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In this paper, an iterative procedure integrated with Beal's method is given to solve the fractional 
linear programming problem (FLPP). The standard procedures for solving the FLPP are quite 
complex and monotonous to obtaining the optimum solution. To avoid this complexity of standard 
procedures, the proposed iterative procedure can be used to solving any FLPP easily in a minimum 
number of iterations. The solution step of proposed iterative procedure to solve FLPP is illustrated 
with the numerical examples. 
 
 
 
 
 
 
 

 
  

  
 
 

 

 
 

 
 

 

 
 

 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
  

 
 
 

INTRODUCTION  
 

Fractional linear programming (FLP) problem is a special kind 
of non-linear programming problem in which the objective 
function is a ratio of linear functions and the constraints are 
linear functions. Because of its applications in real life 
situations, it can be found in several important fields such as 
finance, industrial, corporate, health care, hospital and 
production planning. It has got a substantial research and 
interest of many researchers. In the literature, several methods 
(Cooper and Charnes, 1962; Bitran and Novaes, 1973; 
Grandforoush, 1983) were recommended for solving this 
problem. Tantawy, (2008) proposed an iterative method based 
on the conjugate gradient projection method for solving FLP 
problem. Jeflea, (2003) presented several algorithms to solve 
non-linear fractional programming problem and suggest some 
new exact algorithms or heuristic procedures for problems 
formulated by means of fractional programming. Proposed a 
new method namely, denominator objective restriction method 
for finding an optimal solution to linear fractional 
programming problems Pandian and Jayalakshmi, (2013) 
construct two linear programming problems from the given 
linear fractional programming problem such that one is of 
maximization type and the other is of minimization type. 
Tantawy, (2013) present a new feasible direction method to 

find all efficient extreme points for bi-criterion linear fractional 
programming problems and the method is based on the 
conjugate gradient projection method. An initial feasible point 
is used to generate all efficient extreme points for this problem 
through a sequence of feasible directions of movement. 
Recently, Ahmed and Mishra, (2015) present a transformation 
method for solving linear fractional programming problem 
when the objective function is ratio function and the set of 
constraints is in the form of linear inequality. A new homotopy 
perturbation method is used by Das and Mandal, (2015) to find 
the exact solutions for the system of linear fractional 
programming problem with equality constraints. Saha et al., 
(2015) develop a new technique for solving linear fractional 
programming problem by converting it into a single linear 
programming problem, which can be solved by using any type 
of linear fractional programming technique. 
 

In this paper, we have given an iterative algorithm for solving 
different types of single objective FLPP, bi-objective FLPP, 
and multi-objective FLPP. Also, the proposed iterative 
algorithm integrated with Beale's method has been used to 
solving the Multi-objective FLPP. The Beale's method is 
generally used to solving the non-linear programming 
problems with linear constraints. Numerical examples are 
given to illustrate the advantages of the proposed work over the 
other existing algorithm. 
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The remaining contents of this article are presented in different 
sections. Section 2, contains the statement or proposed 
technique related to the defined problem has been given. In, 
Section 3, a multi-iterative algorithm for solving the problem 
has been given. The numerical example has been illustrated in 
Section 4 which includes different types of FLP problem. 
Finally, analysis of the solution and concluding remarks has 
been presented in Section 5. 
 

Statement of the Problem 
 

Consider the modelling of a complex system where several 
fractional objectives are to be optimized at a time to get the 
optimal result. The general form of multi-objective fractional 
linear programming (MOFLP) problem function 
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Using (3), Objective function can be expressed as a function of 
non-basic variables as  
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where  ,  
are the constant terms and R

T xp , R
T xd  are 

the linear part. 

 The basic feasible solution Bx
 
and the corresponding value of 

the objective function are obtained by putting 0Rjx  , 

mnj  ,...,2,1  
in equation (3) & equation (4) respectively. 

Use Dinkelbach (1967) transformation method that reduces the 
solution of a problem to the solution of a sequence of linear 
programming problems. 
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Theorem 1: Transformation of FLP problem to LP problem 
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This means that vector x  is an initial optimal solution of the 

FLP problem 
 
Algorithm 
 
Step1:Optimise fractional objectives and marked with

      
1 2

1 1 1
, ,...,

k
Z Z Z , subject to linear constraints. 

Step2:Convert the FLP problems into standard form by 
introducing the slack variables. 

Step3: Express the constraints in terms of non-basic variables.  

Step4: Find the initial solution of 
      
1 2

1 1 1
, ,...,

k
Z Z Z .  

Step5: Convert the FLP problem into a linear form by using the 
Theorem (1).  

Step6:After converting the FLP problem into a linear form 

(expressed by  pF x ), check whether the initial 

solution is optimal or not. 
Step7: Differentiate the linear form of FLP problem by non-

basic variables. If the differentiating value of a linear 
form of FLP problem is negative then STOP. It will be 
our optimal solution, otherwise, goto next step. 

Step8: Consider the maximum value of the differentiating 
function and the non-basic variable corresponds to that 
maximum value becomes basic. 

Step9: While transforming the non-basic variable into the basic 
variable, we have to find the minimum value at which 
basic variable transformed into non-basic variable 
through the set of constraints defined earlier in terms of 
non-basic variables. 
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Step10: Now we have a new set of basic and non-basic 

variables put these variables in  p
iZ . 

Step11: Find the next initial solution of FLP problem with new 
constraints and convert it into linear form and check 
whether it is optimal or not and go to step (5). 

 

Numerical Illustration 
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where 0, 43 xx  are slack variables. 

Now, express the basic variables in terms of non-basic 
variables 
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
































25

20

0

0

4

3

2

1

x

x

x

x

x     with 
   1 1

1 26 / 5 & 5 / 7Z Z   

 

Now by using the Theorem of Linearization, we have 
 

 1 1 2

9 101

7 35
F x x x 

                 
(16) 

 

Optimality check: Differentiating (16) w.r.t. 1x and 2x , we get 

 1

1

9 / 7
F x

x





&

 1

2

101/ 35
F x

x





 

   1 1

1 2

max , max(9 / 7, 101 / 35) 101 / 35
F x F x

x x

  
  

  
 

Thus 2x will become basic with a value of  52 x  and 4x
will become non-basic. 
 (15) becomes 

2 1 4

3 1 4

3 1
5

5 5

26 2
30

5 5

x x x

x x x


   


  


    

                 

 (17) 

Now, putting the value of the basic variable in (14), we get 
 

 

 

2 1 4
1

1 4

2 1 4
2

1 4

21 21 5 3 / 5

15 19 / 5 2 / 5

20 1 / 5 3 / 5

12 2 / 5 1 / 5

x x
Z

x x

x x
Z

x x

  
   


  

      

(18) 

 

Then the second initial solution of the BOFLP problem, will be 













































0

30

5

0

4

3

2

1

x

x

x

x

x with 
   2 2

1 2

21 20
&

15 12
Z Z   

Now again by using the Theorem of Linearization, we have 
 

 2 1 4

119 23

75 75
F x x x


  

    

(19) 

 

Optimality check: Differentiating (19) w.r.t 1x and 4x , we get 

 2

1

119
0

75

F x

x


  


&

 2

4

23
0

75

F x

x


  


 

 

By linearizing  2F x , we get the optimal solution of the 

BOFLP problem. 
 

The solution of the above BOFLP problem is 5,0 21  xx

with 3/5&5/7 *
2

*
1  ZZ

 
 

Multi – Objective FLP problem 
 

   
 

   
 

   
 

1 1 1 2
1

1 1 2

1 1 1 2
2

1 1 2

1 1 1 2
3

1 1 2

1 2 1 2 1 2

2 3
max

7

3
max

2 5

2
max

3 4

3 4; 1; , 0

p x x x
Z

d x x x

p x x x
Z

d x x x

p x x x
Z

d x x x

x x x x x x


  

  

  

  


  
 


     

            

           

           

s.t.   

              

   (20) 

 

Converting the FLP problem into standard form, we get 
 

   
 

   
 

   
 

1 1 1 2 3 4
1

1 1 2 3 4

1 1 1 2 3 4
2

1 1 2 3 4

1 1 1 2 3 4
3

1 1 2 3 4

1 2 3 4

1 2 3 4

1 2

2 3 0 0
max

0 0 7

3 0 0
max

2 0 0 5

2 0 0
max

3 0 0 4

3 0 4;

0 1;

, , , 0

p x x x x x
Z

d x x x x x

p x x x x x
Z

d x x x x x

p x x x x x
Z

d x x x x x

x x x x

x x x x

x x x x

  
  

    

  
 

   

  
 

   

   

   



s.t.

    

              












  

(21) 

 

where 0, 43 xx are slack variables. 

Now, express the basic variables in terms of non-basic 
variables 
 

3 1 2

4 1 2

4 3

1

x x x

x x x

   


     
                  

 (22) 

 

Let the first initial solution of the MOFL problem (21) will be 

     

1

1 1 12

1 1 1

3

4

0

0
with 0, 0 & 0

4

1

x

x
x Z Z Z

x

x

   
   
       
   
    

    
 

Now by using the Theorem of Linearization, we have 
 

 1 1 25 7F x x x 
 
                   (23) 

 

Optimality check: Differentiating (23) w.r.t. 1x and 2x , we get 
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 1

1

5
F x

x





 

&
 1

2

7
F x

x





 

   
 1 1

1 2

max , max 5,7 7
F x F x

x x

  
  

  
 

 

Thus, 2x will become basic with a value of  12 x  and 4x
will become non-basic. 
 

 (22) becomes 

2 1 4

3 1 4

   1

3 2

x x x

x x x

   


                                                   

 (24) 

 

Now, putting the value of the basic variable in (21), we get 
 

 

 

 

2 1 4
1

1 4

2 1 4
2

1 4

2 1 4
3

1 4

3 3

8 0

3 2 3

6

1

7 2 3

x x
Z

x x

x x
Z

x x

x x
Z

x x

 
 

  
 

 
  

 
 

       

(25) 

 

Let the second initial solution of the MOFLP problem , will be 
 

     

1

2 2 22

1 2 3

3

4

0

1 3 3 1
with ,  &

3 8 6 7

0

x

x
x Z Z Z

x

x

   
   
       
   
    

  

 

 

Now again by using the Theorem of Linearization, we have 
 

 2 1 4

31 367

4 56
F x x x


 

                  
 (26) 

 

Optimality check: Differentiating (26) w.r.t. 1x and 2x , we get 

 2

1

31
0

4

F x

x


  


 

&
 2

4

367
0

56

F x

x


  


 

 

By linearizing  2F x , we get the optimal solution of the 

MOFLP problem. 
 

The solution of the above MOFLP problem is 0,1 21  xx

with * * *
1 2 33 / 8,  1 / 2 ,  2 / 5Z Z Z     

 

CONCLUSION 
 

In this paper, we have given an iterative procedure for solving 
FLP problem.  
 
 
 
 
 
 

This solution procedure is based on the concept of Beale’s 
method which is frequently applied for solving nonlinear 
programming problem with linear constraints. Numerical 
results are been presented also to indicate that algorithm could 
solve reasonably large size problems in minimum numbers of 
iteration with minimum computational time. Thus, it has been 
concluded that Beale’s method provides an optimal solution in 
the minimum number of iterations. Because of its simplicity, 
anyone can easily adopt this method to obtain the optimal 
solution for the fractional problem. The proposed iterative 
procedure can easily solve the single as well as multi-objective 
FLPP. The proposed iterative procedure is can easily solve the 
single as well as multi-objective FLPP. This unique feature of 
the proposed work is made it more useful over the other 
existing algorithms. 
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