INTRODUCTION

Vitamin D is a fat soluble vitamin that not only benefits our bone health by regulating calcium and phosphorous but also have many other health benefits because of its anti-inflammatory and immunomodulatory effects. More than 30 sites in the body have vitamin D receptors (VDRs) which plays a vital role in the management of high blood pressure, high cholesterol, muscle weakness, multiple sclerosis, rheumatoid arthritis, chronic obstructive pulmonary disease, asthma, bronchitis, premenstrual syndrome, various skin conditions and preventing autoimmune diseases and cancer.

Overt vitamin D deficiency is characterized by hypocalcaemia, hypophosphatemia, osteomalacia and rickets in children and osteomalacia in adults. The Institute of Medicine (IOM) suggests that level below 30 ng/ml is considered to be vitamin D deficiency. Vitamin deficiency can lead to the loss of a protective barrier against multiple diseases. It can lead to secondary hyperparathyroidism which is then manifested as accelerated bone loss and phosphaturia.

When this is further prolonged it will lead to osteomalacia in adults and children rickets in pediatric age group. Associated symptoms may then include bone pain, tenderness, muscle weakness, fracture, and difficulty in walking.

Vitamin D production is mainly UV-B dependent. It is calculated that 5-10 minute sun exposure at least thrice a week is needed for its sufficient production. Thus cause of vitamin D deficiency is mainly attributed to lifestyle and environmental factors that reduce sunlight exposure which includes sunscreen, clothing, age, pollution, the zenith angle of sun and limited outdoor activity. The anthropological record indicates that we are exposed to considerably less ultraviolet radiation and about 1 billion people worldwide have a vitamin D deficiency particularly prevalent among elderly people.

Objective

To assess 25-hydroxyvitamin D status and its prevalence in patients coming to a tertiary care hospital in India.

Design

The data regarding the serum levels of vitamin D were collected retrospectively and the study extended over a period of 1 year. Data was collected through medical records, patient electronic medical records. Both inpatients and out patients who took vitamin D test were included in the study. Those patients with serum Vitamin-D less than 20ng/dl were considered deficient, those between 21-30 ng/dl were considered insufficient and those above 30 ng/dl were considered normal/sufficient.
RESULTS

A total of 2955 patients were analysed, of that 1986 were females and 969 were males. The prevalence of vitamin D deficiency were analysed through standard guidelines. Out of 2955 patients analysed, 1769 were found to be deficient (1248 females and 521 males) and 603 were insufficient (370 females and 233 males) and 583 were normal (368 females and 215 males). Their age wise distribution is presented in graph 1. It was shown that 12.99 % of the cases that are deficient fall under the age group of 40-49, i.e., people under the age group of 40-49 are more prone to vitamin D deficiency.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Females</th>
<th>Males</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficient</td>
<td>1248</td>
<td>521</td>
<td>1769</td>
</tr>
<tr>
<td>Insufficient</td>
<td>370</td>
<td>233</td>
<td>603</td>
</tr>
<tr>
<td>Normal</td>
<td>368</td>
<td>215</td>
<td>583</td>
</tr>
<tr>
<td>Grand Total</td>
<td>1986</td>
<td>969</td>
<td>2955</td>
</tr>
</tbody>
</table>

CONCLUSION

The study conducted in a tertiary care hospital regarding the vitamin D deficiency in patients coming to the hospital concludes that out of the 2955 patients studied, 1769 patients were found to be deficient in vitamin D and 603 were found to have levels below international standards which show high prevalence of vitamin D insufficiency in otherwise healthy adults.

It is quite an alarming scenario as vitamin D deficiency can affect bone health which ultimately impairs the quality of life of the patients. The test to confirm vitamin-D deficiency is costly (around 2000 Indian Rupees) and cannot be afforded by most of the patients. Hence it is practical to advice all people living in Vitamin D deficient country like India to take Vitamin D supplement 60000 International units once a week (cost is around 25 Indian rupees) initially for 3 months and then monthly once lifelong in order to prevent vitamin-D deficiency further. The incidence of Vitamin D toxicity will be very rare if this regimen is followed. Further studies are warranted to find out the incidence of vitamin D deficiency in a larger population and also to look for any major Vitamin D toxicity.

References

Holick MF. The underappreciated D-lightful hormone that is important for skeletal and cellular health. Curr Opin Endocrinol Diabetes 2002; 9:87-98
Zittermann A. Vitamin D in preventive medicine: Are we ignoring the evidence? Br J Nutr 2003; 89:552-72
Holick MF Evaluation, treatment, and prevention of vitamin D deficiency; an Endocrine Society clinical practice guide line 2011; 9:1911
Veith R. What is the optimal vitamin D status for health?200; 92:2
American Geriatrics Society Workgroup on Vitamin D supplementation for older adults. Recommendations abstracted by the American Geriatrics Society Consensus Statement on vitamin D for prevention of falls and their Consequences. 2014; 2:147
Yetley EA. Assessing the vitamin D status of the US population. 2008; 88: 558S
Mithal A Global vitamin D status and determinants of hypovitaminosis D 2009; 20:1807
Hypponen E Hypovitaminosis D in British adults at age 45 year; nation wide cohort study of dietary and life style predictors 2007;85:80
Valcour A Effects of age and serum 25-OH-vitamin D on serum parathyroid hormone levels2012; 97:3989
Garg MK The relationship between serum 25-hydroxy vitamin D, parathormone and bone mineral density in Indian population 2014; 80:41
