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ARTICLE INFO ABSTRACT

In this paper we initiate g - continuous maps, g - irresolute maps  furthermore extend and
study their characterizations.

INTRODUCTION

N.Levine [5] introduced g-closed sets. The concept of
generalized closed sets and generalized continuous maps of
topological spaces were extended to closure spaces in [1]. Čech
closure spaces were introduced by E. Čech [2] and then studied
by many authors [3][4][6][7].

A map k: P(X)  P(X) defined on the power set P(X) of a set
X is called a closure operator on X and the pair (X, k) is called
a Cech closure space if the following axioms are satisfied.

1. k () = ,
2. A k(A) for every A X

3. k(AB) = k(A) k(B)  for all A,B  X

A closure operator k on a set X is called idempotent if k (A) =k
[k (A)] for all A X.

Definitions: A subset A of a čech closure space (X, k) is said to
be

1. čech closed if k(A) =A
2. čech open if k(X-A) =X-A

3. čech semi-open if A  k int (A)
4. čech pre-open if  A  int [k(A)]
5. čech pre-closed if   k[int (A)]  A

Definition: A čech closure space (Y,l) is said to be a subspace
of (X, k) if Y X and k(A) = k(A)Y for each subset A Y. If
Y is closed in (X, k) then the subspace (Y,l) of (X,k) is said to
be closed too.

Definition: Let (X,k)  and (Y,l) be  čech closure spaces. A map
f: (X,k)(Y,k) is said to be continuous, if f (kA)  k f(A) for
every subset A  F.

Definition: Let (X,k)  and (Y,l) be  čech closure spaces. A map
f: (X,k) (Y,l) is said to be closed (resp.open) if f(F) is a
closed(resp.open) subset of (Y,l) whenever F is a closed
(resp.open) subset of (X,k).

G - Continuous And G - Irresolute Functions

Definition: Let (X, u) and (Y, v) be closure spaces. A map f:
(X, u) (Y, v) is called g - continuous if the inverse image
of every open set in (Y, v) is g - open in (X, u).
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Proposition

1. Every continuous function is g - continuous.
2. Every g-continuous function is g - continuous.
3. Every -continuous function is g - continuous.

Remark

The converses need not be true may be seen by the following
example.

Example

Let X= {1,2,3}, Y={a,b,c}. Define a closure operator  u on X
by u(φ) = φ, u({1}) = u({3}) = u({1,2}) = u({1,3}) = u({2,3})
= uX = X and u({2})={2}.Define a closure operator v on Y by
v(φ) = φ,v({a}) = {a,c}, v({b}) = {b},v({c}) = {a,c} &
v({a,b}) = v({a,c}) = v({b,c}) = vY = Y.Let f: (X,u)  (Y,v)
be defined by f(1) = b, f(2) = a & f(3) = c.

1. Then f is g – continuous but not continuous. Since
for the open set {a,c} in Y, the inverse image f -1{a,c} =
{2,3} is not open in X.

2. f is g – continuous but not g-continuous. Since for
the open set {a,c} in Y, the inverse image f -1{a,c} =
{2,3} is not  g- open in X

3. f is g – continuous but not - continuous. Since the
inverse image f -1{b} = {1} is not -closed in X

Proposition

Let (X, u) and (Y, v) be closure spaces and let f :( X, u) (Y,
v) be a map. Then f is

g - continuous if and only if the inverse image of every
closed subset of  (Y, v) is
g - closed in (X, u).

Proof

Let F be closed subset in (Y,v).Then Y-F is open in (Y,v).Since
f is g - continuous, f -1(Y-F) is g - open. But f -1(Y-F) = X-
f -1(F) thus f -1(F) is g - closed in space (X, u). Conversely let
G be an open subset in (Y, v).Then Y - G is closed in
(Y, v). Since the inverse image of each closed subset in (Y, v)
is g - closed in (X, u). Hence    f -1(Y-G) is g-closed in
(X,u). But f -1(Y-G) =X – f -1(G). Thus f -1(G) is
g - open. Therefore f is g - continuous.

Definition

Let (X, u) and (Y, v) be closure spaces and a map f : (X, u)
(Y, v) is called g - irresolute, if f -1(G) is g -open
(closed) in (X, u) for every g -open set (closed set) G in (Y,
v).

Definition

Let (X, u) and (Y, v) be closure spaces and a map f: (X, u)
(Y, v) is called g - open map(closed map) if f (B) is g -

open(closed) in (Y, v) for every open set(closed set)  B in (X,
u).

Proposition

Consider (X,u), (Y,v) and (Z,w) to be closure spaces, let
f:(X,u)(Y,v)  g:(Y,v)(Z,w) be two maps. If g  f is open
and g is a g - continuous injection, then f is g - open.

Proof

Let G be an open subset of (X, u). Since gof is open, g (f (G))
is open in (Z, w).

as g is g - continuous, g-1(g (f (G))) is g - open in (Y, v).
But g is injective, so

g-1(g (f (G))) = f (G) is g - open in (Y, v). Hence f is g -
open.

Remark

The composition of two g - continuous map need not be g
- continuous.

Definition

A closure space (X, u) is said to be a Tf – space if every g -
open set in (X, u) is open.

Proposition

Let (X, u) and (Z, w) be closure spaces and (Y, v) be a Tf –
space. If  f : (X,u)  (Y,v) and g : (Y,v)  (Z,w) are g -
continuous, then g  f is g - continuous.

Proof

Let H be open in (Z, w). Since g is g - continuous, g-1(H) is
g -open in (Y, v). But (Y, v) is a Tf – space, hence g-1(H) is
open in (Y, v).Thus f-1(g-1(H)) = (g  f) -1(H) is
g -open in (X, u).Therefore, g  f is g - continuous.

Proposition

Let (X, u), (Y, v) and (Z, w) be closure spaces. If  f : (X,u) 
(Y,v) is g - continuous and  g : (Y,v) (Z,w) is continuous
then g  f is g - continuous.

Proof

Let H be an open subset of (Z, w). Since g is continuous, g-1(H)
is open in (Y, v).

Since f is g - continuous, f -1(g-1(H)) is g - open in (X,
u).But f -1(g-1(H)) = (g  f) -1(H).
Therefore,   g f is g - continuous.

Proposition

Let (X, u) and (Y, v) be closure spaces .If f : (X, u)(Y, v) be
a bijection, then the following statements are equivalent
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1. The inverse map f -1: (Y, v)(X, u) is g - continuous.
2. f is a g - open map.
3. f is a g - closed map.

Proof

(i)(ii)
Let f -1: (Y, v) (X, u) be g - continuous and A be an open
set in X. Then (f-1)-1(A) is g - open, which implies f (A) is
g - open. Thus (i)(ii)

(ii)(iii)
Let B be closed in X. Then X-B is open in X. Since f is g -
open, f(X-B) is g - open in Y. Then Y-f (B) is g - open in
X. Hence f (B) is g - closed in X.

Thus (ii)(iii)
(iii)(i)
Let A be closed in X. As f is g - closed, f(A) is g - closed
in Y. But f (A) = (f -1) -1(A). Thus f -1 is g - continuous.
Therefore (iii)(i).

Proposition

Let (X,u) and (Y,v) be closure spaces and  f : (X,u) (Y,v) be
a map. Then f is

gβ -irresolute if and only if f -1(B) is gβ- closed in (X,u)
whenever B is gβ- closed in (Y,v).

Proof

Suppose B be a gβ- closed subset of (Y,v). Then Y-B is gβ-
open in (Y,v). Since f: (X,u)  (Y,v) is gβ -irresolute, f -1(Y-
B) is gβ open in (X,u). But f -1(Y-B) = X - f -1(B), so that f -

1(B) is gβ- closed in (X,u). Conversely, Let A be a gβ-open
subset in (Y,v). Then Y - A is gβ- closed in (Y, v).By the
assumption, f -1(Y-A) is gβ- closed in (X,u). But f -1(Y-A) =
X- f -1(A).Thus f -1(A) is gβ- open in (X,u).Therefore, f is
gβ-irresolute.

Note: Every gβ-irresolute map is gβ-continuous.

Proposition

Let (X,u), (Y,v) and (Z,w)  be closure spaces. If  f : (X,u) 
(Y,v) is a gβ-irresolute map and g:(Y,v)(Z,w) is a gβ-
continuous map, then the composition
g  f : (X,u) (Z,w) is gβ-continuous.

Proof

Let G be an open subset of (Z,w). Then g-1(G) is a gβ-open in
(Y,v) as g is gβ-continuous. Hence, f-1 (g-1(G)) is gβ-open in
(X,u) because f is gβ-irresolute.
Thus g  f is gβ-continuous.

Proposition

Let (X,u), (Y,v) and (Z,w)  be closure spaces. If f:(X,u)(Y,v)
and  g:(Y,v)  (Z,w) are gβ-irresolute, Then g  f: (X,u) 
(Z,w) is gβ- irresolute.

Proof

Let F be g open set in (Z,w). As g is g- irresolute,g-1(F) is
g open in (Y,v). Since, f is gβ-irresolute, f-1(g-1(F)) is g-
open in (Y,v) implies (g  f)-1F= f-1 (g-1(F)) is g- open in
(X,u). Hence g  f is g- irresolute.

Proposition

Let (X,u) and (Z,w) be closure spaces and (Y,v) be a Tf -space.
If  f: (X,u)  (Y,v) be a gβ -continuous map and g:(Y,v) 
(Z,w) is a g -irresolute, Then the composition
g  f: (X,u) (Z,w) is g - irresolute.

Proof

Let V be g- open in Z. Since g is g - irresolute, g -1(V) is
g- open in Y. As Y is a Tf -space, g -1(V) is  open in Y. Since
f is g-continuous, f -1(g -1(V)) is g - open in X. Thus (g 
f)-1(V) is g- open in X. Hence g f is g- irresolute
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