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ARTICLE INFO ABSTRACT

Drought is one of the main environmental factors affecting growth and yield of sorghum in arid and
semi-arid areas of the world. In vitro selection of thirty Sorghum bicolor accessions for drought
tolerance was undertaken by the use of shoot and root length variations under polyethylene glycol
(PEG) stress. Data were recorded at two PEG-6000 levels (0 and -0.7Mpa) on shoot length (SL) and
root length (RL). Sorghum accessions WadAkar, Gishish, E315, F.508, F.509, F.511 and KU439
showed low reductions on shoot and considerable increase on root length under PEG stress. A set of
10 EST-SSRs primers related to drought stress was used to assess this trait among sorghum
accessions. Six out of the 10 EST were polymorphic (60%).  The marker Dsenhsbm99, which code
for drought-induced hydrophobic protein, has the highest abundance among the PEG-tolerant
accessions. The genetic similarity (GS) for pairs of sorghum accessions was calculated using
Jaccard's coefficients. The genetic similarity among these accessions ranged from 0.26 to 0.88.
Similarity coefficient matrices based on the data of EST-SSRs, were used to construct a
dendrogram. The results obtained from the analysis of the EST markers were in accordance with the
results of osmotic stress experiment using PEG. These results may help in breeding more drought-
tolerant sorghum accessions in the near future.

INTRODUCTION
Abiotic stress factors remain a major constraint to the growth
and productivity of crops. The single greatest abiotic stress
factor that limits crop growth worldwide is water availability
(Araus et al., 2002). Plants have evolved a number of
mechanisms to adapt to and survive water stress, including
drought avoidance, dehydration avoidance, or dehydration
tolerance. Such adaptive mechanisms are the results of a
multitude of morphoanatomical, physiological, biochemical,
and molecular changes (Ashraf et al., 2012).

Sorghum (Sorghum bicolor (L.) Moench is the fifth most
economically important cereal crop grown in many parts of the
world (Doggett, 1988). It is the second most important feed
grain (Dahlberg et al., 1995), and is a staple food used in
porridges and breads in parts of Africa and Asia (Mann et al.,
1983). For instance, the harvested area of sorghum in Africa
and Asia accounted for 81% of the world according to 2013
data (FAO, 2015). Sorghum is usually grown under rain-fed
conditions in drought-prone hot regions of Africa and Asia.
Although it is one of the most drought tolerant cereals, water
stress is one of the major constraints for its stability and
reliable production in these environments. Therefore,

identification and understanding the mechanisms of drought
tolerance in sorghum have been major goals of plant
physiologists and breeders (Bibi et al., 2012).

Selection for physiological traits related to drought tolerance is
essential as it can increase selection efficiency (Yohannes et
al., 2014). Field experiments related to water stress has been
difficult to handle due to significant environmental or drought
interactions with other abiotic stresses (Rauf, 2008). An
alternative approach is to use polyethylene glycol (PEG) to
induce plant water deficit for germplasm screening (Nepo-
muceno et al., 1998; Kulkarni and Deshpande, 2007;
Khodarahmpour, 2011). Polyethylene glycol with molecular
mass of 6000 and above are non-ionic, water soluble polymers
which are not expected to penetrate intact plant tissues rapidly.
PEG solution interferes with the ability of plant roots to absorb
water due to reduction of osmotic potential (Dodd and
Donovan, 1999; Sidari et al., 2008). PEG was used to evaluate
sorghum for genetic potential to drought tolerance at seedling
stage by many authors (Bibi et al., 2012; Gill et al., 2002; Bibi
et al., 2010).

Genomic screening for drought tolerance in sorghum is
becoming one of the most interesting research activities for
sorghum breeders. Sorghum is an important target of genome
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analysis among the C4 grasses because the sorghum genome is
relatively small (~730 Mbp) (Price et al., 2005), and
consequently numerous sorghum genetic and comparative
maps have been constructed (Tao et al., 1998; Boivin et al.,
1999; Peng et al., 1999; Klein et al., 2000; Haussmann et al.,
2002a; Menz et al., 2002; Bowers et al., 2003). Also, a
sorghum EST project (Reddy et al., 2008) and associated
microarray analyses of sorghum gene expression have been
carried out (Buchanan et al., 2005). As for drought tolerance,
quantitative trait loci (QTLs) associated with stay green have
been identified and mapped in sorghum (Tuinstra et al., 1997;
Crasta et al., 1999; Xu et al., 2000). The determination of the
consistency of stay green QTLs across different genetic
backgrounds would be important in improving sorghum
drought tolerance. Drought response in sorghum has been
classified into two distinct stages; pre-flowering drought
response that occurs prior to anthesis and post-flowering
drought response that is observed when water limitation occurs
during the grain-filling stage (Rosenow and Clark, 1995).  The
already available large collection of expressed sequence tags
(ESTs) from genes which are expressed during these two
drought stress phases in sorghum (Pratt et al., 2005), provides
invaluable opportunity for identification of candidate genes for
drought tolerance.  This study is to screen sorghum accessions
for drought tolerance using different physiological and
genetical characters.

MATERIALS AND METHODS
Germplasm

Thirty sorghum accessions were obtained from the Faculty of
Agriculture, University of Khartoum, Sudan (8 accessions) and
from Sorghum and Corn Research Center Kasetsart University,
Thailand (22 accessions).

Osmotic stress induction by polyethylene glycol

Seeds of each accession were sown at a depth of 1cm in pots
containing 0.5 kg sand soil saturated with Hoagland solution.
Each accession was raised in these pots under drought stress
conditions induced by adding PEG-6000 (80g/kg) to the
Hoagland solution in order to create an osmotic potential of -
0.07MPa. A control set raised under non-stress conditions was
irrigated daily with Hoagland solution which creates 0.0MPa
osmotic potential as suggested by Michel and Kaufman (1973).

The experiment was replicated three times.

Ten days after sowing, measurements on shoot and root lengths
were made and data were analyzed using T-test.

Molecular analysis of sorghum accessions

A set of 10 EST-SSR primers (Srinivas et al., 2009) related to
drought stress were used to assess the genetic diversity between
sorghum accessions these are:

DNA extraction

Sorghum genomic DNA was extracted from the 30 accessions
using a modified CTAB procedure as described by Hoisington
et al. (1994). The DNA samples were purified and checked for
quality and quantity in a 1.5% agarose gel.

EST-SSR PCR amplification

PCR amplifications were performed in 25 μl reaction mixtures
containing 15 ng genomic DNA, 1 unit Taq polymerase, 10mM
Tris-HCl (pH 9.0), 50mM KCl, 0.1% TritonX-100, 1.5mM
MgCl2, 1mM dNTPs, 0.2μM of each primer. The PCR was
carried out on a DNA thermo cycler programmed as initial
denaturation (95°C for 5 min), followed by 40 cycles of
denaturation at 95°C for 1 min, annealing at 50-55°C for 1 min,
extension at 72°C for 2 min and a final extension (72°C for 7
min). The PCR products were separated on 2% agarose gel
stained with ethidium bromide (10ng/100 ml) and the gels were
photographed under UV light. Results were scored for the
presence (1) and absence (0) of bands from top to the bottom of
each lane. The sizes of bands were estimated by using 1 Kb
ladder. Major allele frequency was calculated according to
following equation:

The data was subjected to statistical analysis using SPSS
software to calculate Jaccards'. similarity coefficient which
converted into distances matrix and dendrogram using
Unweighted Paired Group of Arithmetic Means (UPGMA).

RESULTS AND DISCUSSION
Osmotic stress induced by polyethylene glycol (PEG)

The ability of sorghum accessions to tolerate drought was
assessed under negative osmotic potential using PEG stress.
Table 1 showed significant differences (p<0.05) among the
sorghum accessions in shoot and root lengths among different
sorghum accessions (Figure 1).

Osmotic stress reduced shoot length with the highest reductions
observed for F.504, followed by F.509, F.511, F.513 and F.514
(Figure 1).

Marker

Type(s) of SSR
and

Number of
repeats

Forward primer (5`- 3`) Reverse primer (5` - 3`)

Dsenhsbm4 (TG)7 CCAAGGCTGAGGTCAAGAAG AGCCGAGCTCAACATACAGG
Dsenhsbm19 (GCA)8 CATGATGCAGCAACAACAGC GAAACCAGAACCGAACCTGA
Dsenhsbm22 (CT)8 GAGGTCGACCAGTACGAGGA GCAATTGCCAAGAGAGGAAC

Dsenhsbm24
(GA)8

+ (GA)9
CGTCAATAGCAAACCACCAG CCCCTCGAGACTAGTTCTCTCT

Dsenhsbm30 (TGA)8 AGTTTGTGTGTGCGCTCGT CTCCCCATCACGCATCTAGT
Dsenhsbm52 (TA)22 GCTACGGCGATAACTTGGAC CGTATACGCCACTGTCGTTG
Dsenhsbm58 (TCC)7 GCGTGACCAAGAAATCAAGA GGAGGACCAAGATGATCCA
Dsenhsbm75 (GCT)7 AGAGGCAGCAAAGCGAGAC ACTGGTGGGAGTCCGTGTAG
Dsenhsbm89 (GCAACG)6 TAAATCGGAGAGCAGGAGGA TGAACAAGTTGGAGCTGCTG
Dsenhsbm99 (GCA)6 GCCAAGGCAGAGAAGAAGAAG CGACGACGACTACTTGGTGA
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The lowest reduction in Shoot Length was observed in Botana,
WadAhmed, WadAkar, E315 and F508. Four accessions dried
up and died after one week of treatment, which reflect their
sensitivity to osmotic stress. Reduction in shoot length in cereal
crops is mostly indicates drought tolerance (Bibi et al., 2012).
The decrease in shoot Length in the studied accessions may be
due to osmotic regulation, which enables them to maintain cell
turgor to assist growth under severe stress conditions. The
variability in shoot length reductions between the accessions
indicates a genotypic variability in response to water deficit.
Similar findings were reported in sorghum by Raziuddin et al.
(2010), Khodarahumpour (2011), Bibi et al., (2010); Ali et al.,
(2011). Bibi et al. (2010) observed that most of the
morphological and physiological characters at seedling stage
are affected by osmotic stress in sorghum. Drought stress
suppressed shoot growth more than root growth and in certain
cases root growth increased (Younis et al., 2000; Okçu et al.,
2005; Bibi et al., 2010). Water uptake by the roots is a complex
parameter that depends on root structure, root anatomy, and the
pattern by which different parts of the root contribute to overall
water transport (Cruz et al., 1992). Therefore, comparative
elongation of the root under water stress is an important
indication for drought tolerance.

Low reductions in shoot and considerable increase in root
lengths under PEG stress were recorded for WadAkar, Gishish,
E315, F.508, F.509, F.511 and KU439 sorghum accessions
(Figure 1), therefore they were considered as tolerant
genotypes. Similar observations and conclusions were also

reported by Bibi et al. (2012) and Marmar et al. (2013) on
sorghum and wheat, respectively.

Screening for drought tolerance using EST-SSR markers

Ten EST-SSR drought associated markers were used in this
study to screen 30 sorghum accessions for drought tolerance.
Six markers (Dsenhsbm4, Dsenhsbm22, Dsenhsbm30,
Dsenhsbm52, Dsenhsbm89 and Dsenhsbm99) were
polymorphic (60%) while the remaining four (Dsenhsbm58,
Dsenhsbm75, Dsenhsbm19, Dsenhsbm24) were not (Table 2).
Using 70 SSR markers with 33 sorghum accessions from
Sudan El Hussein et al. (2014) found 71.4% polymorphism.
According to Gupta et al. (2003) only 55% of the 20 EST-SSR
markers used were polymorphic when tested against 52 wheat
accessions.

Table 2 shows that two EST-SSR markers (Dsenhsbm19 and
Dsenhsbm24) give amplification products with all sorghum
accessions. Markers Dsenhsbm22 and Dsenhsbm52 gave
positive amplification with most of the tested accessions.
Although, Dsenhsbm89 marker gave positive amplicon with
some accessions from Sudan, it failed to do so with any of the
22 accessions from Thailand indicating the environmental and
geographical effect on the drought response.

The EST used in this study are encoding important functional
proteins which are involved in drought tolerance. EST
Dsenhsbm19 is known to code for Ethyleneinsensitive3-1
(EIL-1) protein, a key transcription regulator of ethylene
biosynthesis (Chao et al., 1997; Solano et al., 1998),
suggesting its role in drought stress adaptation as ethylene is
involved in the regulation of leaf senescence (Yang et al.,
2008). Also, the ESTs Dsenhsbm4 and Dsenhsbm24 were
reported to code for heat shock protein and chaperonin,
respectively, both are involved in protecting macromolecules
such as enzymes and lipids under severe drought stress
(Vierling 1991; Zhu et al. 1997).  In addition, ESTs
Dsenhsbm30 and Dsenhsbm99 include genes coding for
important regulatory proteins and functional proteins that are
involved in stress related metabolism (Yin et al., 2014).

Accessions which showed tolerance to osmotic stress are found
to encompass different sets of EST marker genes (Table 2).
The accession E315 which gave positive amplification with 70
% of the markers used was the most tolerant to PEG stress.
This was followed by Wad Ahmed (50%), F.508 (50%) and
KU630 (50%). It could be observed from these results that
marker Dsenhsbm99, which code for drought-induced
hydrophobic protein, has the highest abundance among the
PEG-tolerant accessions indicating the role of this gene in
stress tolerance. Although Dsenhsbm58 and Dsenhsbm75
markers code for TB2/DP1, HVA22 family protein (ABA
responsive) and Zinc finger A20/ AN1 domain-containing
stress associated protein 9 (OsSAP9), respectively, it was not
detected in any of the PEG-stress tolerant accessions.

ABA inducible transcription factors (AREB/ABF) play a
central role in drought-responsive gene expression, and the
ABA responsive cis-elements (ABRE; T/CACGTGGC) have
been widely found in the upstream regulatory regions of
downstream genes (Hirayama and Shinozaki, 2010).

Table 1 Means values of shoot length (SL) and root length
(RL) under control and PEG stress conditions.

Treatment Shoot length Root length
Control 11.29 ± 0.212 4.04 ± 0.203

PEG 8.4 ±0.327 5.61 ± 0.195

*values are given as a mean of three replicates  ± SE

Figure 1 Effects of PEG stress on shoot and root lengths of sorghum
accessions
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Transcription factors in the ABA-dependent pathways include
1) ABA-responsive element-binding protein/ factor
(AREB/ABF), 2) C-repeat-binding factor 4/dehydration
responsive element-binding protein 1D (CBF4/DREB1D), 3)
myeloblastosis/myelocytomatosis (MYB/MYC), 4) Cys2His2
zinc-finger proteins (ZFP), and 5) WRKY domain binding
transcription factors (WRKY) (Bartels and Sunkar, 2005).

The genetic similarity (GS) for each pair of sorghum
accessions was calculated using Jaccard's coefficients. The
genetic similarity among these accessions ranged from 0.26 to
0.88, indicating a high degree of genetic homogeneity. The
dendrogram was constructed (Fig. 4) using bivariate (1/0) data
and Jaccard s' similarity coefficient matrices based on the data
of EST-SSRs.

Average Linkage (Between Groups) and SPSS computer
program grouped sorghum accessions into seven clusters. The
results obtained from the analysis of the EST markers were in
accordance with the results of water stress experiment using
PEG. The accessions F.504, F. 507, F. 511 and F. 513 which
exhibit high response to PEG stress were in the same cluster far
from the cluster containing the lines WadAhmed, WadAkar, F.
508 and E315 which tolerate the PEG stress, and accumulate
more drought associated ESTs under study.

Based on the results of this study, these markers will provide
hypothetically candidate genes that have the potential of being
causally linked to the drought tolerance. Therefore, the eight
positive ESTs-SSR markers used in the study may assist to
study association of the molecular variability of the genes with
phenotypic variability of traits related to drought tolerance and
other agronomic importance in sorghum.

CONCLUSION
From the result of this study it is concluded that identification
of sorghum accessions containing drought tolerance genes
using physiological and marker-assisted selection may help in
breeding more drought-tolerant sorghum cultivars in the near
future and can be useful to speed up sorghum improvement.
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KU 439 ─┘ ├─────┐ │ │
F. 503 ─┐ │ │ │ ├───┐
F. 505 ─┼─────────────────┘ ├─────────┘ │ │
Tabat ─┘ │ │ │
Botana ─────────────────────────┘ │ │
F. 518 ───────────────────┬─────────────────────────┘ │
Gishish ───────────────────┘ │
F. 510 ───────────────────┬─────────────────┐ │
F. 512 ───────────────────┘ │ │
Roserus1 ─┬───────────────────────┐ ├───────────┘
Abu7 ─┘ │ │
F. 506 ─┬─────────────────┐ ├───────────┘
F. 509 ─┘ │ │
E315 ─┐ ├─────┘
F. 508 ─┤ │
Wadaker ─┼─────────────────┘

WadAhmed ─┘

Table 2 Distribution of drought associated EST-markers in 30 sorghum accessions and their putative functions

S. No Marker Distribution in Sorghum accessions allele frequency % Putative function

1 Dsenhsbm4 Gishish,WadAker, Roserus1, E315, Abu7, F.505, F.508 26.6
Heat shock protein (16.9 KD low molecular

weight protein
2 Dsenhsbm19 All 100 Ethyleneinsensitive3- 1 protein

3 Dsenhsbm22
WadAhmed, Tabat, F.501, F.503, F.505, F.506, F.507, F.508,

F.510, F.512, F.513, F.514, F.515, F.517, F.520, KU630
53.3

Serine/threonine-protein kinase SAPK5 (Osmotic
stress/ abscisic acid-activated

protein kinase 5)
4 Dsenhsbm24 All 100 Chaperonin 21 precursor
5 Dsenhsbm30 E315, WadAhmed, Gishish, Botana, F.520, F.515 20 Stress related protein

6 Dsenhsbm52
Roserus1, Tabat, F.501, F.502, F.503, F.504, F.507, F.512, F.513,

F.519, KU439, KU630
40 Chitinase

7 Dsenhsbm58 Negative -
TB2/DP1, HVA22 family protein (ABA

responsive)

8 Dsenhsbm75 Negative -
Zinc finger A20 and AN1 domain-containing

stress associated protein 9
(OsSAP9)

9 Dsenhsbm89 WadAker,E315, Roserus1,Abu7 13.3 Glycine-rich RNA-binding protein

10 Dsenhsbm99
E315, WadAhmed, F.508, F.5012, F.516. F.517, F.520, KU439,

KU630
30 Drought-induced hydrophobic protein
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KU630
30 Drought-induced hydrophobic protein
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Transcription factors in the ABA-dependent pathways include
1) ABA-responsive element-binding protein/ factor
(AREB/ABF), 2) C-repeat-binding factor 4/dehydration
responsive element-binding protein 1D (CBF4/DREB1D), 3)
myeloblastosis/myelocytomatosis (MYB/MYC), 4) Cys2His2
zinc-finger proteins (ZFP), and 5) WRKY domain binding
transcription factors (WRKY) (Bartels and Sunkar, 2005).

The genetic similarity (GS) for each pair of sorghum
accessions was calculated using Jaccard's coefficients. The
genetic similarity among these accessions ranged from 0.26 to
0.88, indicating a high degree of genetic homogeneity. The
dendrogram was constructed (Fig. 4) using bivariate (1/0) data
and Jaccard s' similarity coefficient matrices based on the data
of EST-SSRs.

Average Linkage (Between Groups) and SPSS computer
program grouped sorghum accessions into seven clusters. The
results obtained from the analysis of the EST markers were in
accordance with the results of water stress experiment using
PEG. The accessions F.504, F. 507, F. 511 and F. 513 which
exhibit high response to PEG stress were in the same cluster far
from the cluster containing the lines WadAhmed, WadAkar, F.
508 and E315 which tolerate the PEG stress, and accumulate
more drought associated ESTs under study.

Based on the results of this study, these markers will provide
hypothetically candidate genes that have the potential of being
causally linked to the drought tolerance. Therefore, the eight
positive ESTs-SSR markers used in the study may assist to
study association of the molecular variability of the genes with
phenotypic variability of traits related to drought tolerance and
other agronomic importance in sorghum.

CONCLUSION
From the result of this study it is concluded that identification
of sorghum accessions containing drought tolerance genes
using physiological and marker-assisted selection may help in
breeding more drought-tolerant sorghum cultivars in the near
future and can be useful to speed up sorghum improvement.
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