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ARTICLE INFO ABSTRACT

In the present paper Poisson distribution of the tuberculosis population has been calculated and
along with this expression has been obtained for the tuberculosis individuals as their average
number. For obtaining such estimates the conventional method that has been used so far is
Maximum Likelihood Principle but the problem that has been associated with this conventional
principle is that this method any prior information that is available about the parameters of the study
has not been taken into account by this method. This missing link has been accommodated by the
Bayesian perspective and thus in a way obtains the estimators in such a unique aspect which
consider the prior information about the estimator and refined the data through this information. In
this paper Jeffrey’s non-informative priors and other two types of prior distribution has been
considered and the corresponding estimates that has been obtained is calculated along with the
standard error which itself is based on the assumption of squared loss error function. On the state
wise and year wise data of the patients suffering from tuberculosis in India, this procedure has been
applied. When the random variable that has been considered for the study is state, then Bayes
estimate proves to be better than the Maximum Likelihood method and when the year is considered
as random variable then out of the two Maximum Likelihood Method proves to better than Bayes.

INTRODUCTION
Bayes prediction plays an important role in different areas of
applied statistics. Miler (1980) used the conjugate prior and
showed that the Bayes estimates can be obtained only through
numerical integration. Son and Oh (2006) consider the Poisson
model, compute the Bayes estimates using Gibbs sampling
procedure under vague priors and compare their performance
with the maximum likelihood estimators and modified moment
estimators. This tuberculosis comparison can be helpful in
providing necessary guidelines for planning the cause of action
for the place. The public health facility to present the
tuberculosis and the health service facility to stop tuberculosis
are playing important role to rank the places. The observed
cases for each place can be modeled as a Poisson model. The
Bayes estimators of the parameter of the Poisson model are
studied under Gamma prior.

To obtain the estimates, the conventional method has been used
so far is the Maximum Likelihood Principle. But the problem
that has been associated with this conventional principle is that
in this method if any prior information is available about the
parameters of the study has not been taken into account. This
missing link has been accommodated by the Bayesian
perspective and thus in this way obtain, the estimators in such a
unique aspect which consider the prior information about the

estimator and refined the data through this information. In this
chapter Jeffrey’s non-informative priors and other two types of
prior distribution has been considered and the corresponding
estimates that has been obtained is calculated along with the
standard error which itself is based on the assumption of
squared loss error function. While using the Empirical Bayes
Perspective, a certain computational technique like Markov
Chain Monte Carlo (MCMC) has been avoided.

For the death and birth processes, Kolmogrove equation yields
the Poisson distribution and the Prior distribution have been
calculated in terms of number of infective at time ‘t’. The result
that has been processed though of as an intuitive because while
taking into consideration the fact that the model that has been
tried to build up for the number of tuberculosis patients in the
entire population, the opportunity of infection that has been
considered is very small while the area of opportunity that has
been considered is very large and when both of them get
multiplied with each other gives a finite quantity. At time ‘t’
the average number of the tuberculosis infected in the
population is the finite quantity mentioned above or per time
period the tuberculosis incidence rate may be considered as a
time independent or dependent constant. Through the Poisson
distribution, the scenario may be appropriately modeled as
follows:
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The number of tuberculosis cases in the population is assumed
to be denoted by X. Therefore,

P(X ) , 0,1,......
!

xe
x x

x


  

and 0 
(1)

Where, the average number of the tuberculosis patients is

shown by the parameter  is assumed as time independent.

For the relevant model parameters, the empirical estimates
have been obtained by using the Maximum Likelihood
approach and by using the Akaike Information criterion or Chi-
square goodness of fit, etc. the empirical estimates that has
been calculated is compared with the parameters of the
mathematical models.

Maximum Likelihood approach is the conventional method to

estimate the ‘λ’, where = x the obtained estimate or a

weighted mean of observations for a sample
,......,l nx x

of n
observations. Although, asymptotically the properties of a good
estimator is satisfied by the Maximum likelihood estimator but
the problem that is associated with this technique is that while
taking the sample it does not take into consideration any
additional information that is available about the parameter ‘λ’.
Bayesian approach provides much more refined estimators
because by using the so called prior distribution this method
takes into account the additional information that is available
about the parameter. For the validity of the Bayesian method
asymptotic or large samples is not mandatory. With the
specification of the prior distribution, Bayesian method allows
incorporation of expert knowledge.

Whatever may be the data set, the estimators which are
obtained theoretically like the one obtained by the conventional
Maximum Likelihood estimation approach to the problem of
estimation. For every set of prior information a separate set of
estimators has been obtained in Bayesian approach and along
with this for a change in the data set these estimators gets
adjusted. A logical alternative is being provided by such an
estimators because this approach not only realies on the
additional information that is available regarding the
parameters, but to a greater extent it also relies on the data.

Statistical Modelling

Bayes Approach for Estimating TB Incidence Using Various
Prior Distributions

The best way to summarize the information that is available
about the number of tuberculosis cases in the population, which
is also the parameter of the interest, is the use of prior
distribution. This approach is also very helpful by
incorporating into account the subjective beliefs of the
experimenter and the experiences that has been gained from
previous studies into the analysis. Depending on the amount
and kind of information that is available, these beliefs and
experiences can be put into various sorts of functional forms.

Let ix
denote the number of TB infected individuals in the

population for the ithentity/time point, with probability P

(
|ix 

) where  is the parameter denoting the average
number of TB infected individuals in the population. Let the
prior probability (or “unconditional”or “marginal” probability)

of  be P( ) and the joint distribution of 1 2, ...., nx x x
be

P( | )x  . Then the posterior density of  is given by

P(x|λ)P(λ) P(x|λ)P(λ)
( | ) =

P(x) P(x|λ)P(λ)
P x 

 (2)

provided that the probability of x does not equal zero.

Conjugate prior may be looked upon when the substantial
information regarding the average number of the tuberculosis
patients is available and the functional form of the posterior
and prior remains the same and Non-informative prior is used
when no substantial information is available.

The theory for modeling the incidence of tuberculosis has been
developed in the subsequent section by using a prior
distribution about the parameter in the population. By means of
additional information about the parameter that has been
provided by the data, the prior information get converted or
refined into the other form i.e. to posterior distribution. By

using the posterior distribution estimates of  are obtained.
With respect to the posterior distribution, estimates are
obtained in such a way so as to provide the minimum expected
loss or risk. Although on defining the loss, there is no
consensus opinion, although in majority of the situations the
popularly used one is the Quadratic loss and it has been found
to be sufficient.

Conjugate Prior for Modeling TB Incidence

For this purpose, the model that has been considered is
Bayesian proportional hazards. Three different kinds of prior
distribution has been assigned to baseline cumulative incidence
and unknown coefficients of covariates. For the baseline
cumulative incidence, Gamma prior was assumed because the
variables that have been considered for the study follows the
Poisson distribution which also facilitates the computation of
conjugated distribution. By using the Markov Chain Monte-
Carlo (MCMC) methods the estimates of the parameters and
the posterior distribution (as well as hyper parameters) is
obtained. The confidence intervals that have been calculated
for the incidence rates of tuberculosis on the assumption of the
Poission distribution with the Gamma prior.

The procedure of the Markov Chain Monte-Carlo itself seems
to be complex enough, even though its use and importance has
been highlighted by the widespread use of the computer
software in the analysis of the technique. At times, various
large number of iterations have been involved in the procedure
of Markov Chain Monte-Carlo technique and with the
computer it fails to converge at any single value. In this chapter
to obtain the estimates of the parameters an easy method is
used which reduces the complexities of Markov Chain Monte-
Carlo technique and saves time as well by using the Empirical
Bayes approach. The motive behind not using the Markov
Chain Monte-Carlo technique and instead using the Empirical
Bayes approach is not to show that Markov Chain Monte-Carlo
technique is poor enough rather it is just to provide a
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convenient and easy alternative. For the Intervened Passion
model, Empirical Bayes has been used by the Bartolucci et. al.
for estimation of incidence parameters.

Let us assume that the prior distribution for TB incidence rate

 follows a Gamma distribution with parameters ( ,  ). On

using the Bayes theorem, for a given set of data
,......., ,l nx x

to posterior distribution of
| ,.....,l nx x

becomes Gamma

( , )ix n   . The posterior means of the distribution is

ix

n







which provides an estimate of  with variance

2( )
ix

n







.

There is a problem in finding the intensity of the estimator λ
because this estimator is based on the parameters on the data of
the prior distribution (α, β) which are sometimes also known as
hyper parameters.

Various researchers those who have conducted related studies
have taken various predetermined values on the basis of
intuition, judgment and past knowledge for these hyper
parameters and the estimates of average number of tuberculosis
cases has been obtained. For the robustness, these estimates
were further studied with respect to the prior parameters. Data
itself contains the information about the variables of the
interest is a strong belief among the researcher and hence by
using the Empirical Bayesian procedure, the hyper parameters
have been estimated.

Let
( )f 

and
2 ( )f 

denote the conditional mean and
variance of the random variable X which denotes the TB cases

in the population. Let m
and

2
m

denoted the marginal mean
and variance of these TB cases. Assuming that these quantities
exist, we have

( )[ ( )]m fE   
(3)

And,
22 ( ) 2 ( )( ) ( )m f f mE E                (4)

Further, if
( )f  

,
2 ( )f  

and
2 2( )f f  

then,
( )[ ]m E  

and
2 2
m f 

Therefore, the estimates of the hyper parameters when the prior

distribution of  is Gamma ( ,  ) are obtained as


2

2

x
a

s x

 and


2

x

s x
 

 where x and
2s are the

sample mean and variance respectively. These may in turn be
used to find the estimate of TB incidence rate along with its
standard error.

Non-Informative Priors for Modelling TB Incidence

By using the Bayesian proportional hazards model that has
been suggested by Spegelhalter et. al., the intensity of serious
events has been modeled and to represent the weak prior
information about the coefficients of various covariates, the
non-informative priors have been used. By making an
assumption of negligible values of the parameters of
informative prior distribution, non-informative priors have
been used by many researchers. The admissible and formal
approach about the negligible information regarding the
parameters of the interest has been given by Jeffreys, but none
of the researcher has formulated this model of weak prior
information. When the information regarding the incidence

parameter  of the tuberculosis is not available, in order to
determine the parameter the available clinical data has been
used.

Harold Jeffreys approach may be used to obtain the following
non subjective reference prior in terms of the Fisher’s
Information matrix:

 ( ) |I x   
(5)

Where,

 
2 2log ( | ) log ( | )

|
i j

l x l x
I x E E

y

 


 

   
            is

the Fisher’s Information matrix.

Therefore, the prior distribution for the TB incidence rate ( )

according to Jeffrey’s rule may be taken as
( )

I
 




.
Using the Bayes rule, the posterior distribution is obtained as

( | ,......, ) ~l nx x
Gamma

1
( , )

2ix n
. The posterior

mean of the distribution is

1
2ix

n


which provides an

estimate of  with variance
2

1
2ix

n


.

The situation of no prior information about the Incidence rate
 , may be also modeled through the improper prior,

( ) 1   where 0    for which the posterior

distribution is given by
( | ,......., )l nx x 

Gamma

( 1, )ix n . The estimate of the TB incidence rate is then

1ix

n


with variable

2

1ix

n


.

If
 is the M.L.E. of  and prior density of  is non-

informative (or likelihood dominates the prior density), then
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the posterior density of  is given by
| ,....,l nx x 

Normal


''

1
,

( )L




 
  
  where, ( )L  is the logarithm of

likelihood of ( | )x .

Using this result, we obtain the posterior distribution of the TB
incidence as

( | ,......, ) ~l nx x
Normal

2
,i ix X

n n

 
  
 

 
(6)

The estimate of TB incidence rate,  is the posterior mean i.e.,

ix
x

n


with variable
2

ix

n


which is the Maximum

Likelihood Estimator of  .

To highlight the ‘negligible’ or ‘weak’ information as assumed
while computing the Maximum Likelihood Estimation over the
‘no’ prior information is the main objective behind using the
non-informative priors.

In comparison with no (Maximum Likelihood Estimation),
negligible (Improper) and weak (Jeffreys) prior information,
this chapter assumes informative prior that has been modeled
by Gamma distribution. To reduce the gap between the no
information and substantial amount of information that is
available is the motive for consideration of these non-
informative priors. For this purpose various other non
informative prior could also be taken into account, but then
from the exponential class of distribution, these values can also
be obtained by providing appropriate values to the parameters
of the Gamma distribution. By doing a grid search that will
provide minimum standard error of the estimators for the best
value of the hyper parameters would be the simple solution in
such situations. However, the concept of Empirical Bayes
procedure would get diluted by doing so that has been
recommended for the computation of hyper parameters from
the given sample.

Objective and Data Used

The main objective of this chapter is to compare the 35 states
of India with respect to tuberculosis deaths. The year wise data
regarding the number of tuberculosis patients across the 35
States of the nation/ union territories of India for the period
2006-2015 have been taken from TBC India and RNTCP. The
data for the year 2015 and 2016 has been taken from RNTCP
reports of government of India. The reports provide astatewise
total number of patients register who have suffered from MDR-
Tuberculosis and total number of deaths due to tuberculosis in
each year. In India consistent, accurate and complete
information regarding tuberculosis is being provided by the
Revised National Tuberculosis Control Programme, which is
committed to encompass the data about the spread of
tuberculosis in India by reaching out to diverse of the areas.

RESULTS AND DISCUSSION
Table one reveals the average number of tuberculosis patients
that has been calculated by using various prior distribution
along with the standard error. The data for the average number
of tuberculosis patient is national and state wise while the
average number of tuberculosis patients year wise by using
various prior distribution is discussed in the table two.

Fig. 1
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The spread of the average number of tuberculosis patients
among various states/UT’s across different years has been
obtained in table one and two. Along with the average number
of tuberculosis patients their corresponding standard errors has
been computed. Figure 1 an 3 reveals that for a Gamma prior
Maximum likelihood estimation method is as similar as
Empirical Bayes estimation. For this reason instead of being
fully-Bayesian, Empirical Bayesian is sometimes labeled as
non-Bayesian or as partially-Bayesian. The standard error that
has been obtained from these different estimators are not
identical which is also revealed in the figure two and four
which becomes a criteria for not preferring or preferring
Bayesian procedure of introducing in the estimation function
the prior distribution.

In the table 1 when the average number of tuberculosis patient
is estimated state-wise, time is treated as a random variable in
that case and while making the analysis it has been found that
the minimum standard errors given by the Maximum
Likelihood estimates which is also revealed by the figure2. The
estimator that has been produced by the Maximum Likelihood
estimation are not much better than the estimators that has been
obtained by the use of prior distribution in which the additional
information has been routed. Rather, it shows that there is a
gradual move from the informative priors to non-informative
priors (as the Maximum Likelihood estimation involves no
prior distribution it is the most non-informative one), and as the

estimates moves from informative one to non information one
there is a reduction in value of their standard errors. The
estimators that have been obtained for the incidence of
tuberculosis is computed by assuming them as time
independent constant, this may be one of the possible for the
trend that has been obtained above and such estimators may not
be viable when random variable is time. When the hyper
parameters are time dependent it may become one of the
possible solution to the situation.

When the random variable is States/UT’s and the time was kept
as fixed variable, the minimum standard error in that type of
model is given by the Bayes estimates with Gamma prior
which is subsequently followed by the estimates obtained by
the maximum Likelihood estimates and Jeffrey’s and improper
prior which is also revealed by the table 2. Thus in such sort of
cases it is admissible and proved that the Bayes estimates are
better than the conventional Maximum Likelihood estimates.
The last points that have been made in previous paragraph
could be the reason for the standard error of the estimates to be
much better than Maximum Likelihood Estimation. These
overwhelming better results are also shown in the figure 4. As
one may thought of the difference that exist among the standard
error obtained from different estimators appears to be meager
but it is considered as a way significant enough to prefer one
procedure over the other because the number that has been
associated is in lakhs.

Table 1 Bayes estimates and Standard errors of the average TB persons (Lakhs) in various States/UT’s of India

States/UT’s
Gamma Prior Jeffrey’s Non-

Informative Prior
Improper

Non-informative prior M.L.E

Estimate
Std.

Error Estimate
Std.

Error Estimate
Std.

Error Estimate
Std.

Error
Andaman &Nicobar 0.412 0.3205 0.459 0.3478 0.502 0.3012 0.412 0.3023

Andra Pradesh 5.178 0.7695 5.248 0.7337 5.278 0.7172 5.178 0.7232
Arunachal Pardesh 0.343 0.2104 0.403 0.2022 0.429 0.2142 0.343 0.1883

Assam 0.472 0.3705 0.489 0.3978 0.512 0.3427 0.472 0.3256
Bihar 0.677 0.2787 0.717 0.2726 0.797 0.2806 0.677 0.2622

Chandigarh 0.345 0.1985 0.357 0.2186 0.398 0.2043 0.345 0.1805
Chattisgarh 0.359 0.2004 0.409 0.2022 0.459 0.2142 0.359 0.1894

Dadar & Nagar Haveli 0.117 0.1195 0.156 0.1317 0.171 0.1523 0.117 0.0928
Daman  & Diu 0.091 0.0895 0.101 0.1017 0.151 0.1183 0.091 0.0728

Delhi 0.346 0.1961 0.396 0.1989 0.446 0.2111 0.346 0.1859
Goa 0.487 0.3505 0.494 0.3978 0.512 0.3427 0.487 0.3256

Gujrat 1.372 0.3913 1.422 0.3771 1.472 0.3837 1.372 0.3705
Haryana 0.317 0.1885 0.367 0.1916 0.417 0.2043 0.317 0.1781

Himachal Pardesh 0.327 0.1923 0.341 0.2128 0.385 0.2341 0.327 0.1756
Jammu & Kashmir 0.359 0.1764 0.376 0.1987 0.402 0.2019 0.359 0.1683

Jharkhand 0.151 0.1295 0.201 0.1417 0.251 0.1583 0.151 0.1228
Karnataka 2.558 0.5339 2.608 0.5106 2.658 0.5155 2.558 0.5057

Kerala 0.527 0.2437 0.577 0.2402 0.627 0.2504 0.527 0.2296
Lakshdweep 0.137 0.1435 0.166 0.1517 0.185 0.1523 0.137 0.1128

Madhya Pardesh 0.518 0.2438 0.568 0.2414 0.618 0.2606 0.518 0.2278
Maharastra 4.879 0.7271 4.959 0.7135 4.989 0.7270 4.879 0.6897

Manipur 0.268 0.1724 0.307 0.1789 0.347 0.1845 0.268 0.1653
Meghalaya 0.459 0.2805 0.489 0.3178 0.502 0.3312 0.459 0.2493
Mizoram 0.507 0.2405 0.513 0.2462 0.522 0.2504 0.507 0.2138
Nagaland 0.169 0.1370 0.219 0.1478 0.269 0.1639 0.169 0.1298
Odisha 0.353 0.1996 0.403 0.2007 0.453 0.2128 0.353 0.1878

Pondichery 0.335 0.1784 0.357 0.1986 0.376 0.2043 0.335 0.1705
Punjab 0.290 0.1803 0.340 0.1843 0.390 0.1974 0.290 0.1702

Rajasthan 0.448 0.2244 0.498 0.2231 0.548 0.2340 0.448 0.2116
Sikkim 0.363 0.1764 0.376 0.1987 0.402 0.2019 0.363 0.1683

Tamil Nadu 2.314 0.5106 2.364 0.4862 2.414 0.4913 2.314 0.4810
Tripura 0.483 0.2605 0.489 0.2978 0.507 0.3117 0.483 0.2394

Uttar Pardesh 1.030 0.3396 1.080 0.3287 1.130 0.3362 1.030 0.3210
Uttrakhand 0.375 0.1884 0.397 0.1982 0.405 0.2043 0.375 0.1705

West Bengal 1.161 0.3699 1.211 0.3481 1.261 0.3552 1.161 0.3408
National Estimate 27.366 9.1627 28.646 9.3913 29.924 9.5108 27.366 8.508
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CONCLUSIONS
The results that have been computed show the declining trend
in the average number of tuberculosis infected patients in India
over the years. The high incidence of the tuberculosis patients
is recorded in the states of Maharashtra and Andhra Pradesh
while the states of Nagaland and Jharkhand shows the lowest
incidence of tuberculosis cases.  The states that have high
prevalence of tuberculosis and which also shows the increase in
incidence in year 2015 as compared to 2006 are Karnataka,
Andhra Pradesh, Tamil Nadu and Maharashtra. While
considering the prevalence of number of tuberculosis patients
per square kilometer, the highest incidence is recorded by Delhi
while the lowest incidence is recorded by Rajasthan. Nagaland
and Manipur have the highest percentage of tuberculosis cases
in terms of population of each state while Jharkhand has the
lowest percentage.

The results by not discrimination one from the other invariable
strikes a sort of balance between the Bayesian procedure and
the Classical Procedure. Bayesian procedure simply
encompasses the classical procedure by making assumption
regarding the hyper parameters. For calculating the national
average of the tuberculosis patients, this procedure can be
generalized. However there are scopes for making further
improvement in the development of such a procedure which
also takes into account the time dependent incidence rate. Such
a model would then help in refining the Bayes estimator even
for time series data to perform well. It has been verified that the
incidence rate depends upon certain covariates and we can
apply suitable Bayesian approach to it.
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