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INTRODUCTION
Let Tdenote the class of functions f(z) of the form
f@) =2z Yi,az a@q=0 (1)

which are univalent in the unitdisc U= {z:z€ and|z| <1}

Definition: A function f(z) € T is said to be close to convex of order 4 (0 < u < 1) if
Re{f'(z)} > uforallz€ U

A function f(z) € T is said to be in the subclass H (i) of starlike function if

zf (2)
Re(f(z))>u, zelU 0<su<1

Definition: A function f(z) €T is said to be in the subclass G (i) of convex function if

Zf,(2)>

Rell4+ ——— | >4, zeU

( f@ ) "

Definition: Letf(z) = z  Yp,arz¥, g2 =2z Yr,arz* a,= 0,by = 0 then the convolution is defined as

0

f(z) g2 =z Z ag bz (1.3.1)
k=2

Definition: 1f f and g are regular in U, we say that f is subordinate to g, denoted by f g or f(z)  g(2), if there exist a

Schwarz function w, which is regular in U with w(0) = 0 and |w(2)| < 1

z € Usuch that f(2) = g(w(2)), z € U . In particular if g is univalent in U , we have the equivalence

f(z) g(z)ifandonlyif f(0) = g(0) and f(U) c g(U)
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Definition: We say that a function f(z) € Tis in the class (4, B, a)if it satisfy
zf'(z) + az*f"(2) 1+ Az

azf'(z)+ (1 a)f(z) 1+Bz

for0<a<1, 1<B<A<1

e (1.5.1)

Furthermore a function f(z) € Tis said to belong to the class K (4, B, a)ifand only if zf'(z) € (4,B,a).

Theorem A function f(z) = z Yr_,a; 2%, a, =20 isin (A4,B,a) ifand only if
Dlk+ak® 2ak (1 @ [Ble+ak(e D) Ak+1 @fla, <@ B)
k=2

Corollary 1ff(z) € (A, B, a)then
(4 B)
ay <
k+ak? 2ak (1 a) [B(k+ak(k 1)) A(ak+1 o]

and the equality holds for

A B
f(@2) =1z ( ) z*
k+ak? 2ak (1 a) [B(k + ak(k 1)) A(ak + 1 a)]
Theorem: A function f(z) = z Yr_,ayz5, a,=0 isinK (A4,B,a) ifandonlyif

Z{[kzm 20) +ak® k(1 a)] A ak* k(1 a)] B[K2+ak’(k Dlax<(4 B)
k=2

Corollary Iff (z) € K (4, B, @) then

(4 B)
[k2(1 2a)+ak® k(1 «)] Al ak? k(1 a)] B[k?+ak?(k 1)]
and the equality holds for

f(2)=z

akS

(A B)
[k2(1 2a)+ak® k(1 a)] A[ ak? k(1 a)] B[k*+ ak?(k 1)]Z

Partial Sums

k

Following the earlier works by G. Murugusundaramoorthy, T. Rosy and K. Muthunagai [1] on partial sums of regular function . In
this section we obtain lower bounds for the ratios of Ref (z) to f,,(z) and f'(z) to f 'k (2)

Theorem Letf(z) = z+ Yp_,a, 2z, f(z) € (4, B, a)and define the partial sums f; (z)and f,(z), by

fi(@) = zandf,(2) =z + YR, ap 25 ne /13y (2.1.1)

Suppose also that
Y= belal<1 (2.1.2)

Where
{k+ak? 2ak (1 a) [B(k+ak(k 1)) Al(ak+1 a)]}

bie = A B

Then € (A4, B, ). Furthermore,

f(2) 1
Re{fn(z)}>1 b, 'ZEUME e (2.1.3)

And
Re {fn(z)} L (2.1.4)

f(2) 1+bntq
Proof-1t is easily seen that f;(z) € (4,B,a)and f € (4,B,a)
Next, for coefficient b,, we can verify that

sy > by > 1.....(2.1.5)

By setting

1(2) = bn+1{% (1 bn1+1)}
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14 bni1 Xi=n+1 aka_1
1+ Y0, a,zk 1
We write
1(2) 1| b1 Zi=n+1lakl
1@+ 17 2 2¥ilak]l  bpyr Xionaqlal
12 1 <1
1@ +1
if

bpi1 Xie=n+1laxl <1
2 ZZlezlakl byiq Zk n+1|ak| -

Which is equivalent to
n 00

Dl +bay Y lal <1

k=2 k=n+1

It is sufficient to show that the left hand side of (2.1.7) is bounded by Y%, by ay
Which is equivalent to

Z(bk 1a + Z (b brs1)ax =0

k=n+1

This complete the proof of (2.1.3). In order to see that

n+1

f@=z+
bn+1 .
Gives the sharp result, we observe that for z = re™/™
f(@) " 1
lim = lim (1 + ) =1
Zﬂl_f%(Z) z-1- b1 b1
Similarly If we define

2(2) = (14 bpya) {?((Z)) (1 %)}

(1 + bpy1) Tiomnsr Az
1+ Y5 ,azk 1
< (1 4+ bps1) Xi=ns1laxl
T2 2Xkoolal (U bpyq) Xi_piala]l T

This last inequality is equivalent to

2(2) 1

NOES! =1

n 0

z g+ byiq Z G <1....(2.18)

k=2 k=n+1

It is sufficient to show that the left hand side of (2.1.8) is bounded by Y%—, by, ax
Which is equivalent to

Z(bk 1a + Z (b brs1)ax =0
k=n+1

Th1s complete the proof of (2.1.4).
Theorem Iff (z) = z + Y5, a, z¥ suchthat f(z) € (4, B,a).Then

f'(2) n+1
Re {f'n(z)} =>1

bn+1

Proof: By setting

. (2.2.1)
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_ f'(2) n+1
H(z) = byyy {m (1 — )}

b © _
_q +n7f:11 Yie=n+1 kagz"!
N 1 + Z’,;lzz kaka_l

b w
|H(z) 1| nTﬁZk=n+1k|ak|
H 1|~ b ©
@O+ 2 23, kal 2223, k]

Now
H
H 1|
H(z)+1

Zklak|+ n1 Z Kla| <1

Smce the left hand s1de of (2.2.2) is bounded above by Y.5_, by |a;| if

Z(bk 1) la | + Z (bk n”“ kla k|)>o ..(223)

k=n+1

This completes the proof. The result is sharp for

Zn+1
f@=z+
bn+1
Theorem Iff (z) = z + Y-, a; z¥ suchthat f(z) € (4,B,a).Then
z b,
Re fa@ e e (23.1)
f'(@ n +1+ by

PROOF: By setting
H(z) = [(n+ 1) + bys4] {

f.@ bpy1
f(@ n+1+byy,

Bris ) v _
(L4 75%) B ket

-1
1 + 22:2 kaka_l
bn+1 o0

‘H(z) 1’ (1+n+1)2k=n+1k|ak|
HD +1| = b

@O+ 2 23, kal (1+2)50, . Kl
Now
H
H@ 1 _
H(z)+1
If
Zklak|+(1+ "“) Z Klag] <1 ... (232)

k=n+1

Since the left hand side of (2.3.2) is bounded above by Y.%—, by |a;| if

n

Z(bk 1) la| + i (bk (1+ bn+1)k|ak|) e (233)

k=2 k=n+1

This completes the proof.

Weighted Mean, Arithmetic Mean and Linear Combination

..(22.2)

Following the earlier works by W.G.Asthan, H.D. Mustafa and E.K.Mouajeeb[2] weighted mean, arithmetic mean and linear

combination of regular function.

Definition: Letf, g € (A, B, ) then the weighted mean wyg of fand g
is defined as
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1
Wrg =§[(1 Of@+A+tg@)],0<t<1

Definition: Letf;(z) = z
i=123,..,m) is defined by

1 m
9@ = =3 @)

Definition: Letf;(z) = z
(i=12,3,..,m) is defined by

G(z) = Xl kifi(2) , where T2 k; =1
Theorem Letf, g €
Proof: By DEFINITION 3.1, we have

1
wrg =510 Of@) +(1+0g(2)]
=%[(1 t)(z Zakzk>+ (1+t)<z Zbkzk>]
. k=2 k=2
=z ;%[(1 ax + (1 +t)b,] z* .......(3.1.1)
Since ,g € (4, B,a) so by THEOREM 1 we have

Dfk+ak® 2ak (1 @ [Bletak(k 1) Alak+1
k=2

And

Dle+ak? 20k 1 @ [Ble+tak(k 1) Aak+1
]"i“zhzerefore

Dle+ak? 20k 1 @ [Ble+tak(k 1) Aak+1
k=2

:%(1 t)kzz{k+ak2 2ak (1 a) [B(k+ak(k 1))

Y=z a; z* i =1,2,3,..,m be the functions in the class

Y=z a; z* ,i=1,2,3,...,m be the functions in the class

A, B, «). Then the weighted mean w¢, of f and is also in the class
g fg g

a)]}ak <@ B)

a)]}bk <(A B)

(A, B, @) then the arithmetic mean of f; (

(4, B, @) then the linear combination of f;

(A,B,a).

1
)|} 3 (1 Bag+ (1 +t)b]

A(ak +1

a)]}ak

+%(1+t)2{k+ak2 22k (1 a) [B(k+ak(k 1)) A(ak+1 a)]}bks%m (4 B)+%(1+t)(A B)

k=2
=A B
Therefore
ng €
Hence the proof of theorem is completed.

Theorem Letf;(z) = z
i=123,..,m) is defined by

g(z) = i m. fi(z)isalso intheclass (4,B,a)

Proof: Sincef;(z) = z
Therefore

ko _
k=2 iz, i=123,..,m

(A, B,a)

Y=z a; g z*¥ i =123, .., m be the functions in the class

(A, B, @) then the arithmetic mean of f; (
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m
=1

- (1
_ = , k
=z Z(mzal’k>z
k=2

i
Wehave f;(z) = z  Yp—, a2z, i=123,..,mareintheclass (4,B,a)
So by THEOREM 1 we prove that

Z{k +ak? 2ak (1 a) [B(k+ak(k 1)) A(ak+1 )]} (EZ ai‘k>
k=2

i=1

=%Z<Z{k+ak2 2¢k (1 a) [Blk+ak(k 1)) A(ak+1 a)]}ai'k>
i=1 \k=2

1 m
<—>@ By=4 B
me
Hence the proof of theorem is completed .

Theorem Letf;(z) = z Y-, Qix z¥ i =1,2,3,...,m be the functions in the class (4, B, @) then the linear combination of f; (
i=123,..,m) is defined by

G(z) = X kifi(z), where »72, k; = 1isalsointheclass (4,B,a)
Proof Let fi{(z) = z  Yp—,a;,z",i =123, .., mbe the functions in the class (4, B, a)
so by THEOREM 1 we have

Dle+ak? 20k 1 @ [Ble+tak(k 1) AG@k+1 @l <@ B
k=2
6@ = ) kifi@)

i=1

G(z) = iki <Z iai‘kzk)

i=1 k=2
0 m
G(z)=z Z <z kiai‘k> zk
k=2 \i=1

So by THEOREM 1 we prove that

0

(k+ak? 2ak (1 ) [B(k+ak(k 1)) Alak+1 a)]}(Zkiai‘k>
2 i=1

k=

ki<2{k+ak2 20k (1 a) [Blk+ak(k 1) Alak+1 a)]}ai‘k>

k=2

>
iT=n1
=2
i=1
Hence the proof of theorem is completed.
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