
 
*Corresponding author: Nagaradhika V  
Department of mathematics, GITAM University, Bangalore 

    

 

 
 
 

ISSN: 0976-3031 

Research Article 
 

FREE CONVECTION IN A VERTICAL ANNULUR CYLINDER IN POROUS MEDIA WITH 
EFFECT OF VISCOUS DISSIPATION 

 

Nagaradhika V1 and Subbha Rao A2 
 

1Department of mathematics, GITAM University, Bangalore 
2Department of Mathematics, Madanapalli Institute of Technology, Madanapalli 

 
ARTICLE INFO                                      ABSTRACT                                    

 

 
 
 

 
 

 

We study the effect of viscous dissipation with the varying hot wall temperature in a vertical annular 
cylinder at four different locations. The effect of non-isothermal temperature and viscous dissipation 
on the heat transfer behavior in a saturated porous medium embedded in a vertical annular cylinder. 
The partial differential equations can be solved iteratively with the help of the Galerkin Finite 
Element Method of three nodded triangular elements Influence of aspect ratio, radius ratio, viscous 
dissipation parameter and Power law exponent temperature presented. The fluid flow and heat 
transfer is presented in terms of streamlines and isotherms. 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 
 

 
 

 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 
 
 
 
 
 

 

INTRODUCTION 
 

There is an increasing interesting in the study of natural 
convection in fluid-saturated porous media as proved by the 
explosive growth in the literature on the subject and also and 
increasing interest in the consideration of the viscous 
dissipation effects on the flow and temperature fields as well as 
on the heat transfer performance of the involved devices. From 
an order of magnitude analysis it can be concluded that the 
viscous dissipation can be neglected in many situations of 
practical interest both for domains filled with a clear fluid or 
for domains filled with fluid-saturated porous media. This is 
however, a subject that attracts many research workers and in 
particular special attention is being devoted to the natural 
convection in vertical annular cylinder filled with porous 
medium including the viscous dissipation effects. Natural 
convection in porous media has recently received considerable 
attention because of numerous applications in Geophysics and 
Energy related engineering problems. These problems arise in 
Geothermal Energy conservation, use of fibrous materials in 
the thermal insulation of buildings, Enhanced recovery of 
petroleum resources, Geophysical flows and Packed-bed 
chemical reactors. 
 

Excellent reviews of existing theoretical and experimental 
results have been presented by Chen [1], Nield [2] and Bejan 
[3]. In all these theoretical approaches however, the viscous 
dissipation effects have been neglected from the governing 
equations. The object of this research note is therefore to 
present an approximate solution of the steady free convection 
boundary layer over a non-isothermal body of arbitrary shape 
embedded in a fluid-saturated porous medium when the viscous 
dissipation term is considered in the energy equation. Similar to 
Ref. [4], The Karman-pohlhausen integral relation is applied 
for a general solution procedure.  
 

Nakayama and Pop [5] studied the effects of the viscous 
dissipation on heat transfer rates by considering the viscous 
dissipation term in the energy equation. It is shown that the 
viscous dissipation results in lowering the level of the heat 
transfer rate. Richardson [6] solved the problem of heat transfer 
of a power law fluid in laminar flow including the effect of heat 
generation by viscous dissipation. A similar analysis with the 
same effect of high Prandtl number of the fluid was performed 
by Basu and Roy [7]. Al-Hadhrami et. al., [8] extended the 
analysis to cases where the Darcy-Brinkman model apply. The 
same qualitative results appear here too, but they also show that 
multiple solutions arise in general. More applications and a 
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good insight into the subject are given by Nield and Bejan [9], 
Vafai [10], Pop and Ingham [11]. 
 

In this paper, we concentrate on the effect of non-isothermal 
temperature and viscous dissipation on the heat transfer 
behavior in a saturated porous medium embedded in a vertical 
annular cylinder. We study the effect of viscous dissipation 
with the varying hot wall temperature in a vertical annular 
cylinder at different locations i.e., the vertical annulus is 
supplied with heat at Inner wall heated at three different 
locations as shown in the figures. The partial differential 
equations can be solved iteratively with the help of a computer 
code. The Galerkin Finite Element Method of three nodded 
triangular elements is used to divide the physical domain into 
smaller segments, which is a pre-requisite for finite element 
method. Influence of aspect ratio (Ar), radius ratio (Rr), viscous 
dissipation parameter (), Power law exponent temperature () 
and Rayleigh number on Nusselt number is presented. The 
fluid flow and heat transfer is presented in terms of streamlines 
and isotherms.  
 

MATHEMATICAL FORMULATION 
 

A vertical annular cylinder of inner radius ri and outer radius ro 
is considered to investigate the heat transfer behavior. The co-
ordinate system is chosen such that the r-axis points towards 
the width and z-axis towards the height of the cylinder 
respectively. Because of the annular nature, two important 
parameters emerge which is aspect ratio, (Ar) and radius ratio 
(Rr) of the annulus. They are defined as 
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Where Ht is the height of the cylinder. 
 

The inner surface of the cylinder is assumed to be power law 
function and it varies in the vertical direction along the height 
of the inner wall of the vertical annular cylinder Th=T + B(z) 
and the outer surface at an ambient temperature T 
respectively, where  and B are the constants responsible for 
temperature variations along the length of the vertical annular 
cylinder. The top and bottom surfaces of the vertical annular 
cylinder are adiabatic. It may be noted, that due to ax symmetry 
only half of the annulus is sufficient for analysis purpose, since 
other half is mirror image of the first half.  
 

We assume that the flow inside the porous medium is assumed 
to obey Darcy law and there is no phase change of fluid. The 
porous medium is saturated with fluid, the convective fluid and 
the porous medium are everywhere in local thermal equilibrium 
in the domain. The properties of the fluid and of the porous 
medium are homogeneous, isotropic constant except variation 
of fluid density with temperature. Under these assumptions the 
equations governing the flow, heat transfer are given by 
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The velocity in r and z direction can be described by Darcy law 
as velocity in horizontal direction 
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Velocity in vertical direction 
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The permeability K of porous medium can be expressed as 
Bejan [3] 
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Momentum Equation: 
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Energy Equation 
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The continuity equation can be satisfied by introducing the 
stream function  as 
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The variation of density with respect to temperature can be 
described by Boussinesq approximation as  
 
 =  ([1 – T(T – T)                                        (5) 
 

The corresponding boundary conditions are 
 

When heat is supplied at three different locations at the inner 
wall of the Vertical Annular Cylinder. 
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T + B(z),  = 0                                                               (6) 
 

at r = ro    T – T,  = 0 
 

The new parameters arising due to cylindrical co-ordinates 
system are 

Non-dimensional Radius                    
L

r
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L

z
z   

Non-dimensional Stream function 
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Non-dimensional Temperature 
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Viscous dissipation parameter  
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The non-dimensional equations for the heat transfer in vertical 
cylinder are Momentum equation: 
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Energy Equation: 
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The corresponding non-dimensional boundary conditions are 
when heat is supplied at three different locations at the inner 
wall of the Vertical Annular Cylinder 
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at r = ro  T = 0,  = 0 
 

SOLUTION OF THE GOVERNING EQUATIONS 
 

Applying Galerkin method to Momentum equation (8) yields 
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where Re is the residue. Considering the individual terms of 
equation (12)  
 

The differentiation of following term results into 
 

   
rr

N

r
N

r
N

r

T
TT





























  ][
2

2

  (13) 

 

Thus 
 

  




























A

T

A

T

A

T

rr

N
dAr

r
N

r
dA

r
N




 ][
2][

2

2

2

2

 (14) 

 

The first term on right hand side of equation (14) can be 
transformed into surface integral by the application of Greens 
theorem and leads to inter-element requirement at boundaries 
of an element. The boundary conditions are incorporated in the 
force vector. 
 

Let us consider that the variable to be determined in the 
triangular area is “T”. The polynomial function for “T” can be 
expressed as  
T = 1 + 2r  + 3r                                              (15) 

The Variable T has the value Ti, Tj and Tk at the nodal position 
i, j and k of the element. The r and z co-ordinates at these 
points are ri, rj, rk and zi, zj, zk respectively. 
 

Since T = NiTi + NjTj + NkTk                               (16) 
 

where Ni, Nj & Nk are shape functions give by 
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Making use of (18) gives 
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Substitution (7) into (8) gives: 
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Similarly 
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The third term of equation (12) is 
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since M1, M2 = N2, M3 = N3 
 

Where M1, M2 and M3 are the area ratios of the triangle and N1, 
N2 and N3 are the shape functions. 
 

Replacing the shape functions in the above equation (21) gives  
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Now the Momentum equation leads to 
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This is in the form of the stiffness matrix 
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Similarly application of Galerkin method to Energy equation 
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Considering the terms individually of the above equation (24) 
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The remaining terms of Energy equation can be evaluated in 
similar fashion of equation (24) 
 

 







































3

2

1

2
33231

32
2
221

3121
2
12

4

2
2

T

T

T

ccccc

ccccc

ccccc

A

R
dAr

z

T
N

A

T 


 
 

 

















































AA

T dA
x

N

M

M

M

dA
r

N

2

3

2

12

}{




 
 

2
332211 ][

1

1

1

12

2



bbb

r

A




















 
 

2
332211 ][

1

1

1

12

2



 ccc

r

A

z
N

A

T 































 
 

Thus the Stiffness matrix of Energy equation is given by 
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(28) 

RESULTS AND DISCUSSIONS 
 

Results are obtained in terms of Nusselt number at hot wall for 
various parameters such as aspect ration (Ar), radius ration (Rr) 
and Rayleigh number (Ra), when heat is supplied to the vertical 
annular cylinder for four different cases i.e., when heat is 
supplied to the vertical annulus at Inner wall heated at three 

different portions. The average Nusselt number )( uN , when 

heat is supplied at the three different locations of the inner wall 
of the vertical annular cylinder is given as 
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since L = L1 + L2 + L3, where L1, L2 and L3 are the length of 
the heated wall portions and L is the total length of the heated 
wall. 
 

DISCUSSION 
 

Figure 1 shows the evolution of streamlines and isothermal 
lines inside the porous medium for various values of Aspect 
ration (Ar). It is clear from the streamlines and isothermal lines 
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that the thermal boundary layer thickness decreases as the 
Aspect ratio (Ar) increases. The magnitude of the streamlines 
increases as Ar increases and tends to move towards the cold 
wall of the vertical annular cylinder. At low Aspect ratio i.e., 
Fig. 1a the streamlines occupy the whole domain of the vertical 
annular cylinder. By observing the Fig. 1c we came to know 
that the streamlines doesn’t occupy the whole domain. This is 
due to the reason that more convection takes place at the upper 
portion of the vertical annular cylinder. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 shows the streamlines and isothermal lines distribution 
inside the porous medium for various values of Radius ratio 
(Rr). It can be seen that the thermal boundary layer thickness 
decreases at Radius ratio (Rr) increases. The streamlines and 
isothermal lines move away from the cold wall and reach 
nearer to hot wall as Radius ratio (Rr) increases. The 
streamlines tend to occupy the whole domain of the vertical 
annular cylinder at low values of Radius ratio (Rr). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When heat is supplied at the three different locations of the inner wall of the Vertical Annulur Cylinder 
 

 
 

Fig. 1Streamlines (Left) and Isotherms (Right) for Ra=1, Ra=50, =1, =0.01 
a) Ar=0.5, b) Ar=1, c) Ar=2 
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It is obvious from the Fig. 2c that the heat transfer rate is higher 
at the upper portion of the annular cylinder at higher values of 
Radius ratio (Rr), which is vindicated by crowding of 
isothermal lines in the vicinity of upper side of hot wall as 
shown in Fig. 2. When Radius ratio (Rr) is increased, the 
streamlines and isothermal lines move from inner radius 
towards outer radius as shown in Fig. 2b. 
 

Figure 3 shows the streamlines and isothermal lines distribution 
inside the porous medium of the vertical annular cylinder for 
various values of viscous dissipation parameter (). As the 
Viscous dissipation parameter () increases, the streamlines and 
isothermal lines move away from the hot wall and reaches 
nearer to the cold wall of the vertical annular cylinder. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This is due to the reasons that the Viscous dissipation 
parameter () is basically production of heat due to local 
friction between moving fluid and the solid matrix of the 
porous medium. The generation of heat due to Viscous 
dissipation parameter () effect increases the temperature inside 
the medium occupied by increased temperature lines at the 
upper portion of the vertical annular cylinder. The circulation 
of the fluid increases as the Viscous dissipation parameter () 
increases.  
 

Figure 4 depicts the streamlines and isothermal lines inside the 
porous medium for various values of Power law exponent (). 
The fluid gets heated up near hot wall and moves up towards 
the cold wall due to buoyancy force and then returns back to 
hot wall.  
 
 

 
Fig. 2 Streamlines (Left) and Isotherms (Right) for =0.01, =0.5, Ra=100 

a) Rr=1, b) Rr=5, c) Rr=10 
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For the case of isothermal temperature ( = 0), the magnitude 
of the streamlines is high is compared to the no-isothermal 
temperature i.e., (>0). The thermal boundary layer thickness 
increases as the Power law exponent () increases. It can be 
seen from the streamlines and isothermal lines that high 
convection heat transfer occurs mainly in upper portion of the 
vertical annular cylinder with the increase in Power law 
exponent (). The magnitude of the streamlines decreases with 
the increase in Power law exponent (). The fluid circulation 
decreases with the increase in Power law exponent (). 
 

Figure 5 illustrates the streamlines and isothermal lines 
distribution inside the porous medium for various values of 
Rayleigh number.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The magnitude of the streamlines increases as the Rayleigh 
number increases. It is clearly seen by observing the figure 5c. 
This is due to the reasons that the increased Rayleigh number 
promotes the fluid movement due to higher buoyancy force, 
which in turn allows the convection heat transfer to take 
dominant position. The increased Rayleigh number particularly 
enhances the heat transfer rate at upper portion of hot and cold 
walls of vertical annular cylinder respectively. 
 

Figure 6 depicts the effect of Aspect ratio (Ar) and Viscous 

dissipation parameter () on the average Nusselt number )( uN  

at hot wall of the vertical annular cylinder. This figure 
corresponds to the values Ra = 50, Rr = 1 and  = 1. 
 

 
Fig. 3 Streamlines (Left) and Isotherms (Right) for Ar=0.5, Rr=1, Ra=100, =1 

a) r=0, b) =0.005, c) =0.01 
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It is seen that the average Nusselt number )( uN  increases with 

the increase in Aspect ratio (Ar). The average Nusselt number

)( uN  decreases by 3.2% at Ar = 1, when Viscous dissipation 

parameter () is increased from 0 to 0.01. The corresponding 

decrease in the average Nusselt number )( uN  at Ar = 10 is 

found to be 13.13%. It is seen that there is a sharp increase in 

the average Nusselt number )( uN  beyond Ar = 1 and then 

gradually increases for higher values of the Viscous dissipation 
parameter (). This happens due to the reasons that the viscous 
dissipation leads to local heat generation, which increases the 
temperature in the porous medium. As the temperature of hot 
wall Tw is ( = 1), the increased temperature of porous medium 
increases the temperature difference between hot wall and the 
nearby region of the vertical annular cylinder. Due to this 
reasons the heat transfer from hot wall to the porous medium 
increases which results in increasing the average Nusselt 

number )( uN . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 illustrates the effect of Aspect ratio (Ar) and Power 

law exponent () on the average Nusselt number )( uN  at hot 

wall of the vertical annular cylinder for the values Ra = 50, Rr 
= 1 and  = 0.01. It can be seen that the average Nusselt 

number )( uN  is higher for the case of isothermal wall 

temperature. For a given value of Aspect ratio (Ar), average 

Nusselt number )( uN  decreases with increase in Power law 

exponent (). This happens due to the reason that the heat 
content of the wall is more at ( = 0), as compared to other 
values of >0. This leads to increased fluid movement near the 
hot wall, which in turn increases the average Nusselt number

)( uN  decreased by 71% at Ar = 0.5, when Power law 

exponent () is increased from 0 to 1. It can be seen that the 

average Nusselt number )( uN  decreases with increase in 

Aspect ratio (Ar). The decrease in average Nusselt number

)( uN  is sharp at higher values of Aspect ratio (Ar). 

 
 

Fig. 4 Streamlines (Left) and Isotherms (Right) for Ar=0.5, Rr=1, Ra=100, =0.01 
a) =0, b) =0.5, c) =1 

 



International Journal of Recent Scientific Research Vol. 7, Issue, 7, pp. 12614-12624, July, 2016 
 

 

12622 | P a g e  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 8 demonstrates the effect of Radius ratio (Rr) and 
Viscous dissipation parameter () on the average Nusselt 

number )( uN .  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This figure corresponds to the values Ra = 100, Ar = 0.5,  = 1. 

The average Nusselt number )( uN  at hot wall of the vertical 

annular cylinder increases with the increase in Radius ratio 
(Rr). The Viscous dissipation leads to local heat generation, 
which increases the temperature in the porous medium.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 Streamlines (Left) and Isotherms (Right) for Ar=0.5, Rr=1, =1 

a) Ra=25, b) Ra=50, c) Ra=100 
 

 
 

Fig.6 Nu  Variation with Ar with at Hot wall for 

Different values of  at Rr=1, Ra=50, =1 

 

Fig.7 Nu  Variation with Ar at Hot wall for 

different values of  at Rr=1, Ra=50, 
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As the temperature of hot wall Tw is  = 1, the increased 
temperature of porous medium increases the temperature 
difference between the hot wall and the nearby region. Due to 
this reasons the heat transfer from hot wall to the porous 
medium increases which results in increasing the average 

Nusselt number )( uN . The effect of Viscous dissipation is 

higher at the higher values of Radius ratio (Rr) as compared to 
the lower values of Radius ratio (Rr). The average Nusselt 

number )( uN  is decreased by 1.58%, at Rr = 1. The 

corresponding decrease at Rr = 10, is found to be 4.58%, when 
Viscous dissipation parameter () is increased from 0 to 0.01. 

This reduction in the average Nusselt number )( uN  at hot wall 

is m ore pronounced at higher values of Radius ratio (Rr) when 
Viscous dissipation parameter () is increased.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 shows the variation of average Nusselt number )( uN  

at hot wall, with respect to Radius ratio (Rr) of the vertical 
annular cylinder for various values of Power law exponent () 
at Ar = 0.5, Ra = 100,  = 0.01. It is found that the average 

Nusselt number )( uN  increases with increase in Radius ratio 

(Rr). It can be seen that the average Nusselt number )( uN  

decreases with increase in Power law exponent (). For a given 
Radius given (Rr), the difference between the Nusselt number 
at two different values of Power law exponent () increases 
with increase in Power law exponent (). For instance, the 

average Nusselt number )( uN  decreased by 61%, When 

Power law exponent () is increased from 0 to 1, at Rr = 1. 

However the average Nusselt number )( uN  decreased by 61% 

when Power law exponent () is increased from 0 to 1 at Rr = 

10. This shows that the average Nusselt number )( uN  increase 

linearly with the increase in Radius ratio (Rr). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 illustrates the effect of Viscous dissipation parameter 

() on the average Nusselt number )( uN for various values of 

Reyleigh number. This figure is obtained for Ar = 0.5 and Rr=1, 

=1. It can be seen that the average Nusselt number )( uN  

decreases with the increase in viscous dissipation parameter 
(). When there is no viscous dissipation then the average 

Nusselt number )( uN  at hot wall always increases with 

increase in Rayleigh number. At =0.005, the average Nusselt 

number )( uN  always decrease with increase in Rayleigh 

number. This happens due to the reason that higher Rayleigh 
number leads to high buoyancy force and thus faster fluid 
movement. This faster fluid movement enhances the local 
friction between fluid and solid matrix thus increasing the local 
heat generation, which in turn reduces the average Nusselt 

number )( uN . When there is no Viscous dissipation 

parameter () i.e., =0, the decrease in the average Nusselt 

number )( uN  is found to be 0.29%, when Rayleigh number 

increases from 25 to 100. The decrease in the average Nusselt 

number )( uN , when Viscous dissipation parameter () is 

present i.e., at =0.01 is found to be 0.011%. This shows that 

there is a much decrease in the average Nusselt number )( uN  

as the Viscous dissipation parameter () increases. 

 

Fig8 Nu  Variation with Rr at Hot wall for 

different values of  at Ar=0.5, Ra=100, =1 

 
 

Fig. 9 Nu  Variation with Rr at Hot wall for 

different values of  at Ar=0.5, Ra=100, =0.01 

 
 

Fig. 10 Nu  Variation with  at Hot wall for 

different values of Ra at Ar=0.5, Ra=1, =1 
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Figure 11 demonstrates the variation of average Nusselt 

number )( uN  at hot wall, with respect to Power law exponent 

() of the vertical annular cylinder for various values of 
Rayleigh number at Ar=0.5, Rr=1, =0.01. It is found that the 

average Nusselt number )( uN  decreases with increase in 

Power law exponent (). It can be seen that the average Nusselt 
number decreases with decrease in Rayleigh number. At =0, 
the average Nusselt number decreased by 61.5% when 
Rayleigh number is increased from 25 to 100. 
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