

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 8, Issue, 3, pp. 15873-15875, March, 2017 International Journal of Recent Scientific Re*r*earch

DOI: 10.24327/IJRSR

Research Article

BOUNDS FOR THE ZEROS OF A POLYNOMIAL

M.H. Gulzar

Department of Mathematics, University of Kashmir, Srinagar

the bound given by Cauchy's classical theorem.

DOI: http://dx.doi.org/10.24327/ijrsr.2017.0803.0024

ARTICLE INFO

ABSTRACT

Article History:

Received 15th December, 2016 Received in revised form 25th January, 2017 Accepted 23rd February, 2017 Published online 28th March, 2017

Key Words:

Coefficients, Polynomial, Zeros.

Copyright © **M.H. Gulzar, 2017**, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Regarding a bound for all the zeros of a polynomial, Cauchy[1] (see also [5],[6],[8]) proved the following famous result known as Cauchy's Theorem:

Theorem A. All the zeros of the polynomial
$$P(z) = \sum_{j=0}^{n} a_j z^j$$
 of degree n lie in the circle $|z| < 1 + M$,

where $M = \max_{0 \le j \le n-1} \left| \frac{a_j}{a_n} \right|$

Various generalizations, extensions and improvements of the above result are available in the literature.

An important class of polynomials is that of the lacunary type i.e. of the type

 $P(z) = a_0 + a_1 z + \dots + a_p z^p + a_{n_1} z^{n_1} + a_{n_2} z^{n_2} + \dots + a_{n_k} z^{n_k},$ where

0 $, the coefficients <math>a_j, 0 \le j \le p$, are fixed, $a_{n_j}, j = 1, 2, \dots, k$ are arbitrary and the remaining coefficients are zero. Landau[3,4] initiated the study of such polynomials in 1906-7 in connection with his study of the Picard's theorem and proved that every trinomial

$$a_0 + a_1 z + a_n z^n, a_1 a_n \neq 0, n \ge 2$$

In this paper we find a bound for all the zeros of a polynomial in terms of its coefficients similar to

has at least one zero in $|z| \le 2 \left| \frac{a_0}{a_1} \right|$ and every quadrinomial

$$a_0 + a_1 z + a_m z^m + a_n z^n, a_1 a_m a_n \neq 0, 2 \le m < n$$

has at least one zero in $|z| \le \frac{17}{3} \left| \frac{a_0}{a_1} \right|$.

Q.G.Mohammad [7] in 1967 proved the following theorem:

Theorem B. All the zeros of the polynomial

$$P(z) = \sum_{j=0}^{n} a_j z^j \text{ of degree n lie in the circle}$$
$$|z| \le \max(L_p, L_p^{\frac{1}{n}})$$

where

$$L_{p} = n^{\frac{1}{q}} \left\{ \sum_{j=0}^{n} \left| \frac{a_{j}}{a_{n}} \right|^{p} \right\}^{\frac{1}{p}},$$

*Corresponding author: **M.H. Gulzar**

Department of Mathematics, University of Kashmir, Srinagar

p>1,q>1 with $\frac{1}{p} + \frac{1}{q} = 1$.

Gulzar [2] recently proved the following result:

Theorem D. All the zeros of the polynomial $P(z) = \sum_{i=0}^{n} a_{j} z^{j}, a_{n} a_{n-1} \neq 0 \text{ of degree n lie in the circle}$ $|z| \le \max(L, L^{\frac{1}{n+1}})$

where

$$L = (n+1)^{\frac{1}{q}} \left\{ \sum_{j=1}^{n} \left| \frac{a_{n-1}a_{n-j} - a_n a_{n-j-1}}{a_n^2} \right|^p \right\}^{\frac{1}{p}},$$

p>1,q>1 and $\frac{1}{n} + \frac{1}{a} = 1.$

Main Results

In this paper we prove the following generalization of Theorem D:

Theorem 1. All the zeros of the polynomial $P(z) = \sum_{j=0}^{\lambda} a_{j} z^{j} + a_{n} z^{n}, a_{\lambda} a_{n} \neq 0, 0 \le \lambda \le n - 1, \text{of}$

degree n lie in the circle

$$\left|z\right| \le \max(L, L^{\frac{1}{n+1}})$$

where

$$L = (n+1)^{\frac{1}{q}} \left\{ \sum_{j=0}^{\lambda} \left| \frac{a_{\lambda} a_{\lambda-j} - a_n a_{\lambda-j-1}}{a_n^2} \right|^p \right\}^{\frac{1}{p}},$$

p>1,q>1 and $\frac{1}{p} + \frac{1}{q} = 1.$

Remark. Choosing $\lambda = n - 1$ in Theorem 1, we get the following result which is equivalent to Theorem B:

Corollary 1. All the zeros of the polynomial

$$P(z) = \sum_{j=0}^{n} a_j z^j, a_n a_{n-1} \neq 0 \text{ of degree n lie in the circle}$$

$$|z| \le \max(L, L^{\frac{1}{n+1}})$$

where

$$L = (n+1)^{\frac{1}{q}} \left\{ \sum_{j=0}^{n-1} \left| \frac{a_{n-1}a_{n-j-1} - a_n a_{n-j-2}}{a_n^2} \right|^p \right\}^{\frac{1}{p}} (a_{-1} = 0),$$

p>1,q>1 and $\frac{1}{p} + \frac{1}{q} = 1.$

Proof of Theorem 1

Consider the polynomial

$$F(z) = (a_{\lambda} - a_n z)P(z)$$

$$= (a_{\lambda} - a_{n}z)(a_{n}z^{n} + a_{\lambda}z^{\lambda} + \dots + a_{1}z + a_{0})$$

= $-a_{n}^{2}z^{n+1} - a_{\lambda}a_{n}z^{\lambda+1} + (a_{\lambda}a_{\lambda} - a_{n}a_{\lambda-1})z^{\lambda} + (a_{\lambda}a_{\lambda-1} - a_{n}a_{\lambda-2})z^{\lambda-1} + \dots$

+.....+
$$(a_{\lambda}a_{1} - a_{n}a_{0})z + a_{\lambda}a_{0}$$

= $-a_{n}^{2}z^{n+1} + \sum_{j=0}^{\lambda+1} (a_{\lambda}a_{\lambda+1-j} - a_{n}a_{\lambda-j})z^{\lambda+1-j}$.

Hence

$$|F(z)| \ge |a_n|^2 ||z|^{n+1} - \sum_{j=0}^{\lambda+1} |a_\lambda a_{\lambda+1-j} - a_n a_{\lambda-j}||z|^{\lambda+1-j}$$
$$= |a_n|^2 ||z|^{n+1} [1 - \sum_{j=0}^{\lambda+1} |\frac{a_\lambda a_{\lambda+1-j} - a_n a_{\lambda-j}}{a_n^2}| \cdot \frac{1}{|z|^{n-\lambda+j}}]$$

Applying Holder's inequality, we get

$$|F(z)| \ge |a_n^2||z|^{n+1} [1 - (\sum_{j=0}^{\lambda+1} \left| \frac{a_{\lambda}a_{\lambda+1-j} - a_n a_{\lambda-j}}{a_n^2} \right|^p)^{\frac{1}{p}} . (\sum_{j=0}^{\lambda+1} \frac{1}{|z|^{(n-\lambda+j)q}})^{\frac{1}{q}}]$$

Now if $L \ge 1$, then $\max(L, L^{\frac{1}{n+1}}) = L$. Hence for $|z| \ge 1$ so that $|z|^{(n-\lambda+j)q} \ge |z|^{(1+j)q} \ge |z|^{q}$ i.e. $\frac{1}{|z|^{(n-\lambda+j)q}} \ge \frac{1}{|z|^{q}}$, $|F(z)| \ge |a_n^2| |z|^{n+1} [1 - (\lambda + 2)^{\frac{1}{q}} (\sum_{j=0}^{\lambda+1} \left| \frac{a_\lambda a_{\lambda+1-j} - a_n a_{\lambda-j}}{a_n^2} \right|^p)^{\frac{1}{p}} \cdot \frac{1}{|z|}]$ $\geq \left|a_{n}^{2}\right| \left|z\right|^{n+1} \left[1 - (n+1)^{\frac{1}{q}} \left(\sum_{i=0}^{\lambda+1} \left|\frac{a_{\lambda}a_{\lambda+1-i} - a_{n}a_{\lambda-i}}{a_{n}^{2}}\right|^{p}\right)^{\frac{1}{p}} \cdot \frac{1}{|z|}\right]$ $= \left| a_n^{2} \right| \left| z \right|^{n+1} \left[1 - \frac{L}{|z|} \right] > 0$ if |z| > L.

Thus all the zeros of F(z) lie in $|z| \le L$ in this case.

If $L \leq 1$, then $\max(L, L^{\frac{1}{n+1}}) = L^{\frac{1}{n+1}}$. Hence, for $|z| \leq 1$ so that $\left|z\right|^{(n-\lambda+j)q} \ge \left|z\right|^{(n+1)q}$

i.e.
$$\frac{1}{|z|^{(n-\lambda+j)q}} \ge \frac{1}{|z|^{(n+1)q}}$$
,
 $|F(z)| \ge |a_n^2||z|^{n+1} [1 - (\lambda+2)^{\frac{1}{q}} (\sum_{j=0}^{\lambda+1} \left| \frac{a_\lambda a_{\lambda+1-j} - a_n a_{\lambda-j}}{a_n^2} \right|^p)^{\frac{1}{p}} \cdot \frac{1}{|z|^{(n+1)q}}]$

$$\geq \left|a_{n}^{2}\right|\left|z\right|^{n+1}\left[1-(n+1)^{\frac{1}{q}}\left(\sum_{j=0}^{\lambda+1}\left|\frac{a_{\lambda}a_{\lambda+1-j}-a_{n}a_{\lambda-j}}{a_{n}^{2}}\right|^{p}\right)^{\frac{1}{p}}\cdot\frac{1}{\left|z\right|^{n+1}}\right]$$
$$=\left|a_{n}^{2}\right|\left|z\right|^{n+1}\left[1-\frac{L}{\left|z\right|^{n+1}}\right]$$
$$> 0$$
if

 $\left|z\right| > L^{\frac{1}{n+1}}.$

Thus all the zeros of F(z) lie in $|z| \le L^{\overline{n+1}}$ in this case.

Since the zeros of P(z) are also the zeros of F(z), the theorem follows.

References

- 1. A.L.Cauchy, Exercises de mathematiques, IV Anne de Bure Freses, 1829.
- M.H.Gulzar, Bounds for Polynomial Zeros, International Journal of Advance Foundation and Research in Science and Technology (IJAFRSE), Vol.1 Issue 12, April 2015,20-25.
- 3. E.Landau, Ueber den Picardschen satz, Vierteljahrsschrift Naturforsch, Gesellschaft Zirich, 51(1906), 252-318.
- 4. E.Landau, Sur quelques generalizations du theorem de M.Picard, Ann. EcoleNorm. 24, 3 (1907), 17-201.
- M.Marden, the Geometry of the Zeros of a Polynomial in a Complex Variable, Math. Surveys No.3, AMS, Providence RI, 1949.
- G.V.Milovanovic, D.S. Mitriminovic, T.M. Rassias, Topics in Polynomials, Extremal Problems, Inequalities, Zeros, World Scientific Publishing Co., Singapore, 1994.
- 7. Q.G.Mohammad, Location of the Zeros of Polynomials, Amer. Math. Monthly, 74(1967), 290-292.
- 8. Q.I.Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press Inc., New York, 2002.
- ******

How to cite this article:

M.H. Gulzar.2017, Bounds For The Zeros of A Polynomial. Int J Recent Sci Res. 8(3), pp. 15873-15875.