

*Corresponding author: Yesudoss J
Department of Computer Science Sri Ramakrishna Mission Vidyalaya College of Arts and Science
Coimbatore-641 020, India

ISSN: 0976-3031

Research Article

INCONSISTENCY CHECKING IN REQUIREMENTS BY IMPROVED
SEMANTIC REASONING (ICRISR)

Yesudoss J* and Ramani A.V

Department of Computer Science Sri Ramakrishna Mission Vidyalaya College of Arts and Science
Coimbatore-641 020, India

DOI: http://dx.doi.org/10.24327/ijrsr.2017.0808.0698

ARTICLE INFO ABSTRACT

Requirements Engineering (RE) is the process of understanding the customer expectations about the
system to be developed, and to document them in a easily readable and understandable format,
which will serve as reference for the subsequent design, implementation and verification of the
system. RE is the first segment in the software development life cycle, concerning about the
requirements of stakeholders within the software system being developed. In the field of
requirements engineering, measuring inconsistency is crucial to effective inconsistency
management. A practical measure must consider both the degree and significance of inconsistency in
specification. In existing sematic reasoning approach for checking inconsistencies in requirement
documents, an antonym dictionary is generated for available terms in documents to check
semantically contrasting terms exist. However matching antonyms alone failed to increase the
maturity level of implementation. In this paper, an improved semantic resoning approach is
proposed by capturing the semantics of natural language for better understanding the meaning of
sentences like Synonyms, Hypernyms, Hyponyms and Acronyms dictionaries of words to check
semantically similar terms exist.

INTRODUCTION

It is miles extensively recognized that inconsistency is
unavoidable for the duration of the requirements stage,
although maximum existing software development techniques
or equipment assume consistency [1-3]. A practical way of
dealing with inconsistency is getting to know to stay with
inconsistency as opposed to parry it [3]. Moreover, in many
instances, it can be perfect to take the initiative in dealing with
inconsistency to facilitate the requirement’s improvement and
its control [2]. Inconsistencies could be viewed as signals of
problematical statistics about necessities.

Measuring inconsistency is crucial for powerful inconsistency
management [2, 1]. In general, clients and developers want to
realize the wide variety and severity of inconsistencies in their
necessities specs. Regularly, developers want to use these
measures to prioritize inconsistencies on the way to discover
inconsistencies that require pressing attentions, and to assess
the development after inconsistency handling. In other phrases,
the builders want to realize if a hard and fast of necessity
statements come to be more or less “consistent” after a specific
inconsistency handling movement has been taken.

It can not always surprise that strategies for measuring
inconsistent specifications in classical logic are attractive [4].
Abstract identification is the manner of analyzing and
extracting the important key terms, which is meant to indicate
the concept of the particular document. Abstract terms of
particular documents play an important role in assisting the
software developer for an efficient software development in a
particular period and without errors. The automated abstraction
identification to extract abstract terms referred to as
Ontological based relevance abstraction identification [5]. In
practical inconsistency-handling, clients and developers need to
recognize each the importance and severity of inconsistency.
The relative importance of a requirement’s statement
constantly affects the evaluation of importance of an
inconsistent specification. Consequently, valuable of measuring
inconsistent specifications is the need to take the relative
significance of requirements statements into consideration.

Semantic Reasoning approach is used to maintain semantic
consistency and attain brief relation among words, extra to
natural lexical parsing and additionally adopt over in the
natural language. The semantic reasoning mentioned right here

Available Online at http://www.recentscientific.com
 International Journal of

Recent Scientific

 Research International Journal of Recent Scientific Research
Vol. 8, Issue, 8, pp. 19461-19466, August, 2017

Copyright © Yesudoss J and Ramani A.V, 2017, this is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the
original work is properly cited.

DOI: 10.24327/IJRSR

CODEN: IJRSFP (USA)

Article History:

Received 06th April, 2017
Received in revised form 14th
June, 2017
Accepted 23rd July, 2017
Published online 28th August, 2017

Key Words:

Inconsistency, Semantic Reasoning,
Natural Language Processing.

http://dx.doi.org/10.24327/ijrsr.2017.0808.0698
http://www.recentscientific.com

Yesudoss J and Ramani A.V., Inconsistency Checking In Requirements By Improved
Semantic Reasoning (ICRISR)

19462 | P a g e

is to extract the relation between adjectives and adverbs. It
checks consistency, abstraction, and terms of the documents are
matched. Then the semantic reasoning approach only considers
antonym of terms in documents with abstraction terms [6]. But
in this paper, we proposed that Synonym, Hypernym/
Hyponym and Acronym of terms in documents are considered.
Then this method is called improved semantic reasoning.

Related Work

Measuring inconsistent specification in terms of the priority
based on scoring vector, which integrates the measure of the
degree of inconsistency with the measure of the significance of
inconsistency [7]. To apply model composition to cope with
this problem in a staged approach. First, heterogeneous
necessities are translated in model fragments that are instances
of a common meta model. Then, those fragments are merged in
one specific model. On this kind of version inconsistencies
together with underneath-specifications can be incrementally
detected and formal analysis is made feasible. It is fully
supported by way of model composition framework [8].
ConsVIS or was tool for consistency checking of ontologies.
This tool is a consistency checker for formal ontologies,
consisting of both traditional data modeling languages and the
latest ontology languages. ConsVISor checks consistency with
the aid of verifying axioms [9].

A characterization of inconsistency in software program
improvement and a framework for managing in this context. It
attracts upon realistic reports of dealing with inconsistency in
big-scale software program development projects and relates a
few lessons learned from these experience [2] and then try to
bridge the gap between early requirements specification and
formal techniques. A new specification language, called
Formal Tropos was endorsed that is based on the primitive
standards of early requirements frameworks (actor, aim,
strategic dependency). However, supplements them with a rich
temporal specification language [10]. In standard, each tool
concentrates on one unique type of description and defines
consistency narrowly in terms of integrity policies for that
description type. Such technique-particular consistency
checking is extraordinarily beneficial, but covers best a
fragment of the variety of consistency relationships which can
have an effect on software development [11].

A systematic approach for identifying those identification of
syntactic aliasing involves automated generation of patterns for
identifying syntactic variances of terms, including
abbreviations and introduced-aliases [12]. A measure-driven
logic framework for handling non-canonical necessities.
The framework includes five principal parts, figuring out non-
canonical requirements, measuring them, generating candidate
proposals for managing them, selecting typically suited
proposals, and revising them in line with the chosen proposals.
This generalization may be taken into consideration as an
attempt to cope with non-canonical requirements together with
logic-based inconsistency dealing with in requirements
engineering [13]. Develop two evaluation mechanisms to detect
two forms of modelling errors. The first mechanism worries the
detection of inconsistent specification of contexts in a goal
model. The second one worries the detection of conflicting
context modifications that get up resulting from the moves

accomplished through the machine to fulfill one of a kind
requirements simultaneously [14]. A distance-based totally
paraconsistent semantics for DL-Lite wherein meaningful
conclusions may be rationally drawn even from an inconsistent
knowledge base and a distance-based inconsistency
measurement was increased for DL-Lite to provide greater
informative metrics that can tell the variations among axioms
causing inconsistency and amongst inconsistent knowledge
[15].

Improved Semantic Reasoning

A specification here is a set of sentences from the requirement
documents. For every sentence, first it is parsed by a natural
language parser to extract all grammatical ingredients. Then in
keeping with the dependency relation extracted by means of the
parser, the translator decomposes the sentence into clauses
recursively to isolate the impartial temporal units. After the
decomposition, a syntax tree was constructed from the
elements of the sentence, to extract atomic propositions, and to
infer the temporal relationship of individual temporal elements
according to the subordinators and modifiers. Typically an
atomic proposition comes from a subject and its predicate
extracted by using the dependency relation from the parser, i.e.,
within the shape of predicate challenge, to mix a variable and
its valuation. For multiple subjects related with conjunctions,
they may be decomposed to generate specific atomic
propositions and then linked via the corresponding logic
operators. [6]

To maintain semantic consistency and achieve clear temporal
formulas, and more to natural lexical parsing, semantic
reasoning is additionally adopted over in the natural language.
The semantic reasoning mentioned right here is to extract the
relation between adjectives and adverbs respectively according
to their meaning in a specification, instead of semantic roles
labeled by way of a parser. [6]

The proposed approach is the improved semantic reasoning
mentioned to extract the words (such as synonym, hypernym/
hyponym and acronym) according to meaning in a
specification. More exactly, after extracting the words used in a
specification, then it is applied in pairs of semantically
contrasting phrases by looking up a corresponding dictionary
specified by means of users. With these semantically associated
phrases, the variety of atomic propositions is decreased, to use
inside the generated formulas, and avoid including the
assumptions on the mutual unique propositions.

The antonyms, synonyms, hyponyms and acronyms are in
online for each of the given word, which is straightforward to
be carried out but time consuming. There are two-steps
extraction procedure to compute the pairs of antonyms,
synonyms, hyponyms and acronyms in a specification. Pairs of
antonyms usually come from the sentences with equal topics.
Therefore, at first the antonym, synonym, hyponym, and
acronym candidates are organized related to the same subjects
according to their dependency relation (subject, dependent)
extracted by the natural language parser, where every word in
the dependent set is initialized with color green. If the number
of words in the dependent set for a subject is larger than one, an
antonym, synonym, hypernym, hyponym and acronym
dictionary is used to check whether semantically contrasting

International Journal of Recent Scientific Research Vol. 8, Issue, 8, pp. 19461-19466, August, 2017

19463 | P a g e

words exist in the same set, otherwise continue to deal with
other groups. The reason is that it cannot be used the derived
antonyms, synonym, hypernym, hyponym and acronyms for
the corresponding proposition reduction.

The overall work flow of improved semantic reasoning
structure is represented in Fig.1. The collected set of specific
Requirement documents are parsed into lexical parser. The
collected Requirement documents are the output of identified
documents through “Ontological based relevance abstraction
identification” technique [5]. This method was used to extract
the specific set of domain related documents with the help of
among the huge number of existing requirement documents for
a particular requirement document of stack holder. This
selected set of documents or any other type of set of relevant
documents can be given as an input to this work. The lexical
parser used here is tree tagger which convert a sentence into a
sequence of tokens as subject, verb, noun, adverb, adjectives
and prepositions for all documents. The antonym using online
dictionary is extracted for verb, adverb and adjectives of each
subject to find inconsistence sentences available in the
documents. In the same way find synonym, hypernym,
hyponym and acronym terms of the sentences using online
dictionary to check semantically similar sentences available in
documents. The documents are ranked based on number of
consistence sentences availability.

Algorithm: Improved Semantic reasoning

input: Requirement documents (Rd), Specification S for
subjects

Output: pairs of antonyms in the specification, pairs of
synonyms in the specification, pairs of hyponyms in the
specification, pairs of acronyms in the specification.

begin

initialize wordset = Ø ; s.dep= Ø
set color (s.dep) as green
for ∀	d	∈ Rd
subject = extract(S, wordset)
for ∀	s	∈ subject do
{
 if ∣s.dep∣ ≥ 1 then
 {

 for ∀	w ∈ s.dep do
 if w.color = = green then
 {
 if wordset(w).antonym == Ø then
 {
 wordset(w).antonym online(w)
 antonmy = s.dep ⋂ wordset(w).antonym
 }
 if wordset(w). synonym == Ø then
 {
 wordset(w). synonym online(w)
 synonmy = s.dep ⋂ wordset(w).synonym
 }
 if wordset(w). hypernym == Ø then
 {
 wordset(w). hypernym online(w)
 hypernymy = s.dep ⋂ wordset(w).hypernym
 }
 if wordset(w). hyponym == Ø then
 {
 wordset(w). hyponym online(w)
 hyponmy = s.dep ⋂ wordset(w).hyponym
 }
 if wordset(w). acronym == Ø then
 {
 wordset(w). acronym online(w)
 acronmy = s.dep ⋂ wordset(w). acronym
 }
 if antonmy ≠ Ø then
 {

 w.color = blue
 for w ′ ∈ antonym do
 w′.color = blue
 wordset(w′).antonym = wordset(w′).antonym ∪	{w}
 }
 if synonmy ≠ Ø then
 {
 w.color = blue
 for w ′ ∈ synonym do
 w′.color = blue
 wordset(w′).synonym = wordset(w′).synonym ∪	{w}
 }
 if hypernym ≠ Ø then
 {
 w.color = blue
 for w ′ ∈ hypernym do
 w′.color = blue
 wordset(w′).hypernym = wordset(w′).hypernym ∪	{w}
 }
 if hyponymy ≠ Ø then
 {
 w.color = blue
 for w ′ ∈ hyponym do
 w′.color = blue
 wordset(w′).hyponym =
 wordset(w′).hyponym ∪	{w}
 }
 if acronmy ≠ Ø then
 {
 w.color = blue

Figure 1 Overall Work Flow of Improved consistency Checking In

Requirement Documents

Yesudoss J and Ramani A.V., Inconsistency Checking In Requirements By Improved
Semantic Reasoning (ICRISR)

19464 | P a g e

 for w ′ ∈ acronym do
 w′.color = blue
 wordset(w′).acronym =wordset(w′).acronym ∪	{w}
 }
 }
 }
 for each d ߳ documents
 for each subject
 for each w′.term ߳ w′
 if wordset(w′).antonym ߳ d
 d.score =d.score-1
 else if wordset(w′). synonym ߳ d
 d.score =d.score+1
 else if wordset(w′). hypernym ߳ d
 d.score =d.score+1
else if wordset(w′). hyponym ߳ d
 d.score =d.score+1
 else if wordset(w′).acronym ߳ d
 d.score =d.score+1
 }
 return (documents, score)

The “subject” is grouped elements depending on same subjects,
and “wordset” is the stored set of antonym, synonym,
hyponym, and acronym candidates with the extracted
antonyms, synonyms, hyernyms, hyponyms and acronyms.
Mark the status of dependent words(s.dep) in a subject during
improved semantic reasoning, with use of two colors, “green”
color for all the words in the dependent set of the subject with
comparing the dictionary, and “blue” color stands for the
existence of antonyms, synonyms, hyponyms, and acronyms in
the set.

These colors are indicators for our proposition reduction in the
transformation process. That is, a word marked with green will
be directly converted into atomic propositions with the
corresponding subject. The items in the dependent sets of
subjects (s.dep) are initialized with green. Then, it is assumed
that every given word candidate (antonmy, acronmy,
hyponmy and synonomy) can find its words from the
corresponding dictionary. At first wordset(w) is initialized and
the dependency relation from the specification is extracted. In
the “extract” function, the extracted words candidates are saved
in wordset, wherein first of all the sets of their words are
empty.
Then, for every extracted word “w” in subject “s”, if it weren't
analyzed before, these words are looked from the
corresponding dictionary through online and the end result is
uploaded to the word set of w in wordset.

Further, the word (w) is checked for antonym, and if not
automatically goes to another part to synonym, hypernym,
hyponym and acronym, it will be processed. If antonyms,
acronyms hyponyms, hypernym and synonyms are found for
wordset (w′) in s.dep, it is marked in blue color. The subject
and extracted wordset are returned to check consistency of
document. The semantic reasoning is improved with the use of
acronym, hyponym, hypernym and synonym.

After collecting wordset for each subject is cheked in
requirement documents. If terms available in document, the
document score is incremented. Finally top k documents are

selected as consistent documents, remaining are considered as
inconsistent documents.

RESULT AND DISCUSSION

The comparison is made in terms of the performance metrics
referred to as the precision accuracy and recall that are defined
certain within the following subsections.

Precision

Precision is defined as the Percentage of correct predicted
results from the set of input terms. The precision value should
be more on the proposed methodology than the existing
approach for the better system performance.

Precision is calculated by using the following equation

In semantic reasoning method, 20 documents are taken and
consider 12 relevant documents and 7 retrieved documents.
Then 6 documents are matched. Hence the precision value is

݊݅ݏ݅ܿ݁ݎ =
{5,7,8,9,10,11,13,14,17,18,19,20}⋂{3,7,13,14,18,19,20}

7
=

6
7

= 0.85

Similarly, in improved semantic reasoning method, 20
documents are taken and considered 12 relevant documents
and 11 retrieved documents. Then 10 documents are matched.
Hence the precision value is

݊݅ݏ݅ܿ݁ݎ =
{5,7,8,9,10,11,13,14,17,18,19,20}⋂{6,7,8,9,10,11,14,17,18,19,20}

11
=

10
11

= 0.91

Figure 2 shows that the precision comparison. The precision
increases for the proposed improved semantic reasoning
method is compared to the existing semantic reasoning method.

Based on the table the result shows that the precision is
increased for proposed improved semantic reasoning method
compared to the existing semantic reasoning method. It can be
proved that the proposed methodology provides better results
than the existing.

Recall

The recall or true positive rate (TP) is the proportion of positive
cases that were correctly identified, as calculated using the
equation:

Fig 2 Precision Comparison

Table 1 Precision Comparison

 Semantic
Reasoning

Improved Semantic
Reasoning

Precision 85 91

International Journal of Recent Scientific Research Vol. 8, Issue, 8, pp. 19461-19466, August, 2017

19465 | P a g e

recall =
|{relevant	documents}∩ {retrived	documents}|

|{relevant	documents}|

In semantic reasoning method, 20 documents are taken and
considered 12 relevant documents and 7 retrieved documents.
Then 6 documents are matched. Hence the recall value is,

݈݈ܽܿ݁ݎ =
{5,7,8,9,10,11,13,14,17,18,19,20}⋂{3,7,13,14,18,19,20}

12
=

6
12

= 0.50

Similarly, in improved semantic reasoning method, 20
documents are taken and consider 12 relevant documents and
11 retrieved documents. Then 10 documents are matched.
Hence the recall value is

݈݈ܽܿ݁ݎ =
{5,7,8,9,10,11,13,14,17,18,19,20}⋂{6,7,8,9,10,11,14,17,18,19,20}

12
=

10
12

= 0.83

Figure 3 shows that the recall comparison. The recall increases
for proposed improved semantic reasoning method is compared
to the existing semantic reasoning method.

Based on the table, the result shows that the recall is increased
for proposed improved semantic reasoning method compare to
existing semantic reasoning method. It can be proved that the
proposed methodology provides better results than the existing.

F-Measure

The F-Measure is described the average of the information
retrieval precision and recall metrics

F −measure = 2.
precision. recall

precision + recall

In semantic reasoning method produced the precision value
0.85 and recall value 0.50, then the f-measure value is,

ܨ − ݁ݎݑݏܽ݁݉ = 2.
(0.85 ∗ 0.50)
0.85 + 0.50 = 0.62

In proposed method produced the precision value 0.91 and
recall value 0.83, then the f-measure value is,

ܨ − ݁ݎݑݏܽ݁݉ = 2.
(0.91 ∗ 0.83)
0.91 + 0.83 = 0.86

Figure 4 shows that the F-measure comparison. The F-measure
increases for proposed improved semantic reasoning method
are compared to the existing semantic reasoning method.

Based on the table the result shows that the F-measure increased
for proposed improved semantic reasoning method compare to
existing semantic reasoning method. It can be proved that the
proposed methodology provides better results than the existing.

CONCLUSION

A new approach is proposed for measuring semantic
consistency to requirement documents with natural language
lexical parsing. The improved semantic reasoning method
mentioned here is to extract the pairs of antonyms between
adjectives and adverbs. In this work, additionay the synonym,
hypernyms/ hyponyms, and acronym extraction process is
added to compute the of pairs of antonym in the specification.
This process of extraction in the requirement documents has
improved the semantic reasoning. Hence, the experimental
assessments were carried out and proved that this improved
semantic consistency approach proposed here provides a better
result than the existing approach in terms of precision, recall
and F-Measure.

References

Nuseibeh, Bashar, Steve Easterbrook, and Alessandra Russo
(2000). Leveraging inconsistency in software
development. Computer 33.4: 24-29.

Nuseibeh, Bashar, Steve Easterbrook, and Alessandra Russo
(2001). Making inconsistency respectable in software
development. Journal of Systems and Software 58.2: 171-
180.

Easterbrook, Steve, and Marsha Chechik. 2nd international
workshop on living with inconsistency (IWLWI01) (2001).
ACM SIGSOFT Software Engineering Notes 26.6: 76-78.

Hunter, Anthony, and Bashar Nuseibeh. Managing inconsistent
specifications: reasoning, analysis, and action (1998).
ACM Transactions on Software Engineering and
Methodology (TOSEM) 7.4: 335-367.

Yesudoss, J., and A. V. Ramani. Ontological based Relevance
Abstraction Identification Technique and Evaluation
(2016). Indian Journal of Science and Technology 9.32.

Fig 3 Recall Comparison

Table 2 Recall Comparison

 Semantic
Reasoning

Improved Semantic
Reasoning

Recall 50 83

Table 3 F-Measure Comparison

 Semantic
Reasoning

Improved
Semantic

Reasoning
F-Measure 62 86

Figure 4 Recall Comparison

Yesudoss J and Ramani A.V., Inconsistency Checking In Requirements By Improved
Semantic Reasoning (ICRISR)

19466 | P a g e

Yan, Rongjie, Chih-Hong Cheng, and Yesheng Chai. Formal
consistency checking over specifications in natural
languages (2015). Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition.
EDA Consortium.

Mu, Kedian, et al. Measuring Inconsistency in Requirements
Specifications (2005).ECSQARU.

Perrouin, Gilles, et al. Composing Models for Detecting
Inconsistencies: A Requirements Engineering Perspective
(2009).REFSQ. Vol. 5512.

Baclawski, Kenneth, et al. Consistency checking of semantic
web ontologies The semantic web-ISWC (2002): 454-459.

Fuxman, Ariel, et al. Model checking early requirements
specifications in Tropos (2001). Requirements
Engineering. Proceedings. Fifth IEEE International
Symposium on IEEE.

Nuseibeh, Bashar, Steve Easterbrook, and Alessandra Russo
(2000). Leveraging inconsistency in software
development. Computer 33.4: 24-29.

Misra, Janardan. Terminological inconsistency analysis of
natural language requirements (2016). Information and
Software Technology 74: 183-193.

Mu, Kedian, et al. From inconsistency handling to non-
canonical requirements management: A logical perspective
(2013). International Journal of Approximate Reasoning
54.1: 109-131.

Ali, Raian, Fabiano Dalpiaz, and Paolo Giorgini. Reasoning
with contextual requirements: Detecting inconsistency and
conflicts (2013). Information and Software Technology
55.1: 35-57.

Zhang, Xiaowang, et al. A distance-based framework for
inconsistency-tolerant reasoning and inconsistency
measurement in DL-Lite (2016). International Journal of
Approximate Reasoning.

How to cite this article:

Yesudoss J and Ramani A.V.2017, Inconsistency Checking In Requirements by Improved Semantic Reasoning (ICRISR). Int J
Recent Sci Res. 8(8), pp. 19461-19466. DOI: http://dx.doi.org/10.24327/ijrsr.2017.0808.0698

http://dx.doi.org/10.24327/ijrsr.2017.0808.0698

