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polynomials in 1906-7 in connection with his study of the
Picard’s theorem and proved that every trinomial

INTRODUCTION

Regarding a bound for all the zeros of a polynomial, Cauchy[1]
(see also [5],[6],[8]) proved the following famous result known
as Cauchy’s Theorem:

n
a,taz+a,z" ,aia, #0,n=>2

. . a . .
Theorem A. All the zeros of the polynomial has at least one zero in |Z| <2~ and every quadrinomial
n ) al
P(z)= Zajzj of degree n lie in the circle |Z| <l+M,
j=0 a,+a,z+a,z" +a,z",aa,a, #02<m<n
a.
= —/ 17|a
where M = max 0<j<n-1 : has at least one zero in |Z| <.
a, a,
Various generalizations, extensions and improvements of the ' '
above result are available in the literature. Q.G.Mohammad [7] in 1967 proved the following theorem:

An important class of polynomials is that of the lacunary type

: Theorem B. All the zeros of the polynomial
i.e. of the type

n
P(z)= a .z’ of degree n lie in the circle
P2)=a,+az+...+a,z" +a,z" +a,z" +......+a, 2", (2) ]Z; J g
where

1
- . zl<max(L,,L »
O0<p=ny<n <n<...<ngaa,a,da,...da, #0 | | (L, L,n)

pn g
, the coefficients @ ; 0<j<p, are fixed, where
a,,j=L12,...,k are arbitrary and the remaining LI a; poL
! L =nt — 7
coefficients are zero. Landau[3,4] initiated the study of such P {, Al 3
= n
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11
p>1,g>1with —+—=1,
P 9

Gulzar [2] recently proved the following result:

Theorem D. All the zeros of the polynomial

P(Z) = Zajzj ,a,da, | #* 0 of degree n lie in the circle

1
|z| < max(L, LE)

where

7oL
I = (n+1) {Z a,. nj_zanan—j—l§ }p,

n

I 1
p>l,g>1and —+—=1.
p q

Main Results

In this paper we prove the following generalization of Theorem
D:

Theorem 1. All the zeros of the polynomial

A

P(z) = Zajz’ +a,z",a,a, #0,0<A<n—10f
j=0

degree n lie in the circle

1

|z| <max(L, Lﬁ)

where
1 P
< |a/1a/17, ana,17,71| »
L=(n+1)"{] - V7,
]:O‘ an ‘
1 1
p>l,g>land —+—=1.
P 4

Remark. Choosing A =n—1 in Theorem 1, we get the
following result which is equivalent to Theorem B:

Corollary 1. All the zeros of the polynomial
P(z)= Zajzj ,a,a, , # 0 of degree n lie in the circle
j=0

1
|z| <max(L, Lﬁ)

where

n—1

a

P o1
—a.a |

nn—j— 2‘ };(a—l :0),

nlnjl

L=m+1)"{

!=0‘ n

1 1
p>l,g>land —+—=1.
P 4

Proof of Theorem 1

Consider the polynomial

F(z)=(a, —a,2)P(z)

=(a,-a,z)a,z"+a,z" +....+az+a,)

2 _n+l

=-a,’z"" —a,a,z"" +(a,a, —a,a, )z" +(a,a, , —a,a, ,)z"" +..
+.nt(aa, —a,a,)z+a,a,
) A+l
_ n+l _ A+l=j
=-a,z + Z(a/la/l+l—j a,a, ;)z .
Jj=0

Hence

|F(z)| > ‘anzuzrm

A+1 .
A+l—j
- Z‘alaﬂﬂ—j —-a,a; ; HZ|
Jj=0

n+1[l_z| PLyIE J —a,d;_ /|. 1 ]

n—-A+j
a, |z

Applying Holder’s inequality, we get

‘F > A+1]_7ll/ %lﬂ 1 l
@)z a,’ |7 —) (Z —)]

n+1 (z

n

1
Now if L >1, then max(L, L") = L . Hence for |Z| >1so

that |Z (n=2+j)q > |Z|(1+j)q > |Z|q
. 1 1
ie. —|Z R > W
IF(2)| 2, |2 G “ 8 p)%.i]
a,’ 4
A |ﬂz+1j aaﬂj|pi1
>la [1-(n+1)7 (Z ) —]
I
_ n+1[1__] > O
4
if
|z| > L.

Thus all the zeros of F(z) lie in |Z| < L in this case.
1 €
If L <1, then max(L, L") = L"" . Hence, for |Z| <lso

(n=2+j)q (n+l)g

that |z

Z|z

1 1

(n=A+j)q _| (n+l)g ~’
Z

ie.

|z

[F)2a

e ay,,—aa, | L 1
- um%j : “;2 % )"-| Z|<,,+1>q]

n
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