

International Journal Of

Recent Scientific Research

ISSN: 0976-3031 Volume: 7(1) January -2016

NEW FUNCTIONS IN CECH *f***g**S1- **CLOSURE SPACES**

Francina Shalini A and Arockiarani SR I

THE OFFICIAL PUBLICATION OF INTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH (IJRSR) http://www.recentscientific.com/ recentscientific@gmail.com

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 7, Issue, 1, pp. 8515-8517, January, 2016 International Journal of Recent Scientific Research

RESEARCH ARTICLE

NEW FUNCTIONS IN CECH *f***g**S1- **CLOSURE SPACES**

Francina Shalini A and Arockiarani SR I

Department of Mathematics Nirmala College for Women, Coimbatore

ARTICLE INFO

ABSTRACT

In this paper we initiate $\pi g\beta$ - continuous maps, $\pi g\beta$ - irresolute maps furthermore extend and study their characterizations.

Article History: Received 16th October, 2015 Received in revised form 24th November, 2015 Accepted 23rd December, 2015 Published online 28th January, 2016

Key words:

 $\pi g\beta$ - continuous and $\pi g\beta$ - irresolute functions, $\pi g\beta$ - open map, $\pi g\beta$ - closed map

Copyright © **Francina Shalini A and Arockiarani SR I., 2016**, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

N.Levine [5] introduced g-closed sets. The concept of generalized closed sets and generalized continuous maps of topological spaces were extended to closure spaces in [1]. ech closure spaces were introduced by E. ech [2] and then studied by many authors [3][4][6][7].

A map k: $P(X) \rightarrow P(X)$ defined on the power set P(X) of a set X is called a closure operator on X and the pair (X, k) is called a Cech closure space if the following axioms are satisfied.

- 1. $k(\phi) = \phi$,
- 2. $A \subseteq k(A)$ for every $A \subseteq X$
- 3. $k(A \cup B) = k(A) \cup k(B)$ for all $A, B \subseteq X$

A closure operator k on a set X is called idempotent if k (A) =k [k (A)] for all $A \subseteq X$.

Definitions: A subset A of a ech closure space (X, k) is said to be

1. ech closed if k(A) = A

2. ech open if k(X-A) = X-A

- 3. ech semi-open if $A \subseteq k$ int (A)
- 4. ech pre-open if $A \subseteq int [k(A)]$
- 5. ech pre-closed if $k[int(A)] \subseteq A$

Definition: A ech closure space (Y,l) is said to be a subspace of (X, k) if $Y \subseteq X$ and $k(A) = k(A) \cap Y$ for each subset $A \subseteq Y$. If Y is closed in (X, k) then the subspace (Y,l) of (X,k) is said to be closed too.

Definition: Let (X,k) and (Y,l) be ech closure spaces. A map f: $(X,k) \rightarrow (Y,k)$ is said to be continuous, if f $(kA) \subseteq k$ f(A) for every subset $A \subseteq F$.

Definition: Let (X,k) and (Y,l) be ech closure spaces. A map f: $(X,k) \rightarrow (Y,l)$ is said to be closed (resp.open) if f(F) is a closed(resp.open) subset of (Y,l) whenever F is a closed (resp.open) subset of (X,k).

fGs - Continuous And fGs - Irresolute Functions

Definition: Let (X, u) and (Y, v) be closure spaces. A map f: $(X, u) \rightarrow (Y, v)$ is called $\pi g\beta$ - continuous if the inverse image of every open set in (Y, v) is $\pi g\beta$ - open in (X, u).

^{*}Corresponding author: Francina Shalini A

Department of Mathematics Nirmala College for Women, Coimbatore

Proposition

- 1. Every continuous function is $\pi g\beta$ continuous.
- 2. Every g-continuous function is $\pi g\beta$ continuous.
- 3. Every π -continuous function is $\pi g\beta$ continuous.

Remark

The converses need not be true may be seen by the following example.

Example

Let X= {1,2,3}, Y={a,b,c}. Define a closure operator u on X by u() = , u({1}) = u({3}) = u({1,2}) = u({1,3}) = u({2,3}) = uX = X and u({2})={2}.Define a closure operator v on Y by v() = ,v({a}) = {a,c}, v({b}) = {b},v({c}) = {a,c} & v({a,b}) = v({a,c}) = v({b,c}) = vY = Y.Let f: (X,u) \rightarrow (Y,v) be defined by f(1) = b, f(2) = a & f(3) = c.

- 1. Then f is $\pi g\beta$ continuous but not continuous. Since for the open set {a,c} in Y, the inverse image f⁻¹{a,c} = {2,3} is not open in X.
- 2. f is $\pi g\beta$ continuous but not g-continuous. Since for the open set {a,c} in Y, the inverse image f ⁻¹{a,c} = {2,3} is not g- open in X
- 3. f is $\pi g\beta$ continuous but not π continuous. Since the inverse image f⁻¹{b} = {1} is not π -closed in X

Proposition

Let (X, u) and (Y, v) be closure spaces and let $f :(X, u) \rightarrow (Y, v)$ be a map. Then f is

 $\pi g\beta$ - continuous if and only if the inverse image of every closed subset of (Y, v) is $\pi g\beta$ - closed in (X, u).

Proof

Let F be closed subset in (Y,v).Then Y-F is open in (Y,v).Since f is $\pi g\beta$ - continuous, f⁻¹(Y-F) is $\pi g\beta$ - open. But f⁻¹(Y-F) = X-f⁻¹(F) thus f⁻¹(F) is $\pi g\beta$ - closed in space (X, u). Conversely let G be an open subset in (Y, v).Then Y - G is closed in (Y, v). Since the inverse image of each closed subset in (Y, v) is $\pi g\beta$ - closed in (X, u). Hence f⁻¹(Y-G) is $\pi g\beta$ -closed in (X,u). But f⁻¹(Y-G) = X - f⁻¹(G). Thus f⁻¹(G) is $\pi g\beta$ - open. Therefore f is $\pi g\beta$ - continuous.

Definition

Let (X, u) and (Y, v) be closure spaces and a map $f : (X, u) \rightarrow (Y, v)$ is called $\pi g\beta$ - irresolute, if $f^{-1}(G)$ is $\pi g\beta$ -open (closed) in (X, u) for every $\pi g\beta$ -open set (closed set) G in (Y, v).

Definition

Let (X, u) and (Y, v) be closure spaces and a map f: (X, u) \rightarrow (Y, v) is called $\pi g\beta$ - open map(closed map) if f (B) is $\pi g\beta$ -

open(closed) in (Y, v) for every open set(closed set) B in (X, u).

Proposition

Consider (X,u), (Y,v) and (Z,w) to be closure spaces, let $f:(X,u)\rightarrow(Y,v) g:(Y,v)\rightarrow(Z,w)$ be two maps. If $g \circ f$ is open and g is a $\pi g\beta$ - continuous injection, then f is $\pi g\beta$ - open.

Proof

Let G be an open subset of (X, u). Since gof is open, g (f (G)) is open in (Z, w).

as g is $\pi g\beta$ - continuous, $g^{-1}(g(f(G)))$ is $\pi g\beta$ - open in (Y, v). But g is injective, so

 $g^{-1}(g (f (G))) = f (G)$ is $\pi g\beta$ - open in (Y, v). Hence f is $\pi g\beta$ - open.

Remark

The composition of two $\pi g\beta$ - continuous map need not be $\pi g\beta$ - continuous.

Definition

A closure space (X, u) is said to be a T_f – space if every $\pi g\beta$ - open set in (X, u) is open.

Proposition

Let (X, u) and (Z, w) be closure spaces and (Y, v) be a T_f – space. If $f: (X,u) \rightarrow (Y,v)$ and $g: (Y,v) \rightarrow (Z,w)$ are $\pi g\beta$ - continuous, then $g \circ f$ is $\pi g\beta$ - continuous.

Proof

Let H be open in (Z, w). Since g is $\pi g\beta$ - continuous, $g^{-1}(H)$ is $\pi g\beta$ -open in (Y, v). But (Y, v) is a T_f - space, hence $g^{-1}(H)$ is open in (Y, v). Thus $f^{-1}(g^{-1}(H)) = (g \circ f)^{-1}(H)$ is $\pi g\beta$ -open in (X, u). Therefore, $g \circ f$ is $\pi g\beta$ - continuous.

Proposition

Let (X, u), (Y, v) and (Z, w) be closure spaces. If $f: (X,u) \rightarrow (Y,v)$ is $\pi g\beta$ - continuous and $g: (Y,v) \rightarrow (Z,w)$ is continuous then $g \circ f$ is $\pi g\beta$ - continuous.

Proof

Let H be an open subset of (Z, w). Since g is continuous, $g^{-1}(H)$ is open in (Y, v).

Since f is $\pi g\beta$ - continuous, f⁻¹(g⁻¹(H)) is $\pi g\beta$ - open in (X, u).But f⁻¹(g⁻¹(H)) = (g \circ f)⁻¹(H). Therefore, g \circ f is $\pi g\beta$ - continuous.

Proposition

Let (X, u) and (Y, v) be closure spaces .If $f : (X, u) \rightarrow (Y, v)$ be a bijection, then the following statements are equivalent

- 1. The inverse map f⁻¹: (Y, v) \rightarrow (X, u) is $\pi g\beta$ continuous.
- 2. f is a $\pi g\beta$ open map.
- 3. f is a $\pi g\beta$ closed map.

Proof

(i) ⇒(ii)

Let f⁻¹: (Y, v) \rightarrow (X, u) be $\pi g\beta$ - continuous and A be an open set in X. Then $(f^{1})^{-1}(A)$ is $\pi g\beta$ - open, which implies f (A) is $\pi g\beta$ - open. Thus (i) \Rightarrow (ii)

(ii) \Rightarrow (iii)

Let B be closed in X. Then X-B is open in X. Since f is $\pi g\beta$ open, f(X-B) is $\pi g\beta$ - open in Y. Then Y-f (B) is $\pi g\beta$ - open in X. Hence f (B) is $\pi g\beta$ - closed in X.

Thus (ii) \Rightarrow (iii)

(iii) \Rightarrow (i)

Let A be closed in X. As f is $\pi g\beta$ - closed, f(A) is $\pi g\beta$ - closed in Y. But f (A) = (f⁻¹)⁻¹(A). Thus f⁻¹ is $\pi g\beta$ - continuous. Therefore (iii) \Rightarrow (i).

Proposition

Let (X,u) and (Y,v) be closure spaces and $f: (X,u) \rightarrow (Y,v)$ be a map. Then f is

 πg -irresolute if and only if f⁻¹(B) is πg - closed in (X,u) whenever B is πg - closed in (Y,v).

Proof

Suppose B be a πg - closed subset of (Y,v). Then Y-B is πg open in (Y,v). Since f: (X,u) \rightarrow (Y,v) is πg -irresolute, f⁻¹(Y-B) is πg open in (X,u). But $f^{-1}(Y-B) = X - f^{-1}(B)$, so that $f^{-1}(B) = X - f^{-1}(B)$. ¹(B) is πg - closed in (X,u). Conversely, Let A be a πg -open subset in (Y,v). Then Y - A is πg - closed in (Y, v).By the assumption, f⁻¹(Y-A) is πg - closed in (X,u). But f⁻¹(Y-A) = X- f⁻¹(A).Thus f⁻¹(A) is πg - open in (X,u).Therefore, f is πg -irresolute.

Note: Every πg -irresolute map is πg -continuous.

Proposition

Let (X,u), (Y,v) and (Z,w) be closure spaces. If $f: (X,u) \rightarrow$ (Y,v) is a πg -irresolute map and $g:(Y,v) \rightarrow (Z,w)$ is a πg continuous map, then the composition

$g \circ f : (X,u) \to (Z,w)$ is πg -continuous.

Proof

Let G be an open subset of (Z,w). Then $g^{-1}(G)$ is a πg -open in (Y,v) as g is πg -continuous. Hence, f⁻¹ (g⁻¹(G)) is πg -open in (X,u) because f is πg -irresolute. Thus $g \circ f$ is πg -continuous.

Proposition

Let (X,u), (Y,v) and (Z,w) be closure spaces. If $f:(X,u) \rightarrow (Y,v)$ and g:(Y,v) \rightarrow (Z,w) are πg -irresolute, Then $g \circ f$: (X,u) \rightarrow (Z,w) is πg - irresolute.

Proof

Let F be $\pi g\beta$ open set in (Z,w). As g is $\pi g\beta$ - irresolute, $g^{-1}(F)$ is $\pi g\beta$ open in (Y,v). Since, f is πg -irresolute, $f^{-1}(g^{-1}(F))$ is $\pi g\beta$ open in (Y,v) implies $(g \circ f)^{-1}F = f^{-1}(g^{-1}(F))$ is $\pi g\beta$ - open in (X,u). Hence $g \circ f$ is $\pi g\beta$ - irresolute.

Proposition

Let (X,u) and (Z,w) be closure spaces and (Y,v) be a T_f -space. If f: (X,u) \rightarrow (Y,v) be a πg -continuous map and g:(Y,v) \rightarrow (Z,w) is a $\pi g\beta$ -irresolute, Then the composition $g \circ f: (X,u) \to (Z,w)$ is $\pi g\beta$ - irresolute.

Proof

Let V be $\pi g\beta$ - open in Z. Since g is $\pi g\beta$ - irresolute, g⁻¹(V) is $\pi g\beta$ - open in Y. As Y is a T_f-space, g⁻¹(V) is open in Y. Since f is $\pi g\beta$ -continuous, f⁻¹(g⁻¹(V)) is $\pi g\beta$ - open in X. Thus (g \circ f)⁻¹(V) is $\pi g\beta$ - open in X. Hence $g \circ f$ is $\pi g\beta$ - irresolute

References

- C. Boonpok .Generalized closed sets in ech closed space. Acta math Univ, Apulensis, No-22(2010),133-140.
- ech, Topological Spaces, Topological papers of Eduard E. ech, Academia Prague (1968), 436-472.
- J. Chvalina, On homeomorphic topologies and equivalent systems, Arch Math.2, Scripta Fac. Sci. Nat. UJEP Brunensis, XII, (1976), 107-116.
- J. Chvalina, Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings, Arch Math.2, Scripta Fac. Sci. Nat. UJEP Brunensis, XVII, (1981), 81-86.
- N. Levine: Generalized closed sets in topology, Rend, Circ. Mat. Palermo, 19 (1970), 89-96
- L. Skula : Systeme von stetigen abbildungen. Caech. Math. J.. 17. 92. (1967), 45-52.
- J. Slapal, Closure operations for digital topology, Theoret. Comput.Sci., 305, (2003), 457 - 471.

How to cite this article:

Francina Shalini A and Arockiarani SR I.2016, New Functions In Cech $\pi g\beta$ - Closure Spaces. Int J Recent Sci Res. 7(1), pp. 8515-8517.

