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In this paper we find a bound for all the zeros of a polynomial in terms of its coefficients similar to 
the bound given by Cauchy’s classical theorem. 
 
 
 
 
 
 

 
 

  
 

 
 

 
 

 
 

 
 
 
 
 
 

 
 

 
 
 
 
 

 
 

 
 

 
 
 
 
 

 
  

 
 
 

 

INTRODUCTION  
 

Regarding a bound for all the zeros of a polynomial, Cauchy[1] 
(see also [5],[6],[8]) proved the following famous result known 
as Cauchy’s Theorem: 
 

Theorem A. All the zeros of the polynomial 
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Various generalizations, extensions and improvements of the 
above result are available in the literature. 
 

An important class of polynomials is that of the lacunary type 
i.e. of the type 
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, the coefficients pja j 0, , are fixed, 

kja
jn ,......,2,1,   are arbitrary and the remaining 

coefficients are zero. Landau[3,4] initiated the study of such 

polynomials in 1906-7 in connection with his study of the 
Picard’s theorem and proved that every trinomial 
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Q.G.Mohammad [7] in 1967 proved the following theorem: 
 
Theorem B. All the zeros of the polynomial  
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Gulzar [2] recently proved the following result: 
Theorem D. All the zeros of the polynomial 

0,)( 1
0

 


 nn

n

j

j
j aazazP of degree n lie in the circle     

),max( 1

1

 nLLz  

where  
 

p
n

j

p

n

jnnjnnq

a

aaaa
nL

1

1
2

11

1

}{)1( 


 
 , 

 

p>1,q>1 and .1
11


qp
 

 

Main Results  
 

In this paper we prove the following generalization of Theorem 
D: 
 

Theorem 1. All the zeros of the polynomial 
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Remark. Choosing 1 n  in Theorem 1, we get the 
following result which is equivalent to Theorem B: 
 

Corollary 1. All the zeros of the polynomial 
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Proof of Theorem 1 
 

Consider the polynomial  
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Applying Holder’s inequality, we get 
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Thus all the zeros of F(z) lie in Lz  in this case. 
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Thus all the zeros of F(z) lie in 1

1

 nLz in this case. 

Since the zeros of P(z) are also the zeros of F(z), the theorem 
follows. 
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