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ARTICLE INFO ABSTRACT

The increase of power transmission and interconnection of power system have led to an increasingly
complex system which has to be operated close to the limits of security/stability. The problems
related to voltage/transient instability have become a major concern for secure operation of many
power systems. Consideration of voltage/transient stability constraints in optimal power flow (OPF)
problems is increasingly important in the modern power systems operation. The OPF problem with
voltage/transient stability constraints is however a nonlinear optimization problem with both
algebraic and differential equations, which is difficult to be solved even for small power systems.
This paper develops a robust and efficient method for solving OPF problems with voltage/transient
stability constraints in the power system operation. The proposed method is based on differential
evolution (DE), which is a branch of evolutionary algorithms with strong ability in searching global
optimal solutions of highly nonlinear and non-convex problems. Numerical tests on the IEEE six-
generator, 30-bus system have demonstrated the robustness and effectiveness of the proposed
approach for solving optimal operation of power systems.

INTRODUCTION
Optimal power flow (OPF) is an important tool for power
system operators both in planning and operating stages. The
main purpose of an OPF program is to determine the optimal
operating state of a power system and the corresponding
settings of control variables for economic and secure operation.
Moreover, with increased loading of existing power
transmission systems, the problem of voltage stability and
voltage collapse, has also become a major concern in power
system planning and operation [1]. Therefore, it is necessary to
consider voltage stability indices in the OPF problem [2].

Transient stability testing for the optimal solution obtained
from the OPF has to be performed under all the credible
disturbances to ensure the system stability performance. If the
system is transiently unstable for any one of the disturbances,
the OPF solution is then modified by heuristic trial-and-error
methods based on engineering experience and judgment. Due
to the rapid increase of electricity demand, power systems tend
to operate closer to stability boundaries. The consideration of
the transient stability limit in the OPF problem is becoming
more and more imperative in the power system operation [3].

Many mathematical programming techniques such as nonlinear
programming (NLP), quadratic programming (QP), linear
programming (LP), Newton method, and interior point methods
(IPM) have been applied to solve the OPF problem
successfully. However, these classical optimization methods
are limited in handling algebraic functions and unable to
consider the dynamic characteristic such as the transient
stability performance in the optimization. Classical
optimization methods for OPF and OPF with transient stability
constraint problems are indeed suffering from the high
sensitivity problem of initial conditions. They may either
converge to local optimum solutions or, under some situations,
diverge in their solution processes.

Owing to the computational difficulties, the degree of freedom
in the objective functions and the types of constraints in OPF
problems such as transient stability limit are restricted. These
weaknesses can be solved by modern heuristic optimization
techniques such as evolutionary algorithms (EAs). As a new
branch of EA, differential evolution (DE) developed by Storn
and Price [4] has gained more and more attention recently due
to its strong ability in searching global optimal solution [5].
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In this chapter, in order to exploit the exploration and the
exploitation capabilities of DE, it is being proposed for solving
TSOPF problems. Numerical tests on the IEEE six-generator,
30-bus system have demonstrated the robustness and
effectiveness of the proposed approach for solving optimal
operation of power systems.

Formulation of Tsopf Problem

A standard OPF problem with transient stability constraint can
be formulated as follows:

Min )( xu,f (1)

Subject to 0)( xu,g (2)

0)( xu,h (3)

kTSI (4)

where u is the vector of control variables; and x is the vector
of dependent variables corresponding to u .

Objective function

The OPF problem has the following objective function:

Objective Function : Min TF    igiigii cPbPa 2 is

the cost of generation

where giP is the active power generation of unit i ; ii ba , and

ic are the fuel cost coefficients of unit i .

Constraints

The OPF problem has two categories of constraints:

Equality Constraints: These are the sets of nonlinear power
flow equations that govern the power system, i.e,

nlijiijijYjV
nb
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where giP is the real power generation at
thi bus, diP is the

real power demand at
thi bus, giQ is the reactive power

generation at
thi bus, diQ is the reactive power demand at

thi

bus, ijY is the admittance of the line connected between i and

thj bus, nb is the total number of buses, nl is the number of

load buses and ng is the number of generator buses in the

system.

Inequality Constraints: These are the set of constraints that
represent the system operational and security limits like the
bounds on the following:

generator voltages, real and reactive power outputs

ngiVVV gigigi ,,1,maxmin 

ngiPPP gigigi ,,1,maxmin  (7)

ngiQQQ gigigi ,,1,maxmin  (8)

voltage magnitudes at each load bus in the network

nliVVV lilili ,,1,maxmin  (9)

transformer tap settings

ntiTTT tititi ,,1,maxmin  (10)

reactive power injections due to capacitor banks

nciQQQ CiCiCi ,,1,maxmin  (11)

transmission lines loading

ntliSS lili ,,1,max  (12)

voltage stability index

nliLL jj ,,1,max  (13)

Equation (4) is the transient stability associated constraints,
implying that the system should maintain stability after the
contingency k .  Transient stability index (TSI) is the indicator
of the ability of a power system to maintain itself within the
stable domain of attraction and bring it back to a new stable
equilibrium.

Transient stability assessment

Transient stability assessment (TSA) is the evaluation of the
stability of a power system to withstand specified contingencies
by surviving the subsequent transient events and arrive at an
acceptable steady state operating condition [6]. Many advanced
methods have been developed for transient stability assessment.
These methods include time-domain simulation, transient
energy function (TEF) methods [7], and hybrid methods [8].
Most of the researches in OPF problems consider the transient
stability constraints through time domain simulation and
constrain the relative rotor angle within a predefined limit, for
example 100 degree [9] or  rad [10].

In this paper, the time-domain simulation, which is simple and
easy to implement is used. Time-domain simulation is
performed to calculate the generator rotor angles are calculated
to determine the system stability based on the results of time-
domain simulation, in which the detailed models can be
incorporated. The transient behavior of a ng -generator power

system is described by a set of differential and algebraic
equations as follows:

eimi
i

i PP
dt

d
M 

2

2
(14)
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(15)

where i


and i are rotor angle and angular speed of

generator i ; miP and are eiP the mechanical power input and
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electrical power output of generator i ; and iM is the moment

of inertia of generator i .

The center of inertia (COI) of a power system can be
represented by a linear combination of all generator rotor
angles as follows:





ng

i
ii

T
COI M

M 1

1
 (16)

where 



ng

i
iT MM

1

is the inertia of the center.

Then we have the rotor angle and speed in COI frame as
follows:

COIii   (17)

ii  
.

(18)

Thus the system equations with respect to the COI frame are
denoted here as
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where iPAC is the accelerating power of generator i .

Differential Evolution

The differential evolution algorithm evolves a population of NP
D–dimensional parameter vectors, which are called individuals
and encode the candidate solutions, i.e., = , , … . . , , , = 1, … . . , , towards the global
optimum. The initial population cover the entire search space
as much as possible by uniformly randomizing individuals
within the search space constrained by the prescribed minimum
and maximum parameter bounds = , … . . ,
and = , … . . , .
For example, the initial value of the ℎparameter in the ℎ
individual at the generation G=0 is generated by

, = + 0,1 ∙ − ,					 = 1,2,3, … . . ,
(21)

where 0,1 represents a uniformly distributed random
variable within the range [0,1].

Mutation Operation: After the generation of initial population,
the differential evolution algorithm employs the mutation
operation to produce a mutant vector , with respect to each
individual , , so-called target vector, in the current
population. For each target vector , at the generation, its
associated mutant vector , = , , , , … . , , is generated
by using any one of the following mutation strategies. The five
most frequently used mutation strategies implemented in the
differential algorithm are as follows:

“ / /1”

, = , + ∙ , − , (22)

“ / /1”:, = , + ∙ , − , (23)

“ / − − /1”:, = , + ∙ , − , + ∙ , − , (24)4)	“ / /2”:
, = , + ∙ , − , + ∙ , − , (25)

5) “DE/rand/2”:

, = , + ∙ , − , + ∙ , − , (26)

The indices , , , , are randomly generated and
mutually exclusive integers and are also different from the
index. These indices are randomly generated once for each
mutant vector. The F is a scaling factor and a positive control
parameter for scaling the difference vector. , 	is the best
individual vector with the best fitness value in the population of
a particular generation.

Crossover Operation: After the application of mutation
operation, crossover operation is applied to each pair of the
target vector , 	and its corresponding mutant vector , to
generate a trial vector: , = , , , , … . , , . In the basic
version, DE employs the binomial (uniform) crossover defined
as follows:

, = , , 	 0,1 ≤ 	( = )
, ,							 ℎ 																																																				 = 1,2, … . . , . (27)

In (7), the crossover rate CR is generally a specified constant
within the range [0, 1) and also controls the fraction of
parameter values copied from the mutant vector. is a
randomly chosen integer in the range [1,D]. The binomial
crossover operator copies the ℎ parameter of the mutant
vector , to the corresponding element in the trial vector ,
if 0,1 ≤ or = . Otherwise, it is copied from
the corresponding target vector , . The remaining parameters
of the trial vector , are copied from the corresponding target
vector , . The condition ensures that the trial vector, will be different from its corresponding target vector ,
by at least one parameter.

Selection Operation: If there are violations in a newly
generated trial vector which exceed the corresponding upper
and lower bounds, then randomly and uniformly reinitialize
them within the pre-specified range and the objective function
values of all trial vectors are evaluated. After that, a selection
operation is performed to obtain the best population. The
objective function value of each trial vector ( , ) is
compared with the corresponding target vector ( , ) of the
current population. If the trial vector has less or equal objective
function value than the corresponding target vector, the trial
vector will replace the target vector and it enters into the
population of the next generation. Otherwise, the target vector
will remain in the population for the next generation. The
selection operation is expressed by the following equation:
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, = , ,				 	 , ≤ ,, , ℎ 														 																																						(28)

The above procedure is repeated until some specific
termination criteria are satisfied.

Differential Evoltion Algorithm for Tsopf Problem

The differential evolution algorithm, which is based on the
principles of natural evolution, uses a population composed of

individuals to evolve over several generations to reach an
optimal solution. In this section the differential evolution
algorithm is applied to solve TSCOPF problem. In the
differential evolution algorithm several strategies are proposed
for the initialization, selection and assessment of solution
individuals in the population to reduce the computational time.
The flow chart of the proposed DE algorithm for solving the
TSCOPF problem is illustrated in Fig.1 This section will
explain it in detail.

Encoding the control variables in the individuals: The control
variables of the problem to be optimized are first identified
before applying the differential evolution algorithm to solve the
TSCOPF problem, and are embedded in the individuals of
differential evolution.  In our problem, the set of control
variables u are generator active power outputs except the
slack unit , generator voltage magnitudes , tap changing
transformers , and shunt reactive power injections There
fore, u can be expressed as

=[ ,  . . . . . . . , , . . . . . . . , , . . . . . . . ,
, . . . . . . . ] (29)

Selection of population size: The proper selection of the
population size generally dependents on the size of the
problem. For the real-world engineering problems with C
control variables, =20C will probably be sufficient and it is
difficult to obtain the optimal solutions with <2C[16]. The
population size =3-5C is best suited for getting the possible
optimal solutions.

Generation of initialization of population: All the control
variables in an individual u are randomly generated within their
limits according to (30) and are used as the parent population
of the first generation

, = 0,1 ∗ − + (30)

where i ∈	{1,2,3,. . . . . . .  ., },  j {1,2,. . . . . . . .C}, and, denotes the control variables j in individual i at the kth

generation. And are the lower and upper limits of
the control variable j.

To satisfy the slack bus active power constraints, the following
procedure is incorporated. Suppose that the  total active   load
of the  system is , sum of the  power that has been
dispatched to all generators excluding  the slack unit  is ,
then it is subtracted from the total active load of the system ,
and is assigned to the slack bus generator active power. If the
assigned slack bus active power exceeds its lower or upper
bounds of slack bus generator, then its active power is fixed to
the limit or . The remaining active power is
redistributed among the other generators proportionally.

Run the load flow method: For each individual, the Newton-
Raphson power flow program is run to evaluate the power flow
solutions. This step also calculates the generation of the
independent generator (slack bus), and checks the power
system operation constraints such as reactive power outputs,
load bus voltages, line flows and voltage stability indices.

Fitness Evaluation: For each individual solution, a fitness
value is evaluated including the penalty functions to measure
the quality of the individual as follows:

=1 ( + K F + K F + K F + K F 		) (31)

=∑ (| − |) 	 (32)

=∑ (| − |) 	 (33)

=∑ (| − |) 	 (34)

=∑ (| − |) 	 (35)

where is the  system generating  fuel cost, and
denote  the sum  of the  normalized  violations of PQ-bus
voltages and generator reactive  power outputs of  individual  i,
respectively ; is the  total number of  PQ buses; and

denote the  violated upper and lower limits  of the
voltages  of the load buses ( ,	 ) and the generator’s
reactive power outputs( ,	 ), respectively; K and K
are the corresponding penalty coefficients. , denotes the
violation of slack bus active power limitation of individual i.

, and are the limits of it. Generally an individual
is better if its fitness value is higher.

Transient stability assessment: Since the transient stability is a
condition to be satisfied and not an objective for optimization,
the transient stability is not included into the fitness function.
Therefore, each individual is assigned an index  if  that
particular individual can  maintain the stability of the system
under  the  selected contingency and  it  will  take the effect in
the selection procedure  during evolution.

Since transient stability assessment will be very time-
consuming because the searching space is huge for TSCOPF
optimization problems, only certain percentages of the
population with better fitness will undergo the TSA calculation
to evaluate some stable individuals to push the population
converging to a feasible and stable space. This operation
reduces the computational burden without deteriorating the
reproduction characteristics of the evolution.

Global best individual: It is just the best one in the initial
population the global best individual denotes the best
individual obtained from all the generations. To find
individuals, two  individuals and are compared in a
particular generation, is defined ” better”  than if  one of
the following conditions  is  matched:

If both of them are stable,	 , has  higher fitness value:
If both of them are unstable,	 , has  higher fitness value:
If	 , is stable, while is unstable.

Reproduction: The offspring population is reproduced by
perturbing the value of each control variables of each
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individual in the present population. The following
reproduction scheme is used to reproduce the offspring for an
individual i.e in the kth generation.	 ,′ = , + 1 , − , + 2( , − , ) (36)

where 	 , is the control variable j of the best individual, r1

r2 I are integers  randomly selected  in rage of [1, ]; the
parameters   d1 and d2 take  values  randomly from the range

of [0,1] once per individual,. If ,′ is outside the feasible range

of [ , 	], it is fixed to the limit 	 	 .

Selection: The selection scheme can be denoted as a “one- to-

one” selection. An offspring individual ′ is compared with its
parent individual , and the better one is finally selected. The
selected individuals form the updated population of generation
k, and it will be used as the parent population of the next
generation.

Global best individual updation: The best individual of the
updated population of generation k is found out and noted
as			 . If is better than , then is replaced
by ; otherwise 		 remains unchanged. The updated

will be used in the reproduction of the next generation.

SIMULATION RESULTS
IEEE 30-bus system results

In this section, the proposed DE method is tested on the IEEE
six-generator, 30-bus system. In test system, the classical
generator model is used for synchronous generator and loads
are modeled as constant impedances. Integration time step is
0.01 s for transient stability simulation, the whole simulation
period is 2.0s. For each test case, totally 20 trial runs are
performed to verify the robustness of the proposed method. The
developed MATLAB program is run using MATLAB 7.8
running on Intel Core 2 Duo, 2 GHz, and 2.0 GB RAM PC.

The differential evolution the following set of control
parameters were implemented and tested. The values of control
parameters used in this algorithm are, namely CR = 0.8 and F =
0.1,

The test system consists of six generating units interconnected
with 41 branches of a transmission network with a total load of
283.4 MW and 126.2 MVAR as shown in Fig. 1. The bus data
and the branch data are taken from [11]. There are 4
transformers with off-nominal tap ratio. The shunt injections
are provided at buses 10, 12, 15, 17, 20, 21, 23, 24 and 29. In
this case study, bus 1 is considered as the swing bus. The
maximum and minimum values for the generator voltage and
tap changing transformer control variables are 1.1 and 0.9 in
per unit respectively. The maximum and minimum voltages for
the load buses are considered to be 1.1 and 0.95 in per unit. The
line flow limits are taken from [11, 12].

In the simulation studies, a fuzzy logic composite criteria
(FLCC) based network contingency ranking is carried out to
determine the rank-1 network contingency [13]. The FLCC
based network contingency method takes the pre/post
contingency line loadings, load bus voltages, voltage stability
indices, and reactive power outputs of generators for ranking.
Instead of assessing the transient stability under the randomly

selected network contingency, TSA is done under the rank-1
network contingency for testing the effectiveness of the
proposed algorithm. Various equality and inequality
constraints, including the voltage stability and transient
stability constraints are considered during the solution of the
OPF problem.

The proposed DE algorithm is applied for solving the optimal
power flow problems without and with induction motor loads
and with different equality and inequality constraints including
voltage/transient stability constraints. The best values of
control parameters F and CR obtained are 0.1 and 0.8
respectively.  The population size is set as 50 and the maximum
generation number is 150. As a rough try 1/4th of the
population will undergo the transient stability assessment under
the rank-1 contingency case. A three phase to ground fault at
bus 8 and cleared by tripping line 8–11 is considered as large
disturbance. All the solutions satisfy the constraints on reactive
power generation limits and line flow limits.  Fig. 2 show the
convergence of the cost of generation with the DE algorithm
for the best run under normal operation. From the Fig.2 it can
be observed that the DE algorithm reaches the best solution
within 100 iterations.

The optimal settings of the control variables for the best result
of OPF problem obtained by the DE, method re given in Table
1. The cost of generation, real power loss, maximum voltage
stability index, are also given in Table 1. It can be found that
the proposed DE method gives lower values for cost of
generation, power loss and voltage stability index than the
values obtained with Base case.

The Fig. 3 show the stable trajectories of relative rotor angles
of best solutions obtained with DE algorithm. The load bus
voltages, voltage stability indices and percentage line loadings
are maintained within their lower and upper limits after
optimization. The comparison of the cost of generation with
other methods reported in the literature is given in Table 2. It
can be seen from the Table 2 that the proposed DE algorithm
gives best cost of generation for OPF compared with other
methods reported in the literature.

Figure 1 Single line diagram of IEEE 30-bus test system



Venkateswarlu, B., Vaisakh, K and Sujatha, P., Solving Transient Security Constrained Optimal Power Flow Problem
Using Differential Evolution Algorithm

15046 | P a g e

CONCLUSION
In this paper, a robust and efficient E method for solving
TSOPF problems has been developed to meet the pressing need
of the modern power systems. The robustness and effectiveness
of the proposed method have also been verified based on the
simulation results. The proposed approach has been
successfully and effectively implemented on the IEEE 30–bus
test system. The results clearly indicate that better solutions are
obtained using this proposed approach when compared with
other methods reported in the literature. It is found that the
proposed method is not only able to ensure the lower fuel cost

Figure 2 Convergence of cost of generation of IEEE 30-bus system

Table 1 Optimal settings of control variables for IEEE 30-
bus system

Control
variables(p.u.)

Base Case

Pg1

Pg2

Pg3

Pg4

Pg5

Pg6

0.9873
0.80
0.20
0.20
0.50
0.20

1.7772
0.5019
0.2047
0.1061
0.2136
0.1200
1.1000
1.0860
1.0620
1.0547
1.0583
1.0553
0.9700
1.0900
1.0600
0.9900

0
0.1800
0.0600
0.1200
0.1800

0
0

0.0600
0

Vg1

Vg2

Vg3

Vg4

Vg5

Vg6

1.050
1.045
1.010
1.050
1.010
1.050

Tt1

Tt2

Tt3

Tt4

0.978
0.969
0.932
0.968

Qc10

Qc12

Qc15

Qc17

Qc21

Qc22

Qc23

Qc24

Qc29

0
0
0
0
0
0
0
0
0

Cost($/h)
Ploss(p.u.)

Ljmax

900.5995
0.0533
0.1456

800.1386
0.0915
0.1200

Figure 3 Stable trajectory of rotor angles of IEEE 30-bus
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Figure 4 Voltage stability indices IEEE 30-bus system

Figure 5 Load bus voltage stability indices of IEEE 30-bus system

Figure 6 Percentage line loadings of IEEE 30-bus system

Table 2 Comparison of fuel costs

Method Cost($/h)
Base Case 900.5995

MATPOWER [14] 804.0600
IPM 803.986

IEP [15] 802.4650
GA 805.3076
EP 801.1315

PSO 800.3484
DE 800.1386
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solution compared with other reported results in the literature
but also maintain transient stability of the system.
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