

Available Online at http://www.recentscientific.com

CODEN: IJRSFP (USA)

International Journal of Recent Scientific Research Vol. 8, Issue, 8, pp. 19083-19087, August, 2017 International Journal of Recent Scientific Research

DOI: 10.24327/IJRSR

Research Article

A STOCHASTIC MODEL WITH ANTIGENIC DIVERSITY THRESHOLD OF HIV TRANSMISSION USING SMALLEST ORDER STATISTICS

Kannan R* and Iyappan M

Department of Statistics Annamalai University, Annamalainagar-608 002

DOI: http://dx.doi.org/10.24327/ijrsr.2017.0807.0627

ARTICLE INFO

ABSTRACT

Article History: Received 16th May, 2017 Received in revised form 25th June, 2017 Accepted 23rd July, 2017 Published online 28th August, 2017

Key Words:

Acquired Immune Deficiency Syndrome (AIDS), Human Immunodeficiency Virus (HIV), Antigenic Diversity Threshold, Seroconversion, Intercontact Time, Order Statistics. This paper focuses on the study of a stochastic model for predicting the excepted time to cross the antigenic diversity threshold of HIV infected using the intercontact time between the successive contact forms an order statistics. In the estimation of excepted time to seroconversion, there is an important role for the interarrival time between successive contact and its has a significance influence. We propose the stochastic model assuming the intercontact time between successive contact from a smallest order statistics and threshold distribution is Generalized Rayleigh Distribution. The mean time to seroconversion and its variance are derived and numerical illustrations are provided.

Copyright © Kannan R and Iyappan M, 2017, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

One of the crucial points that has to be made about the HIV/AIDS epidemic is that it is different from most other epidemics and diseases. AIDS stands for Acquired Immune Deficiency Syndrome which is caused by Human Immunodeficiency Virus. In the study of HIV infection and its progression, the antigenic diversity of the antigen namely the HIV plays an important role. The intensity of sexual contact is an important factor that adds to the antigenic diversity since more number of new antigens are acquired by the individual who is getting infected. The time to seroconversion from the point of infection depends upon what is known as antigenic diversity, which acts against immune ability of an individual. The antigenic diversity threshold is a particular level of the antigenic diversity, above which the immune system is unable to suppress the virus population. According to Stiliankis et al. (1994) 'the total virus population may escape control through continued generation of new mutants until the total number of different HIV strains exceeds the diversity threshold'. This model predicts unrestrained HIV replication, which includes transmission of more and more HIV in successive contacts and the simultaneous depletion of CD4 cells, the immune system of human body is completely suppressed which in turn leads to seroconversion.

Mathematical methods have been developed by Nowak and May (1991), and Kirschner *et al.* (2000) developed suitable model to estimate the antigenic diversity threshold. Sathiyamoorthi and Kannan (2001) used the shock model and cumulative damage process evolved by Esary *et al.* (1973) to estimate the expected time to cross the antigenic diversity threshold. In the estimation of expected time to seroconversion there is an important role for interarrival times between successive contacts; and it has a significant influence. In the case of persons exposed to HIV infection through sexual contacts, the contribution to the antigenic diversity would depend upon the number of contacts in the interval (0, t].

Ratchagar *et al.* (2003) have derived a model for the estimation of expected time to seroconversion of HIV infected using order statistics. Kannan *et al.* (2008, 2009, 2013, 2015 and 2016) have obtained a stochastic model for estimation of expected time to seroconversion of HIV infected using order statistics and threshold follows Gamma, Erlang-2, Exponentiated Exponential, Exponentiated Modified Weibull, Exponential-Geometric distribution. In this paper, it is assumed that the

threshold follows Generalized Rayleigh distribution and interarrival times form an order statistics; and so they are not independent. This is due to the fact that if the smallest order statistics is taken, it implies that the interarrival times are becoming smaller. Hence frequent contacts would be possible which will have its impact on the time to seroconversion. In this study, the theoretical results are substantiate using numerical data.

Assumptions of the model

The following are the assumptions underlying in the model developed here

- The transmission of HIV is only through sexual contacts.
- An uninfected individual has sexual contacts with HIV infected partner, and a random number of HIV are getting transmitted, at each contact.
- An individual is exposed to a damage process acting on the immune system and the damage is assumed to be linear and cumulative.
- The interarrival times between successive contacts are taken to be identically and independently distributed random variables.
- The sequence of successive contacts and threshold level are independent.
- From the collection of large number of interarrival times between successive contacts of a person, a random sample of 'k' observations are taken.

Notations

The notations used in this model are as follows

$$X_i$$
: a random variable denoting the amount of damage
arising due to i^{th} contact $X_i^{'s}$ are identically and
independently distributed with p.d.f. $g(.)$ and c.d.f.

G(.)

- Y : a random variable representing the antigenic diversity threshold which follows Generalized Rayleigh distribution with parameter ' μ ' and ' λ ' the p.d.f. h(.) and c.d.f. H(.).
- $U_{(1)}$: a continuous random variable denoting the inter-arrival times between the contacts follows smallest order statistics with p.d.f. $f_{u_{(1)}}(t)$ and c.d.f. $F_{u_{(1)}}(t)$.

$${g_k}\left(.
ight)$$
 : the p.d.f. of the random variable $\sum\limits_{i = 1}^k {{X_i}}$

 $F_k(.)$: the 'k'th convolution of F(.).

T: a continuous random variable denoting the time to seroconversion with p.d.f. l(.) and c.d.f. L(.).

$$V_k(t)$$
 : probability of exactly 'k' contacts in $(0,t]$.

$$l^*(s)$$
 : the Laplace Stieltjes transform of $l(t)$.

$$f^*(s)$$
 : the Laplace Stieltjes transform of $f(t)$.

Results

It can be shown that

$$P\left[\sum_{i=1}^{k} X_{i} < Y\right] = \int_{0}^{\infty} g_{k}(x) \overline{H}(x) dx$$

Let Y ~ Generalized Rayleigh Distribution (α, λ, μ)

$$\overline{\mathrm{H}}(x) = 1 - \left[1 - e^{-\lambda(x-\mu)^2}\right] = e^{-\lambda(x-\mu)^2}$$

Hence

$$P\left[\sum_{i=1}^{k} X_{i} < Y\right] = \int_{0}^{\infty} g_{k}(x) \left[e^{-\lambda(x-\mu)^{2}}\right]$$
$$= \left[g^{*}\lambda(1-\mu)^{2}\right]^{k}$$

The survival function S(t) is S(t) = P[T > t]

$$= \sum_{k=0}^{\infty} V_{k}(t) P\left[\sum_{i=1}^{k} X_{i} < Y\right]$$
$$= \sum_{k=0}^{\infty} \left[F_{k}(t) - F_{k+1}(t)\right] \left[g^{*} \lambda (1-\mu)^{2}\right]^{k}$$
$$\sum_{k=0}^{\infty} P_{k}(t) - P_{k+1}(t) = 0 \quad \text{(a)}$$

$$= \sum_{k=0} \Pr\{\text{there are exactly } k \text{ contacts in } (0, t]\}$$

* $\Pr\{\text{the cumulative total of antigenic diversity} < Y\}$

$$L(t) = 1 - S(t)$$

$$= 1 - \left\{ \sum_{k=0}^{\infty} \left[F_{k}(t) - F_{k+1}(t) \right] \left[g^{*} \lambda (1-\mu)^{2} \right]^{k} \right\}$$

$$L(t) = \left[1 - g^{*} (\lambda + \lambda \mu^{2} - 2\lambda \mu) \right] \sum_{k=1}^{\infty} F_{k}(t) \left[1 - g^{*} (\lambda + \lambda \mu^{2} - 2\lambda \mu) \right]^{k-1}$$

On simplification

$$l(t) = 2 \Big[1 - g^* \Big(\lambda + \lambda \mu^2 - 2\lambda \mu \Big) \Big] \sum_{k=1}^{\infty} \Big[f_k(t) \Big] \Big[1 - g^* \Big(\lambda + \lambda \mu^2 - 2\lambda \mu \Big) \Big]^{k-1}$$

Now Taking Laplace Stieltjes transform of l(t),which is denoted by $l^*(s)$, we have

$$l^{*}(s) = \frac{\left[1 - g^{*}(\lambda + \lambda\mu^{2} - 2\lambda\mu)\right]f^{*}(s)}{\left[1 - g^{*}(\lambda + \lambda\mu^{2} - 2\lambda\mu)f^{*}(s)\right]}$$

On simplification ... (1)

The inter-arrival times $U_1, U_2, U_3, \dots, U_k$ are i.i.d random variables. Now arranging $U_1, U_2, U_3, \dots, U_k$ in the increasing order of magnitude we get

$$U_{(1)} \leq U_{(2)} \leq U_{(3)} \leq \dots \leq U_{(k)}$$
.

The p.d.f of the smallest order statistics is
$$f_{u_{(1)}}(t) = K [1 - F(t)]^{k-1} f(t)$$

The Laplace Stieltjes transform the same is given by

$$f^{*}_{u_{(1)}}(t) = \int_{0}^{\infty} e^{-st} K [1 - F(t)]^{k-1} f(t) dt$$

Assuming that f(t) follows exp(c), it can be shown that

$$f^*_{u_{(1)}}(s) = \frac{kc}{kc+s}$$
 ... (2)

Substituting equation (2) in (1), we get $\sqrt{2}$

$$l^{*}(s) = \frac{\left[1 - g^{*}(\lambda + \lambda\mu^{2} - 2\lambda\mu)\right]kc}{\left[kc + s - g^{*}(\lambda + \lambda\mu^{2} - 2\lambda\mu)kc\right]}$$

On Simplification

$$E(T) = - \left. \frac{dl * s}{ds} \right|_{s=0}$$
$$= \frac{kc \left[1 - g^* \left(\lambda + \lambda \mu^2 - 2\lambda \mu \right) \right]}{\left(kc \right)^2 \left[kc + s - g^* \left(\lambda + \lambda \mu^2 - 2\lambda \mu \right) \right]^2}$$

On Simplification

At
$$s = 0$$

$$E(T) = \frac{1}{kc \left[1 - g^* \left(\lambda + \lambda \mu^2 - 2\lambda \mu\right)\right]} \dots (3)$$
Let $g^*(.) \Box \exp(\alpha)$

Let

$$g^{*}(\lambda) = \frac{\alpha}{\alpha + \lambda}, g^{*}2(\lambda\mu) = \frac{\alpha}{\alpha + 2\lambda\mu}, g^{*}(\lambda\mu^{2}) = \frac{\alpha}{\alpha + \lambda\mu^{2}} \dots (4)$$

Then (4) in (3), we can get

$$E(T) = \frac{1}{kc \left[1 - \left\{ \frac{\alpha}{\alpha + \lambda} + \frac{\alpha}{\alpha + \lambda\mu^2} - \frac{\alpha}{\alpha + 2\lambda\mu} \right\} \right]}$$

=
$$\frac{1}{kc \left[1 - \left\{ \frac{\alpha^3 + 4\alpha^2\lambda\mu + 2\alpha\lambda^2\mu^3 + 2\alpha\lambda^2\mu - \alpha\lambda^2\mu^2}{\left(\alpha^2 + 2\alpha\lambda\mu + \alpha\lambda + 2\lambda^2\mu\right)\left(\alpha + \lambda\mu^2\right)} \right\} \right]}$$
$$\alpha^3 + \alpha^2\lambda + \alpha^2\lambda\mu^2 + 2\alpha^2\lambda\mu + \alpha\lambda^2\mu^2$$
$$E[T] = \frac{+2\alpha\lambda^2\mu^3 + 2\alpha\lambda^2\mu + 2\lambda^3\mu^3}{kc\lambda[\alpha^2 + \alpha^2\mu^2 - 2\alpha^2\mu + 2\alpha\lambda\mu^2 + 2\lambda^2\mu^3]}$$
On Simplification (5)

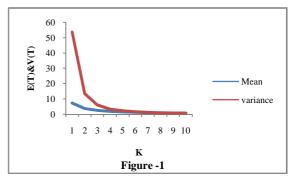
$$\mathbf{E}(\mathbf{T}^2) = \frac{\mathbf{d}^2 l * \mathbf{s}}{\mathbf{d}\mathbf{s}^2} \bigg|_{\mathbf{s}=0}$$

$$= \frac{2kc \left[1 - g^{*} \left(\lambda + \lambda \mu^{2} - 2\lambda \mu\right)\right]}{\left[kc + s - g^{*} \left(\lambda + \lambda \mu^{2} - 2\lambda \mu\right)kc\right]^{3}}$$
At $s = 0$

$$E\left[T^{2}\right] = \frac{2}{\left(kc\right)^{2} \left[1 - g^{*} \left(\lambda + \lambda \mu^{2} - 2\lambda \mu\right)\right]^{2}} \dots (6)$$
Let $g^{*}(.) \Box \exp(\alpha)$

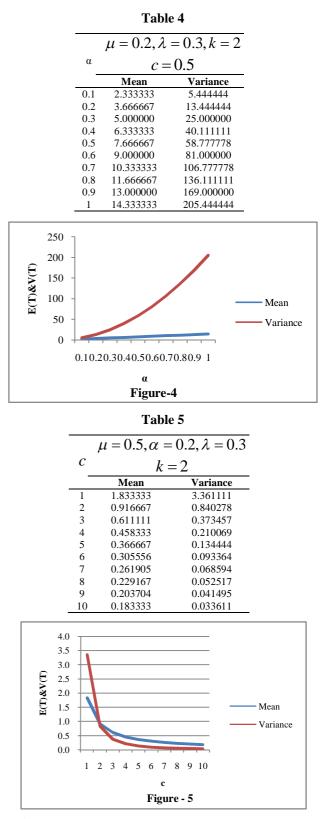
$$g^{*}(.) \Box \exp(\alpha)$$

$$g^{*}(.) = \frac{\alpha}{\alpha + \lambda}, g^{*}2(\lambda\mu) = \frac{\alpha}{\alpha + 2\lambda\mu}, g^{*}(\lambda\mu^{2}) = \frac{\alpha}{\alpha + \lambda\mu^{2}}$$


$$E(T^{2}) = \frac{2}{\left(kc\right)^{2} \left[1 - \left\{\frac{\alpha}{\alpha + \lambda} + \frac{\alpha}{\alpha + \lambda\mu^{2}} - \frac{\alpha}{\alpha + 2\lambda\mu}\right\}\right]^{2}}$$
$$E(T^{2}) = \frac{2\left[\alpha^{3} + \alpha^{2}\lambda + \alpha^{2}\lambda\mu^{2} + 2\alpha^{2}\lambda\mu + \alpha\lambda^{2}\mu^{2} + 2\alpha\lambda^{2}\mu + 2\lambda^{3}\mu^{3}\right]^{2}}{\left(kc\right)^{2}\lambda^{2}\left(2\lambda^{2}\mu^{3} + 2\alpha\lambda\mu^{2} + \alpha^{2} + \alpha^{2}\mu^{2} - 2\alpha^{2}\mu\right)^{2}}$$

On Simplification

Hence, the variance of time to seroconversion is V(T) = E(T2) -[E(T)]2


$$V(T) = \frac{2 \left[\frac{\alpha^{3} + \alpha^{2} \lambda + \alpha^{2} \lambda \mu^{2} + 2\alpha^{2} \lambda \mu + \alpha \lambda^{2} \mu^{2}}{+ 2\alpha \lambda^{2} \mu^{3} + 2\alpha \lambda^{2} \mu + 2\lambda^{3} \mu^{3}} \right]^{2}}{(kc)^{2} \lambda^{2} (2\lambda^{2} \mu^{3} + 2\alpha \lambda \mu^{2} + \alpha^{2} + \alpha^{2} \mu^{2} - 2\alpha^{2} \mu)^{2}} \\ - \left[\frac{\left[\frac{\alpha^{3} + \alpha^{2} \lambda + \alpha^{2} \lambda \mu^{2} + 2\alpha^{2} \lambda \mu + \alpha \lambda^{2} \mu^{2}}{(kc) \lambda (2\lambda^{2} \mu^{3} + 2\alpha \lambda \mu^{2} + \alpha^{2} + \alpha^{2} \mu^{2} - 2\alpha^{2} \mu)} \right]^{2}} \right]^{2} \\ V[T] = \frac{\left(\frac{\alpha^{3} + \alpha^{2} \lambda + \alpha^{2} \lambda \mu^{2} + 2\alpha^{2} \lambda \mu + \alpha \lambda^{2} \mu^{2}}{(kc)^{2} \lambda^{2} (2\lambda^{2} \mu^{3} + 2\alpha \lambda \mu^{2} + \alpha^{2} + \alpha^{2} \mu^{2} - 2\alpha^{2} \mu)} \right]^{2}}{(kc)^{2} \lambda^{2} (2\lambda^{2} \mu^{3} + 2\alpha \lambda \mu^{2} + \alpha^{2} + \alpha^{2} \mu^{2} - 2\alpha^{2} \mu)^{2}}$$

On Simplification Numerical Illustrations

Kannan R and Iyappan M., A Stochastic Model With Antigenic Diversity Threshold of HIV Transmission					
Using Smallest Order Statistics					

Table-1					
$\mu = 0.5, \alpha = 0.2, \lambda = 0.3$					
	k k				
-		Mean	Variance	- -	
	1 2	7.333333 3.666667	53.77778 13.44444		
	3	2.444444	5.975309		
	4 5	1.833333 1.466667	3.361111 2.151111		
	6	1.222222	1.493827		
	7 8	1.047619 0.916667	1.097506 0.840278		
	9	0.814815	0.663923		
-	10	0.733333 Tabla	0.537778		
$Table 2$ $\alpha = 0.2, \lambda = 0.3, k = 2$					
	μ				
	<u> </u>	C =	Variance		
	0.5 1	3.666667 2.222222	13.444444 4.938272		
	1.5	1.807512	4.938272 3.267099		
	2 2.5	1.666667	2.777778		
	2.5 3	1.609628 1.584699	2.590903 2.511272		
	3.5 4	1.573951	2.477323 2.465052		
	4 4.5	1.570048 1.569630	2.463032		
	5	1.571028	2.468128		
(L) 10 (L) % (L) 5 0	0.5	ار از	4 4 κ κ	– Mean – variance	
Figure-2					
_		Table $u = 0.5 c$,	
	λ	•	k = 0.2, k = 2	2	
	70	C = Mean	= 0.5 Variance	_	
_	0.5	2.600000	6.760000	_	
	1 1.5	1.800000 1.533333	3.240000 2.351111		
	2	1.400000	1.960000		
	2.5 3	1.320000 1.266667	1.742400 1.604444		
	3.5	1.228571	1.509388		
	4 4.5	1.200000 1.177778	1.440000 1.387160		
	5	1.160000	1.345600	_	
(L) XX (L) (L) XX (L) XX (L) (L) XX (L) XX (L) (L) XX (L) XX (L) (L) XX (L) XX (L) XX (L) (L) XX (L) XX (L	0.5 1 1	5 2 2.5 3 3.5 · λ		— Mean — Variance	
Figure - 3					

CONCLUSIONS

1. At the value of k increases the mean time to seroconversion and its variance decreases. This is due to the fact that as k namely number of contacts in (0,t] decreases it means that the contact are more frequent.

Hence, it takes less time to cross the threshold. It is easily seen from Table (1) and Fig. (1).

- 2. From the fixed value of k, α, c and λ when threshold parameter μ is allowed to increase than the expected time to seroconversion and its variance time to seroconversion are decreases as indicated in Table (2) and Fig.(2).
- 3. From the fixed value of k, α, c and μ when threshold parameter λ is allowed to increase than the expected time to seroconversion and its variance time to seroconversion are decreases as indicated in Table (3) and Fig.(3).
- 4. It is observed from the Table (4), the contribution to the antigenic diversity threshold parameter ' α ' which increases, then the mean time to seroconversion and its variance increases.
- 5. As the value of the parameter 'c' is the distribution of the times intervals between successive contacts shown an increase it means that the average time intervals between successive contacts which is given by

 $E(U) = \frac{1}{c}$ since U~ Exp(c), therefore time intervals

between successive contacts becomes smaller and hence the mean time to seroconversion and its variance decreases.

References

- Esary, J.D., Marshall, A.W. and Proschan, F. (1973). Shock model and Wear Processes. *Ann. Probability*, 1(4), pp. 627-649.
- Kannan, R, A. Ganesan, R. Sathiyamoorthi and G. Malarvizhi (2008). A Stochastic Model for the Estimation of Time to Seroconversion of HIV Infected using Order Statistics, *Bio-Science Research Bulletin*, 24(1), 1-7.

- Kannan, R., Ganesan, A., and Thirumurugan, A. (2009). Stochastic model for estimation of expected time to seroconversion of HIV infected using largest order statistics. *Int. J. Agricult. Stat.Sci.*, 5(2), 397-404.
- Kannan, R., Kavitha. S., and Sathiyamoorthi, R. (2013). A stochastic approach to determine the expected time to seroconversion of HIV infected using order statistics. *Journal of the Indian Academy of Mathematics*, 35, 131-141.
- Kannan, R. and Chandrasekar, K. (2015). "A Stochastic Model for the Estimation of Expected Time to Seroconversion of HIV infected using Order Statistics", *International Journal of World Research*, Vol., pp. 1-8.
- Kannan R and Karthi R (2016) "A stochastic approach to determine the statistical measure for time to Seroconversion of HIV infected using smallest order statistics" *International Journal of Applied Research*, Vol. 2(8), pp. 36 41.
- Kirschner, D., Webb, G.F., and Cloyd, M. (2000). Model of HIV-1: Disease progression based on virus-induced lymphnode homing and homing induced apoptosis of CD4+ lymphocytes. *Journal of AIDS*, 24(4), 352-362.
- Nowak, M.A., and R.M. May. (1991). Mathematical Biology of HIV Infection: Antigenic variation and Diversity Threshold. *Mathematical Biosciences*, 106,1-21.
- Sathiyamoorthi, R., and Kannan, R., (2001). A stochastic model for time to seroconversion of HIV transmission, *Journal of Kerala statistical Association*. Vol.12, 23-39.
- Stilianakis. N., Schenzle. D. and Dietz. K (1994). On the antigenic diversity threshold model for AIDS. *Mathematical Biosciences*, Vol. 121, 235-247.

How to cite this article:

Kannan R and Iyappan M.2017, A Stochastic Model With Antigenic Diversity Threshold of HIV Transmission Using Smallest Order Statistics. *Int J Recent Sci Res.* 8(8), pp. 19083-19087. DOI: http://dx.doi.org/10.24327/ijrsr.2017.0808.0627
