

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 7, Issue, 12, pp. 14891-14894, December, 2016 International Journal of Recent Scientific Re*s*earch

Research Paper

SYNTHESIS AND CHARACTERIZATION OF ZINC SULPHIDE THIN FILM DEPOSITED BY CHEMICAL METHOD

Samir G. Pandya*

Department of Physics (Electronics), Gujarat Arts & Science College, Ahmedabad-380006, Gujarat, India

ARTICLE INFO	ABSTRACT
<i>Article History:</i> Received 30 th August, 2016 Received in revised form 10 th October, 2016 Accepted 21 st November, 2016 Published online 28 th December, 2016	Chemical method was utilized to fabricate Zinc Sulphide (ZnS) Nanocrystalline thin films. These films were prepared by changing the [S]/[Zn] ratio in the solution. All the films were characterized by X-Ray diffraction (XRD), Scanning Electron Microscopy (SEM), UV-VISIBLE Spectroscopy, Hot probe, four probe and Hall Effect technique. The XRD Patterns of the synthesized film show the preferred orientation of (111), (220) and (311) planes, confirming the Cubic structure of ZnS. Surface morphology of thin film were studied using SEM. The optical properties of the prepared film were characterized by UV-VIS spectrometry and show the presence of direct transition with band gap energy about 3.14 eV. The conductivity, carrier concentration and mobility were measured.
Key Words:	
ZnS thin film, Dip Coating, XRD, SEM, Optical Properties.	

Copyright © **Samir G. Pandya., 2016**, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

ZnS in cubic form has a band gap of about 3.54 eV and in the hexagonal form has a band gap of about 3.91eV [1-24] ZnS can be doped as either an n-type semiconductor or a p-type semiconductor. Zinc Sulphide (ZnS) is an inorganic compound prototypical II-VI semiconductor with an ability to adopt structures related to many of the other semiconductors, such as gallium arsenide. Zinc Sulphide (ZnS) thin film is receiving ever increasing attention owing to its potential use in applications like Opto-electronics devices such as Light Emitting Diode in blue to ultraviolet spectral region due to its wide band gap and n-type conductivity [3,7,18-24], in the area of optics as a reflector due to its high refractive index 2.35 and dielectric filter due to its high refractive index & high transmittance in the visible range respectively [1,2,10-16]. ZnS thin film is highly suitable as a window layer in heterojunction photovoltaic solar cells, because the wide band gap decreases the window absorption loses and improves the short circuit current of the cell [2,5,10,12,19,21,22]. Zinc sulphide, with addition of few ppm of suitable activator, is used as phosphor in many applications, from cathode ray tubes through X-ray screens to glow in the dark products. It also exhibits phosphorescence due to impurities on illumination with blue or ultraviolet light. Zinc sulphide is also used as an infrared optical material, transmitting from visible wavelengths to just over 12 micrometers.

ZnS thin films can be prepared using various techniques including Chemical Bath Deposition (CBD) [3,6-9,15,17-20], sol-gel deposition [10,11], spray pyrolysis [1,2,16], RF magnetron sputtering [4], cathodic electro deposition [12] and dip coating [5,10,11]. However, dip coating technique for preparing ZnS thin films [5] is major concerned in regarding the cost of deposition process and waste management. This technique appears as an interesting technique because it is inexpensive, simple and capable of deposition of optically smooth, uniform and homogeneous layers. Due to its simple coating technique involves processing at ambient atmosphere, it is easy to incorporate it into mass production. Also in comparison with CdS, the advantages of ZnS include its nontoxic [4,5,11,12,21] and environmentally safe handling as well as its ability to provide better lattice matching to CIGS absorbers having energy band gaps in the range of 1.3 to 1.5 eV compared with CdS, which transmits even higher energy photons and increases the light absorption in the absorber layer [4]. Zinc Sulphide thin film was synthesized by Dip coating method on a glass substrate. The prepared thin film was characterized by X-Ray diffraction technique (XRD), UV-VISIBLE Spectrophotometer, Four probe method, Hot probe, Hall Effect method and Scanning Electron Microscopy (SEM).

2. EXPERIMENTAL DETAILS

Deposition of ZnS thin films were done by dip coating method. Before the deposition of ZnS, glass substrate was cleaned with Methanol, Acetone, Trichloroethylene and deionized (DI) water. The precursor solution for the dip-coating was prepared by dissolving Zinc Acetate and Thiourea in methanol. The glass substrate was dipped into this solution and then kept at 473°K for 5 minutes to promote thermolysis. In heat treatment process, the metal salt and thiourea decomposes and gives raise to formation of ZnS phase on the substrate. This process was repeated five times. The sample was prepared with this method by keeping S/Zn molar ratio equal to 1.7, indicating film is Zn-deficient and S-rich. This film was characterized using X-Ray diffraction technique (XRD), scanning electron microscopy, Atomic force microscopy and Optical Spectroscopy. The crystalline structure of the films was analysed using a D2 PHASER – The Second Generation Bench top X-Ray Diffractometer using CuKa radiation lambda value is 1.54056 angstroms. The surface topography and composition was studied using JSM-6010LA high performance SEM. PerkinElmer UV-VIS double beam spectrophotometer (LAMBDA-35) was used. Four point probe, hot probe, and Hall effect measurement were used to measure Electrical properties of the ZnS films such as type of conductivity, carrier concentration and the mobility of carriers.

3. RESULTS AND DISCUSSIONS

3.1 Structural Properties

Diffractogram of the thin film prepared at S/Zn molar ratio equal to 1.7 is shown in Figure 1. The sample is almost amorphous but exhibit three rough peaks corresponding to diffraction of the (111), (220) and (311) planes of the cubic phase [9,16] are as per standard JCPDS-ICDD (card no. 77-2100, 80-0020) [19]. The average nano-crystalline size (D) was calculated using Debye-Scherrer equation formula [9]. Three peaks at the angles 28.6° , 47.7° , and 56.5° reveal a cubic lattice structure and can be assigned to the (111),(220), and (311) planes respectively. Films prepared from a solution containing Zinc acetate as a Zn precursor gave a S/Zn ratio below 1.7, a rough surface, and an amorphous structure justifies as per M.C. Lopez et al [2] and Li et al [3].

Figure 1 XRD pattern of ZnS obtained with S/Cd molar ratio 1.7

The d-spacing for all samples can be evaluated from the position of the major peak at about 28.6° and by the Bragg condition,

 $n\lambda = 2dsin\theta$ (1)

Where, n is the order of diffraction, λ the wavelength of the incident X-ray, θ the diffraction angle, d the distance between the planes parallel to the axis of incident beam.

Here, average grain size of the crystallites has been calculated using Scherrer's equation, $\frac{1}{2}$

$$D = \frac{nr}{\beta \cos \theta}$$
(2)

Where,

constant k is a shape factor usually = 0.94,

 β is full-width at half maximum (FWHM) of the peak

Using the size of crystallites, the dislocation density can be found,

$$\delta = \frac{1}{D^2} \tag{3}$$

The lattice strain in the film can be found by,

$$\epsilon = \frac{\beta \cos \theta}{4} \tag{4}$$

The average crystallite size was found to be 9.7 nm. The dislocation density was found to be 0.0106 and the strain present in the film is 0.0151 which indicates the stability of the crystal structure in the prepared film.

3.2 Surface Morphology

Surface Electron Microscopy (SEM) is a convenient technique to study and analyse the surface and roughness of the thin films. For any optoelectronic device the surface morphology of the thin film plays a crucial role. In the present study the surface morphology of the prepared ZnS film is observed by SEM as shown in Figure 2.

Surface of the film appears like smooth, uncolored, reflecting and well adhered to the glass substrate. As discussed in the XRD section the film contains the nano-sized crystalline structure of the atoms, which is verified by the SEM [1-4,7,8,12,17-23].

Figure 2 SEM micrograph of the ZnS thin film

3.2 Optical Properties

The optical properties of ZnS film were observed using the Transmission spectra of the film, which is measured using UV-VIS spectrophotometer. The transmission spectrum of ZnS film as a function of wavelength is shown in Figure 3.

Figure 3 Optical Transmission spectrum of the ZnS film as a function of wavelength

The transmission behaviour of the film clearly indicates its high value of transmission around 82% value above 450 nm wavelength. Films prepared from a solution containing Zinc acetate as a Zn precursor gave a S/Zn ratio below 1.7, a transmission lower than 82% in the visible region justifies as per M.C. Lopez et al [2] and Li et al [3]. The observed value closely matches with the reported value of ZnS thin films prepared by different method [1,3,4,7,20,21]. From the values of transmission spectra, optical band gap was determined using Tauc relation,

 $(\alpha h\nu)^2 = B(h\nu - E_g)^m$

where, E_g is the energy band gap and B is constant.

Here, considering direct band gap nature of the material, the value of m is taken to be 0.5. The Tauc plot drawn using the above mentioned equation is shown in Figure 4. The extrapolation of Linear portion of the $(\alpha hv)^2$ to zero indicates the band gap of the film.

As per the extrapolation of the linear part of the curves to the intercept on horizontal axis, the band gap of sample is about 3.14 eV, which is in good agreement with the bulk value ZnS [1,2,4,21]. This high value of transmission and the \sim 3 eV band gap can be very much useful in the field of solar cell and optical sensor.

Figure 4 Plot of $(\alpha h\nu)^2$ versus (hv) of ZnS thin film

3.3. Electrical Properties

The Hot probe, Four point probe method and Hall Effect measurement were used to find the electrical properties of the

prepared ZnS films at room temperature. The hot probe and four probe method shows n-type conductivity of the prepared ZnS film. In addition to that the carrier concentration and mobility was about 8×10^{20} cm⁻³ and 12 cm²/Vs respectively measured using Hall-effect Method. This observed value closely matches with the reported values of chemically deposited ZnS thin films [6].

4. CONCLUSION

Cubic uniform ZnS thin films were prepared using Dip Coating method and the characterized using different analytical techniques. The grown ZnS films are crystallized in the cubic structure and were aligned perpendicular to the (111) plane. The SEM shows the uniform film over the glass substrate. The ZnS film exhibited good optical properties with a relatively high transmittance of 82% in visible region, and the optical band gap is about 3.14 eV. Films prepared from a solution containing Zinc acetate as a Zn precursor gave a S/Zn ratio below 1.7, a rough surface, a transmission lower than 80% in the visible region and an amorphous structure. N-type conductivity, carrier concentration of 8×10^{20} cm⁻³ and mobility of and 12 cm²/Vs. This makes ZnS thin film more appropriate materials for the use in Optical applications.

References

- B. Elidrissi, M.Addou, M. Regragui, A. Bougrine, A.Kachouane, J.C. Bernede, "Structure, compositon and optical properties of ZnS thin films prepard by spray pyrolysis," Materials Chemistry And Physics 68 (2001) 175-179.
- M.C. Lopez, J.P. Espinosa, F. Martin, D. Leinen, J.R. Ramos-Barrado, "Growth of ZnS thin films obtained by chemical spray pyrolysis: The influence of precursors," *Journal of Crystal Growth* 285 (2005) 66-75.
- Z.Q. Li, J.H. Shi, Q.Q. Liu, Z.A. Wang, Z. Sun, S.M. Huang, "Effect of [Zn]/[S] ratios on the properties of chemical bath deposited zinc sulfide thin films," Applied Surface Science 257 (2010) 122-126.
- Dong Hyun Hwang, Jung Hoon Ahn, Kwun Nam Hui, Kwan San Hui and Young Guk Son, "Structureal and optical properties of ZnS thin films deposited by RF magnetron sputtering," Nanoscale Research Letters 2012 (2012) 1-7.
- M.Balachander, M. Saroja, M. Venkatalachalam & S. Shankar, "Preparation and Characterization of Zinc Sulfide thin film deposited by Dip Coating Method," IJISET - Internation Journal of Innovative Science, Engineering & Technology Vol.2 Issue 10 (2015) 381-383.
- Antony, K.V. Murali, R. Manoj, M.K. Jayraj, "The effect of the pH value on the growth and properties of chemical-bath-deposited ZnS thin films," *Materials Chemistry and Physics* 90 (2005) 106-110.
- P.A. Luque, A. Salas Villasensor, M.A. Quevedo-Lopez, A. Olivas, "Effect of Hydrazine on ZnS Thin Films over Glass," Chalcogenide Letters Vol.11 No. 3 (2014) 105-109.
- 8. T. E. Manjulavalli, A. G. Kannan, "Structural and optical properties of ZnS thin films prepared by chemical bath deposition method," *International Journal*

of Chem Tech Resarch Vol.8 No.11 (2015) 396-402.

- 9. G. Nabiyouni, R. Sahraei, M. Toghiany, M. H. Majles Ara and K. Hedayati, "Preparation and Characterization of Nano-structured ZnS Thin Films Grown on Glass and N-Type Si Subrates using a New Chemical Bath Deposition Technique," *Rev. Adv. Matter. Sci.* 27 (2011) 52-57.
- Kumar V, Saroja M, Venkatachalam M and Shankar S, "Synthesis and characterization of ZnS thin films by solgel dip and spin coating methods," *International Journal* of Recent Scientific Research Vol. 6 Issue 11 (2015) 7377-7379.
- E. I. Anila, T. A. Safeera, R. Reshmi, "Photoluminescence of Nanocrystalline ZnS Thin Film Grown by Sol-Gel Method," *J.Fluoresc Short Communication Springer* (2015).
- 12. Anuar Kassim, Saravanan Nagalingam, Ho Soon Min, Noraini Karrim, "XRD and AFM studies of ZnS thin films produced by electrodepositon method," *Arabian Journal of Chemistry* 3 (2010) 243-249.
- 13. M.Y. Nadeem, Waqas Ahmed, "Optical Properties of ZnS Thin Films," Turk J Phy 24 (2000) 651-659.
- 14. G. Leftheriotis, P.Yianoulis, D. Patrikios, "Deposition and optical properties of optimized ZnS/ Ag/ ZnS thin films for enerty saving applications," Thin Solid Films 306 (1997) 92-99.
- A.H. Eid, S.M. Salim, M.B. Sedik, H. Omar, T. Dahy, H.M. Abou_elkhair, "Preparation and Characterization of ZnS Thin Films," *Journal of Applied Sciences Research* 6(6) (2010) 777-784.
- H.H. Afifi, S.A. Mahmoud, A. Ashour, "Structural study of ZnS thin films prepared by spray pyrolysis," Thin solid Films 263 (1995) 248-251.

- T. Ben Nasr, N. Kamoun, C. Guasch, "Physical properties of ZnS thin films prepared by chemical bath deposition," Applied Surface Science 254 (2008) 5039-5043.
- J.M. Dona and J. Herrero, "Process and Film Characterization of Chemical-Bath-Deposited ZnS Thin Films," *J. Electrochem. Soc.* Vol. 141 No. 1 (1994) 205-210.
- S. M. Salim, A. H. Eid, A. M. Salem and H. M. Abou El-khair, "Nanocrystalline ZnS thin films by chemical bath deposition method and its characterization," Surface and Interface Analysis 2012 (2012).
- Heejin Ahn and Youngho Um, "Post-annealing Effects on ZnS Thin Films Grown by Using the CBD Method," *Journal of the Korean Physical Society* Vol. 67 No. 6 (2015) 1045-1050.
- 21. Z. Q. Bian, X. B. Xu, J. B. chu, Z. Zun, Y. W. chen and S. M. Huang, "Study of Chemical Bath Deposition of ZnS thin Films with substrate vibration," Surface Review and Letters Vol. 15 No. 6 (2008) 821-827.
- 22. Poulomi Roy, Jyoti R. Ota, Suneel Kumar Srivastava, "Crystalline ZnS thin films by chemical bath deposition method and its characterization," Thin solid Films 515 (2006) 1912-1917.
- 23. Qi Liu, Mao Guobing, Ao Jianping, "Chemical bathdeposited ZnS thin films: Preparation and characterization," *Applied Surface Science* 254 (2008) 5711-5714.
- 24. Wei Li, Jian Chen, Chang Yan, Xiaojing Hao, "The effect of ZnS segregation on Zn-rich CZTS thin film solar cells," *Journal of Alloys and Compounds* 632 (2015) 178–184.

How to cite this article:

Samir G. Pandya, 2016. Synthesis and Characterization of Zinc Sulphide Thin Film Deposited by Chemical Method. *Int J Recent Sci Res.* 7(12), pp. 14891-14894.