marrow survival data set. 
 

A graphical comparison of the fitted (pure) pdf of Exponential, Gamma and Weibull distribution and fitted pdf of  Non-identical 
mixture models of Exponential- Gamma and Exponential - Weibull for survival times of bone marrow data set is mentioned in 
Figure 4.11(a) and Figure 4.11(b) 
 
The Estimated Parameters, LL values, K-S test statistics, MSE values and AIC for bone marrow dataset 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 12 
 

S.No. Models Estimates 1  2  LL KS MSE AIC 

1 Exp-Gam 
9933.182  5613.15  

0.6956 0.3044 -921.8529 0.0273 0.0002 1851.71 
 8543.43  

2 Exp-Wbl 
265.179  4712.740  

0.6848 0.3152 -920.3082 0.0279 0.0002 1848.62 
 3949.4  

3 Exp-Logn 
1548.347  2240.2  

0.9622 0.0378 -932.6449 0.0811 0.0012 1873.29 
 4303.1  

4 Exp-Gomp 
0073.335  0067.0a  

1.0000 0.0000 -933.5389 0.0820 0.0015 1875.08 
 0030.0b  

5 Gam-Wbl 
4639.1  2236.232  

0.7705 0.2295 -939.4677 0.0799 0.0025 1888.94 
5574.264  6769.0  

6 Gam-Logn 
0350.1  7482.0  

0.9796 0.0204 -932.0110 0.0798 0.0014 1874.02 
3848.330  4794.0  

7 Gam-Gomp 
6968.4  0062.0a  

0.4510 0.5490 -961.9240 0.0474 0.0005 1933.85 
1662.126  0024.0b  

8 Wbl-Gomp 
8434.316  0057.0a  

0.4134 0.5866 -921.7945 0.3366 0.0246 1853.59 
6349.3  0031.0b  

9 Wbl-Logn 
1038.187  5000.6  

0.7046 0.2954 -922.4826 0.3130 0.0222 1854.97 
9902.0  2527.0  

10 Logn-Gomp 
4192.6  0055.0a  

0.4080 0.5920 -923.1831 0.0361 0.0003 1856.37 
2947.0  0034.0b  
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From Figure 11(a) and 11(b),Non-identical mixture models of Exponential-Gamma and Exponential-Weibull fit much better than 
(pure) Gamma and Weibull distributions for survival times of bone marrow data set. 
 
5. Over All Conclusion 
 

In this paper we proposed the mixture models of two Non-identical distributions such as Exponential-Gamma, Exponential-Weibull, 
Exponential-Lognormal, Exponential-Gompertz, Gamma-Weibull, Gamma-Lognormal, Gamma-Gompertz, Weibull-Lognormal, 
Weibull-Gompertz and Lognormal- Gompertzto represent the heterogeneous survival data sets. Heterogeneous survival time data 
can have two different distributions before and after a certain time due to many factors which affects the life of the creatures. For 
instance, a slowly growing tumor can grow faster after a particular process and this can be affect the life time. Each of the different 
phases of life will generate a peak in the mixture distribution.  
 
Therefore, we try to model the heterogeneous survival time data with the most appropriate distributions among the mixture models. 
Mixtures of Exponential-Gamma, Exponential-Weibull, Exponential-Lognormal, Exponential-Gompertz, Gamma-Weibull, 
Gamma-Lognormal, Gamma-Gompertz, Weibull-Lognormal, Weibull-Gompertz and Lognormal- Gompertz were tested for the best 
fit to the simulated datasets as well as real survival datasets. 
 

The maximum likelihood estimations of parameters of the mixture models obtained with EM algorithm. The repetitions of the 
Simulation give estimators closer and closer to the postulated models, as the number of repetitions increases with relatively small 
standard errors. The Table show that the EM algorithm converged to the true values (postulated model) of the mixture model 
parameters in 5000 repetitions and that emphasizes the stability of the algorithm in estimating the parameters with different 
proportion of mixing probabilities. The averages are close to the true values of the parameters and the standard errors are relatively 
small which suggest that the EM algorithm estimator performed consistently.  
 
Also, the graphs for all the two component mixture model fits the simulated data far better than the single distributions. According 
to the simulation results, the EM algorithm successfully estimated the parameters of the two component mixture model of identical 
distributions. 
 

Also, we employ mixture of Non-identical distributions for modeling survival times for bone marrow dataset. The AIC values, KS 
test statistics and MSE are calculated to determine the most appropriate distribution for the present data set. It can be noted from 
Table  12  that the best model among the two component mixture models of Non-identical distribution is the mixture of 
Exponential-Gamma for Survival times of bone marrow patients according to KS test statistics and MSE value. And alternative 
models are determined as the mixture of Exponential-Weibull distributions according to MSE and AIC values for this data set 
respectively.  
 
The histogram and the two probability density functionsof Exponential–Gamma and Exponential-Weibull fits better than others for 
the survival times of 137 Bone marrow patientsthat is given in Figure 12(a).  The empirical distribution function and two 
distribution functions of Exponential-Gamma and Exponential-Weibullfits better is shown in Figure 12(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11 a                                                                                   Figure 11 b 
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The probability densities of the fitted distributions and a histogram. 
 

Figure 12 (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The empirical distribution function and the fitted distribution function for bone marrow dataset 
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