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Comparative assessment of soil variables in different iron mine overburden spoil and NF soil endow 
with valuable information about the pace and progress of mine spoil genesis, which can be 
implemented for improving mine spoil restoration through sustainable use of resources. About 14 
mine spoil variables were selected to develop the QSAR equation based on brute-force approach and 
genetic function approximation for prediction of mine spoil restoration required for fresh iron mine 
overburden spoil to reach the soil features of the nearby NF soil. The training and test sets with 
statistically best fitted with r2 = 1.0 and r2

LOO = 0.996. The predictive ANN model with 14-11-1 
structure was recognized as the best model illustrating the time period required for mine spoil 
restoration across the sites. The standard error for the proposed model was estimated to be 0.276, 
which can be used as indicator of the robustness of the fit and suggested that the predicted years for 
mine spoil restoration based on the model is reliable. The validity of the developed model was 
confirmed with higher calculated value of squared correlation coefficient determination (r2 = 0.999) 
and lower root mean square error (RMSE = 0.194 kPa), which revealed good predictability. Hence, 
IB0 shall take  38.319 years to reach the soil features of nearby NF soil depending on the variability 
in physico-chemical properties, enzyme activities and fungal PLFA biomarkers as sensitive and 
reliable indicator influencing mine spoil genesis in different age series iron mine spoil over time.  
 
 
  

  
 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
 

 

 
 
 
 

 
 

 
 
  

 
 

 

INTRODUCTION  
 

Soil plays fundamental role in sustainable land use through the 
shift in microbial community structure influencing overall 
biodiversity, biotransformation, organic matter decomposition, 
nutrients turnover, pollution buffering and succession through 
vegetation development. Soil system is prone to degradation 
caused by anthropogenic activities leading to rapid deterioration 
of physico-chemical properties and microbiological entities, 
which has become the major environmental concern. The 
nutrient deficient topsoil with heavy metal contaminants 
threaten ecosystem through adverse impacts on soil quality 
(Sheoran et al., 2008; Kumar et al., 2010), which possess 
problems for pedogenesis (Roberts et al., 1988; Hearing et al., 
1993), revegetation (Tordoff et al., 2000; Pandey and Maiti, 
2008; Bahrami et al., 2010; Alavi et al., 2011) and restoration 
of iron mine spoil (Insam and Domsch, 1988; Wong, 2003; 
Juwarkar et al., 2009; Mukhopadhyay and Maiti, 2011; Yan et 
al., 2013; Kujur and Patel, 2013). The assessment of mine spoil 
genesis is pre-requisite to implement appropriate management 
strategies for restoration of the legacy of mine spoil. 

Monitoring microbial diversity in terrestrial ecosystems is 
encouraged for soil quality assessment. It is also essential for 
the early detection of possible decline and enables the adoption 
of measures to reverse such decline. Mine spoil genesis can be 
monitored by analyzing soil variables influencing microbial 
community structure and their associated functioning. Periodic 
monitoring can be initiated with the inventory of biodiversity 
such as estimation of taxonomic or functional diversity and 
often combined with microbial activity reflected through 
enzyme activities and their kinetics studies. The successive 
amelioration of microorganisms in different age series iron 
mine spoil over time brings about changes through 
pedogenesis, which consequently promote root growth and 
reduce the undesirable effects of the microclimatic conditions 
(Juwarkar et al., 2009). Therefore, the assessment of soil 
variables in different age series iron mine spoil not only 
provide better understanding of mine spoil genesis influencing 
ecosystem functioning but also the implementation of 
appropriate management strategies for mine spoil restoration 
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(Insam and Domsch, 1988;Yan et al., 2013). Besides, the use 
of artificial neural network is essential to validate the concept. 
 

The determination of time period required for mine spoil 
restoration through experimentation is extensive and time 
consuming. In contrast, the alternative approach is performed 
through empirical mathematical modeling for prediction of the 
expected time required for mine spoil restoration across the 
sites. Such assessment can be performed by the artificial neural 
network (ANN), which is sophisticated computational 
technique for universal function approximations analogous to 
the neuronal function of brain (Guisan and Thuiller, 2005). It 
has two modes of operation such as training mode and 
operation/testing mode. In training mode, the neurons are 
trained using a particular input pattern to produce the desired 
output pattern. In operation/testing mode, when a trained input 
pattern is detected at the input, the ANN will produce its 
associated output. ANN is effectively used for modeling, 
identification, prediction and control of complex processes with 
nonlinearities and uncertainties (Gryglewicz, 1996; Cai et al., 
1996). It is useful in modeling problems in which the relation 
between dependent and independent variables is poorly 
understood and has the potentiality to identify highly complex 
relationships from the input-output data. Further, the back-
propagation algorithm is a non-linear extension of least mean 
square (LSM) algorithm for multi-layer perceptrons. It is 
successfully applied in model-free function estimation for the 
pattern recognition, approximation/mapping of non-linear 
functions and time series prediction. The neural network is 
usually layered, where the layers are fully interconnected to 
each other. The first inputs layer receive external information 
datasets, which are normalized within the limit values 
generated from the activation functions and results in better 
numerical precision for mathematical operations performed by 
the neural network. It is supported with the second hidden layer 
composed of neurons, which are responsible for extracting 
patterns associated with the internal processes being analyzed 
from the network. The number of neurons in each hidden layer 
can vary according to the complexity or interactions among the 
soil variables (Kim and Gilley, 2008; Erzin et al., 2010). 
However, the final network output is produced representing the 
third output layer, which results from the processing performed 
by the neurons in the hidden layers. 
 

The artificial neural networks (ANNs) and feed forward 
artificial neural networks (FANNs) have been extensively 
studied to represent the process models and their beneficiary 
uses for industrial applications (Ungar et al., 1996). Besides, 
ANNs have been applied to various geotechnical engineering 
problems such as pile capacity prediction, modeling soil 
behavior, site characterization, earth retaining structures, 
design of tunnel and underground openings, liquefaction, soil 
permeability and hydraulic conductivity, soil compaction, soil 
swelling and classification of soils (Kim and Kim, 2006; Kuo 
et al., 2009; Banu-Ikizler et al., 2010; Kalinli et al., 2011; 
Sulewska, 2011; Chik et al., 2014). In addition, the ANN 
approach is also applied for the prediction of organic matter 
(Ingleby and Crowe, 2001), soil erosion (Licznar and Nearing, 
2003), hydraulic conductivity (Akbulut, 2005), volumetric 
moisture content (Chai et al., 2008) and modeling of electrical 

conductivity (Davood et al., 2010) of coarse grained soil 
samples. 
 

Unlike analytical approaches, the ANNs require no explicit 
mathematical equation and no limiting assumptions of 
normality or linearity (MathWorks, 2005). The advantages of 
ANN over traditional physiology-based predictive models 
includes (i) the involvement of intense parallel computations 
during the training process, (ii) the capability of fast 
generalization i.e. once the ANN is trained for a particular 
system, its operation is relatively faster and the unknown input 
patterns can be rapidly identified in the real-time environment, 
(iii) the estimation of non-linear relationships between the input 
data and desired outputs, (iv) the data processing applications 
such as image recognition, (v) the classification based on land 
use patterns and management practices,  (vi) the utilities in land 
drainage engineering, (vii) the estimation of crop evapo-
transpiration as well as yield prediction for the new set of input 
conditions and thereby support the use of mechanistic 
simulation tools by providing the initial condition values or 
site-specific parameters and guide parameter estimation in 
agricultural machinery models (Yang et al., 1997; Gopal et al., 
1999; Carpenter et al., 1999a, 1999b; Odhiambo et al., 2001; 
Liu et al., 2001; Keller et al., 2001; Behrens et al., 2005; Das 
and Basudhar, 2008; Zhao et al., 2009; Banu-Ikizler et al., 
2010). 
 

Considering the tropical dry deciduous forest as natural 
vegetation in the study site, an attempt was made in the present 
study to predict the time period required for fresh iron mine 
overburden spoil (IB0) to reach the soil features of the nearby 
forest soil based on the variability in soil properties in seven 
different age series iron mine spoil (IB0  IB25) in 
chronosequence over time through mine spoil restoration using 
the multivariate predictive modeling technique i.e. artificial 
neuron network (ANN). This prediction model is considered to 
be superior compared to non-parametric statistical benchmark 
methods, which provide valuable information about mine spoil 
genesis influencing the pace and progress of mine spoil 
restoration. For each dataset, the ANN predictive models were 
developed and all the three datasets (image-scale, field-scale 
and lab-scale) revealed significant network performances for 
training, testing and validation indicating good network 
generalization for predicting mine spoil restoration over time.  
 

MATERIALS AND METHODS 
 

Study site 
 

The present study was carried out in the Thakurani iron mining 
area at Noamundi (geographical location: 85° 28' 02.61" E and 
22° 8' 33.93" N), maintained by M/s. Sri Padam Kumar Jain 
sponge mines Private Ltd. located in the revenue district of 
West Singhbhum, Jharkhand, India. The study site is 
surrounded by a number of new, old and abandoned mine of 
iron ore overburdens, which were classified according to the 
time elapsed since inception such as fresh iron mine spoil (IB0), 
2yr (IB2), 4 yr (IB4), 6 yr (IB6), 8 yr (IB8), 15 yr (IB15) and 25 
yr (IB25) respectively within the peripheral distance of 10 km 
from the core mining area. Besides, the nearby forest soil (NF) 
was selected adjacent to the core iron mining area for 
comparison of the soil variables compared to different age 
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series mine overburden spoil over time. The district 
experiences semi-arid climate with annual average rainfall 
estimated to be 1250.43 mm as compared to the state average 
of 1340 mm. The mean annual temperature and humidity is 
around 19.67C and 20% respectively. The study site is 
situated away from the mean sea level of 581m altitude. 
 

Mine spoil sampling 
 

Sampling was done from seven different age series iron mine 
overburdens and the nearby native forest in accordance with 
general microbiological method. During sampling, each site 
was divided into 3 blocks and five mine spoil samples were 
collected randomly from 0-15cm soil depth by digging pits of 
(15x15x 15) cm3 size. The samples collected from each block 
were referred as ‘sub-samples’, which were thoroughly mixed 
to form one ‘composite sample’ obtained from each 
overburden. Similar strategies have been followed to obtain 
three composite samples from each site. The samples were 
subjected to sieving (0.2 mm mesh size) and stored at 4ºC until 
analyzed. 
 

Quantitative analysis of soil variables 
 

Textural composition of different age series iron mine 
overburden spoil and nearby NF soil includes the estimation of 
clay ( 0.002 mm), silt (0.06-0.002 mm) and sand (2.0-0.06 
mm) percentage as per the method prescribed in TSBF 
handbook (Anderson and Ingram, 1992). The moisture content 
(MC) and water holding capacity (WHC) were estimated 
(Mishra, 1968). Soil pH (1:2.5 ratio of soil: water) was 
measured with digital pH meter. Organic C (OC) was estimated 
through titration method suggested by Walkley and Black 
(Mishra, 1968). Total nitrogen (TN) was determined following 
Kjeldahl method (Jackson, 1958) and extractable phosphorous 
(EP) was estimated using chlorostannous reduced 
molybdophosphoric blue colour method (Olsen and Sommers, 
1982). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In addition, the protease activity in different age series iron 
mine overburden spoil was determined by spectrophotometric 
method (Ladd and Butler, 1972) using sodium caseinate as 
substrate. The urease activity was determined by 
spectrophotometric method (Hoffmann and Teicher, 1961) 
using urea as substrate. Dehydrogenase activity was estimated 
spectrophotometrically through the reduction of 2,3,5-
triphenylotetrazolium chloride (TTC) as electron acceptor to 
triphenyl formazon (TPF) (Nannipieri et al., 1990; Alef and 
Nannipieri, 1995). Phospholipid fatty acids (PLFA) profiling of 
seven different age series mine overburden spoil and nearby 
forest soil was performed through lipid extraction based on 
fractionation and quantification (Buyer et al., 2010). 
 

Neural-network data-mapping model development 
 

The back-propagation neural-network model was created using 
Stuttgart Neural Network Simulator package [SNNS version 
4.2; Institute for Parallel and Distributed High Performance 
Systems (IPVR) at the University of Stuttgart, Germany] and 
trained using physico-chemical soil variables (textural 
composition, MC, WHC, pH, organic C, total N and extractable 
P), enzyme activities (protease, urease and dehydrogenase) and 
PLFA markers (18:19c, 18:26c, 18:36c) as inputs and 
predicted the time required for fresh iron mine spoil to reach 
the soil features of nearby NF soil in years as the output. 
Topological structure of the neural-network model consisted of 
14 input neurons in the input layer and one output neuron in the 
output layer to match 14:1 input-output pattern of the training 
datasets. One hidden layer with 11 neurons was the optimal 
topology for the neural-network model determined by trial and 
error method (Fig 1). 
 

The evaluation criterion for determining optimal topology was 
the best correlation value of the training dataset. The neural 
network model was trained in an iterative training process 
using the obtained training datasets.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1 Layers and connection of a feed-forward back-propagating ANN. The neural network model developed here applied the sigmoid transfer function to 
compute the strength of interconnection between each pair of neurons. 
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To avoid possible bias, the order of input-output data pair in the 
training dataset was randomized before the training process. 
During training process, the back propagation training 
algorithm compares the estimated output value with the target 
value (namely the measured value), then tunes weighted values 
followed by connecting all the neurons to minimize the 
difference between the estimated and the target values until the 
error is smaller than the predefined level or until the number of 
the iteration reached a preset maximum number. The 
constructed model was trained with the input data for an epoch 
of 10,000 with 0.1 learning rate. After completion of the 
training process, all the weighting indices describing the 
interconnection strengths between the neighboring neurons are 
fixed and the neural network model will then be capable of 
mapping input variables to an estimated output promptly and 
accurately. 
 

Data processing and development of prediction model  
 

A total of 20 soil variables were used including physico-
chemical parameters (silt and clay percentage, moisture 
content, water holding capacity, pH, organic C, total N and 
extractable P), enzyme activity (amylase, protease, urease and 
dehydrogenase), PLFAs (18:1ω9c, 18:2ω6c and 18:3ω6c), 
microbial CFUs (heterotrophic aerobic bacteria, sulfate 
reducing bacteria and actinomycetes), fungal: bacterial biomass 
ratio and anaerobes for  the purpose. The calculated soil 
parameters were collected in a data matrix (D), where the rows 
represent mine spoil samples from seven different age series 
iron mine overburden spoil (IB0  IB25) and the columns 
represent different soil variables. In order to minimize the 
effect of colinearity and avoid redundancy, the correlation 
between different soil variables was determined and those pairs 
with higher relationships were considered. Among the collinear 
parameters, those with lowest correlation with soil properties 
were removed from the data matrix. Among the remaining 
parameters, the set of parameters that provide statistically best 
prediction model was selected using genetic function 
approximation (GFA) (Friedman, 1988) within the evolution 
module (ga.svl) of the MOE program.  
 

The evolutionary genetic tool enables automated prediction 
modeling on the fly and is available through the SVL 
exchange. The GFA algorithm starts with the creation of 
randomly generated parameter sets. The algorithm was set up 
to discover the soil variables relevant for mine spoil restoration 
by linear polynomial terms. One hundred random initial 
equations with four variables were used (adding constants 
wherever necessary) to search for the equations of unlimited 
length but with the acceptable lack-of-fit (LOF) scores 
(Friedman, 1988), the new ‘child equations’ were generated 
using multiple linear regression method. Child equations were 
mutated (i.e. changed at “birth”) 50% of the time after their 
generation by addition of randomly selected new terms. The 
number of generations of equation evolution required in the 
dataset was gauged by the attainment of adjusted r2 values and 
minimal LOF scores. The creation of consecutive generation 
involves crossovers between set contents as well as mutations. 
Total number of crossovers was set to 50 msp 14000 with the 
auto-termination factor of 1000 (meaning that the calculation 
was stopped when the fitness function value does not change 
during 1000 crossovers). The equations were evaluated for 

statistical soundness by the Friedman LOF score, r2, adjusted 
r2, least-squares error and correlation coefficient after cross-
validation statistics. The Friedman LOF score is calculated and 
expressed using the following equation:  
 

LOF = LSE/ {1 – (c + dp) / m} 
 

where; LSE is the least-square error, c is the number of basic 
functions in the model, d is smoothing soil variables, p is the 
number of soil variables, and m is the number of mine spoil 
samples in the training dataset.  
 

The smoothing variables control the scoring bias between the 
equations of different sizes was set at default value of 1.0. The 
set of 14 soil variables such as physico-chemical properties (silt 
and clay percentage, moisture content, water holding capacity, 
pH, organic C, total N and extractable P), enzyme activities 
(protease, urease and dehydrogenase), PLFAs (18:1ω9c, 
18:2ω6c and 18:3ω6c) were found to be relevant influencing 
mine spoil restoration in chronosequence iron mine overburden 
spoil over time, which were used in ANN for the development 
of prediction model. 
 

Validation of prediction model 
 

The predictive capability of the developed prediction model 
was further validated based on leave-one-out cross-validation. 
The cross-validation regression coefficient (r2

LOO) was 
calculated based on the prediction error sum of squares 
(PRESS) and sum of squares of deviation of the experimental 
values ‘Y’ from their mean (SSY) using the following 
equation:  
 

 
 

where Ypred, Yexp and ӯ represents the predicted, observed and 
mean values of observed activity belonging to the training 
datasets of soil variables respectively. The determination 
coefficient in prediction using the test set (r2 test) was 
calculated (Naik et al., 2009, 2010). 
 

 
 

where rtest
2 is the squared pearson correlation coefficient for 

regression calculated using Y= a + bx; a is referred to as y-
intercept, b is the slope value of regression line and Rtest0

2 is the 
squared correlation coefficient for regression without using y-
intercept, and regression equation was Y = bx.  
 

RESULTS AND DISCUSSION 
Comparative assessment of 14 soil variables including physico-
chemical properties (Pasayat and Patel, 2015), enzyme activity 
(Pasayat and Patel, 2016), PLFAs (Pasayat and Patel, 2017) in 
seven different age series iron mine overburden spoil (IB0 → 
IB25) and the nearby forest soil (NF) have been represented 
(Table 1). Textural composition revealed an increasing trend in 
silt (7.8 - 13.5)% and clay (4.4 - 11.2)% with minimum in IB0 
and maximum in IB25 across the sites (Table 1). Besides, the 
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WHC (24.501 - 44.509)% and MC (6.643 - 10.886)% exhibited 
wide variation in different age series iron mine overburden 
spoil, which showed an increasing trend from IB0 to IB25 within 
a span of 25 years. The mine spoil showed gradual 
improvement in pH from slightly acidic (6.14) in IB0 to near 
neutrality (6.77) in IB25 in due course of time. However, the 
nearby NF soil exhibited relatively higher silt (14.2%), clay 
(13.3%), WHC (46.648%), MC (11.329%) and pH (6.83) 
compared to seven different age series iron mine spoil in 
chronosequence across the sites (Table 1). Further, the organic 
C (0.142 - 2.228)%, total N (0.004 - 0.187)% and extractable P 
(70.445 - 945.678) g P/g spoil exhibited increasing trend from 
IB0 to IB25 with the increase in age of iron mine overburden 
spoil. However, the nearby NF soil showed relatively higher 
organic C (2.469%), total N (0.245%) and extractable P 
(1091.509 g P/g soil) compared to different age series iron 
mine overburden spoil across the sites (Table 1). This analysis 
supported by the wide variation in enzyme activity in different 
iron mine spoil, which was observed from IB0 to IB25 i.e. 
Protease activity (2.515 - 173.755) g tyrosine g-1 spoil hr-1, 
urease activity (2.322 - 43.752) g NH4 g-1 spoil hr-1 and 
dehydrogenase activity (0.125 - 3.658) g TPF g-1 spoil hr-1 
(Table 1). The fungal PLFA biomarker also varies across the 
sites i.e. 18:1ω9c from 2.64 (IB0) to 5.96 (IB25), 18:26c from 
0.43 (IB6) to 1.03 (IB15) and 18:36c from 0.8 (IB25) to 1.34 
(IB8) respectively (Table 1). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The ANN model with these selected inputs was the best model 
which provide affordable results for the present study (Fig 1) 
based on the statistical parameters, correlation coefficient and 
coefficient of efficiency of the training and testing datasets 
(Das and Basudhar, 2008; Al-Hamed et al., 2014). Several 
investigators suggested that the ANN developed suitable model 
for periodic assessment of mine spoil restoration using physico-
chemical variables such as textural composition, moisture as 
the input variables (Das and Basudhar, 2008; Khanlari  et al., 
2012). The results are in accordance with earlier findings, who 
indicated that the shift in soil quality may be due to the 
variation in physico-chemical properties (Zhang et al., 2001; 

Bechmann et al., 2006; Saffari et al., 2009; Zhao et al., 2010). 
Further, organic matter is reported to influence soil quality, 
aggregate stability and sustainability (Loveland and Webb, 
2003). Thus, the dynamic changes in physico-chemical 
properties, organic C, available nutrients and microbial 
community structure need to be monitored periodically not 
only determine quality status but also predict the pace and 
progress of restoration (Sullivan et al., 2005). Scientific 
concerns towards mine spoil restoration led to the development 
of computational models, connectionist system or ANN 
(Schaap and Leij, 1998; Stuczynski et al., 1998; Koekkoek and 
Booltink, 1999; Pachepsky and Rawls, 1999; Wosten and 
Tamari, 1999; Cannon and Withfield, 2001; Patel et al., 2002; 
Zhang and McGrath, 2004; Huang, 2009).  
 

Further, ANNs are being widely used for predicting mine spoil 
restoration through the alternations in different soil variables 
and spatial distribution of microbial community structure 
(Bodaghabadi et al., 2015). The practical deliverables for such 
study represent predictive bioclimatic model using ANN, 
which can be used to interpolate or extrapolate the observed 
interactions between the microbial taxa and their activities in 
response to different physico-chemical, biochemical and 
microbiological soil quality indices (Guisan and Harrell, 2000; 
Barry and Welsh, 2002; Guisan and Thuiller, 2005; Austin, 
2007; Little et al., 2008; Elith and Leathwick, 2009; Anadon et 
al., 2010; Barberan et al., 2012). Thus, ANNs are being widely 
used for predicting mine spoil genesis through the distribution 
and abundance of different microbial population with defined 
taxonomical classes in the terrestrial ecosystems (Bodaghabadi 
et al., 2015). 
 

Further, the values of soil vulnerability potentials to 
degradation in different age series mine spoil can be 
determined based on the variations in soil properties, which 
influence mine spoil restoration over time. The time period 
required for mine spoil restoration can be estimated through the 
development of prediction model based on the feed forwarded 
back propagation. Mine spoil samples from 21 mining sites 
with their efficiency towards mine spoil restoration were 
randomly divided into the training and test dataset of 13 and 8 
mine sites respectively. Out of the total 20 parameters, 14 soil 
variables i.e. silt, clay, MC, WHC, pH, OC, TN, EP, protease, 
urease, dehydrogenase, 18:1ω9c, 18:2ω6c and 18:3ω6c were 
screened using GFA and used for the development of QSAR 
equation. Taking a brute-force approach, the number of 
variables were increases in the QSAR equation one by one and 
the effect of addition of a new terms with the statistical quality 
of the model was evaluated. The prediction model with robust 
prediction of the time period (in year) required for fresh iron 
mine spoil to reach the soil feature of NF soil has been deduced 
as per the following equation. 
 

Year = - 50.8 + 4.12 Silt - 1.77 Clay - 1.87 WHC +21.8 MC - 
11.3 pH - 34.0 OC + 318 TN - 0.0461 EP + 0.302 Protease + 
1.56 Urease - 27.4 Dehydrogenase - 2.31 (18:1 w9c) + 3.8 
(18:2 w6c) + 5.12 (18:3 w6c)  
 

(n = 14; r2 = 1.0; LOF = 0.0001; F =1615.4; p = 0.0001; r2
LOO = 

0.996). 
 

Where, n is the no. of mine spoil samples in the training set, r2 
is the squared correlation coefficient between observed and 
predicted years of mine spoils, F-test is the measure of variance 

Table 1 Comparative distribution of selected 14 parameters for 
ANN study of seven different age series iron mine overburden 

spoil (IB0  IB25) and nearby NF soil. 
 

Parameters 
Different age series mine overburden spoil from (0-15) 

com soil depth NF soil 
IB0 IB2 IB4 IB6 IB8 IB15 IB25 

Silt (%) 7.8 8.4 9.1 9.9 10.9 11.8 13.5 14.2 
Clay (%) 4.4 5.7 6.1 6.7 7.6 8.5 11.2 13.3 
WHC (%) 24.501 26.422 28.067 32.311 37.457 40.338 44.509 46.648 
MC (%) 6.643 6.985 7.106 7.422 8.391 9.915 10.886 11.329 

pH 6.14 6.25 6.39 6.49 6.59 6.62 6.77 6.83 
Organic C 

(%) 
0.142 0.218 0.284 0.355 0.815 1.648 2.228 2.469 

Total N (%) 0.004 0.007 0.011 0.015 0.053 0.125 0.187 0.245 
Extractable P 

(g P/g 
spoil) 

70.445 76.836 84.552 91.707 112.542 645.817 945.678 1091.509 

Protease 
activity 

2.515 5.163 31.253 53.753 81.3 145.754 173.755 217.51 

Urease 
activity 

2.322 4.965 7.501 9.144 12.8 28.323 43.752 54.502 

DHase 
activity 

0.125 0.313 0.542 0.708 1.56 2.813 3.658 4.583 

18:1ω9c 2.64 3.62 2.67 3.14 3.11 5.96 3.25 4.19 
18:2ω6c 0.63 0.91 0.43 0.78 0.78 1.03 0.88 1.98 
18:3ω6c 0.83 1.02 0.97 0.86 1.34 1.14 0.8 0.97 
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that compares two models differing by one or more variables to 
determine if the complexity of the model correlates positively 
with its reliability (the model is supposed to be good if the F-
test is above a threshold value) and r2

LOO is the square of the 
correlation coefficient of the cross validation using the leave-
one-out (loo) cross-validation technique. The prediction model 
is statistically best fitted (r2= 1.0, r2

LOO = 0.996) and 
consequently used for the prediction of years of mine spoil of 
training and test sets (Tables 2 and 3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The quality of prediction models for the training set is shown 
(Fig 2). The r2 and r2

LOO values of the model corroborate the 
criteria for a highly predictive model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The standard error for the proposed model was estimated to be 
0.276, which can be used as an indicator of robustness of the fit 
and suggests that the predicted years of mine spoils based on 
the model is reliable. Similarly, the quality of prediction 
models for the test set (Fig 2b). The overall root mean square 
error (RMSE) between the observed and predicted years was 
found to be 0.194, which revealed good predictability. The 
squared correlation coefficient between the observed and the 
predicted years for the test set is also significant (r2 = 0.999) 
(Fig 2b). The estimated correlation coefficient between 
observed and predicted years with intercept (r2) and without 
intercept (r2

0) is 0.9992 and 0.9991, respectively. The value of 
[(r2– r2

0)/r
2] = (0.9992 – 0.9991)/0.9992 = 0.0001 is less than 

the stipulated value of 0.1. 
 

The ANN is called feed-forwarded back-propagation 
algorithm, which is being eligible for estimation, classification 
and to be useful in non-linear structural models (Demuth et al., 
2007). The root mean square error (RMSE) and mean error 
(ME) were also used to assess the accuracy of predicted model 
(Zhao et al., 2009). Further, the better correlation between 
ANN predicted values and measurement from the test dataset 
soil parameters was observed (Fig 2). The study suggested that 
the ANN approach can be implemented to develop prediction 
model that can able to predict the pace and progress of mine 
spoil restoration with high efficiency and accuracy. Further, the 
genetic algorithm (GA) was coupled with back-propagating 
network analysis to optimize the informative variables and 
improve the accuracy of the proposed model (Karimi and 
Yousefi, 2012). It has wide scope of applications in data 
mining, where the hidden information is mined from large and 
distributed databases. Therefore, the application of artificial 
neural network with genetic algorithm (ANN-GA) facilitates 
more predictability and accuracy towards the assessment of 
time period required for mine spoil restoration across the sites. 
The ANN prediction model is used to determine the time 
required for fresh mine overburden spoil as par with the soil 
features of nearby NF soil taking into account the input values 
of 14 soil variables influencing mine spoil restoration in 
different age series iron mine spoil was estimated to be 
approximately 38.319 years.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 Statistical assessment of QSAR models for the 
estimation of predicted year for mine spoil restoration 

with varying numbers of soil variables in the training set. 
 

Sites Observed Year Predicted Year 
IB0_S1 0.00 0.2929411 
IB0_S2 0.00 -0.0109372 
IB2_S1 2.00 2.5053459 
IB4_S1 4.00 3.8770059 
IB4_S2 4.00 3.6965352 
IB6_S1 6.00 5.9890578 
IB6_S2 6.00 5.8996976 
IB8_S1 8.00 8.3583512 
IB8_S2 8.00 8.222339 
IB15_S1 15.00 15.176928 
IB15_S2 15.00 15.008596 
IB25_S1 25.00 24.639342 
IB25_S2 25.00 24.955494 

 

Table 3 Statistical assessment of QSAR models for the 
estimation of predicted year for mine spoil restoration 
with varying numbers of soil variables in the test set. 

 

Sites 
Observed 

Year 
Predicted 

Year 
IB0_S3 0.00 0.141002 
IB2_S2 2.00 2.0002584 
IB2_S3 2.00 2.0002716 
IB4_S3 4.00 4.0002733 
IB6_S3 6.00 5.9443777 
IB8_S3 8.00 8.2903451 

IB15_S3 15.00 15.001593 
IB25_S3 25.00 24.797 

 

  
(a) (b) 

 

Figure 2 Quantitative structure-activity relationship (QSAR) model revealed the relationship between the predicted and observed year for (a) training set; (b) 
test set soil parameters. 
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CONCLUSION 
 

The quality assessment will assist to determine soil variables 
for the development of ‘minimum datasets’ (MDS) involved in 
determining the quality thresholds set for each biological soil 
quality indicator depending on the impact of anthropogenic 
activities or land degradation over time. The multivariate 
predictive modeling based on ANN-GA was designed using 
different soil variables to validate the network generalization to 
predict the time period required for mine spoil restoration. The 
study indicated that ANN based predictive model is considered 
as powerful tool in predicting the consolidation parameters 
more accurately. About 14 parameters were selected as input 
soil variables based on genetic function approximation, which 
influence mine spoil genesis in different age series iron mine 
spoil over time reflecting mine soil restoration. The proposed 
ANN model revealed that (i) ANN model with 14-11-1 
structure was recognized as the best model for predicting the 
time period required for mine spoil restoration. The validity of 
the developed model was confirmed by higher calculated value 
of squared correlation coefficient determination (r2 = 0.999) 
and lower root mean square error (RMSE = 0.194 kPa); (ii) the 
contribution analysis using input parameters on output and vice 
versa revealed that the soil variables used in ANN for the 
development of prediction model are highly interrelated. The 
study based on ANN predictive model determine the time 
period required for fresh iron mine overburden spoil to reach 
the soil features of the nearby forest soil shall take  38.319 
years. Therefore, the 14 soil variables can be used as the 
‘minimum datasets’ for monitoring mine spoil genesis to 
determine the pace and progress of mine spoil restoration 
pertaining to ecosystem sustainability.   
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