

International Journal Of

Recent Scientific Research

ISSN: 0976-3031 Volume: 7(11) November -2015

STUDIES ON THERMAL PROPERTIES OF INDIAN WOOD SPECIES

Vasubabu M, Suresh babu C, Jeevan Kumar R

THE OFFICIAL PUBLICATION OF INTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH (IJRSR) http://www.recentscientific.com/ recentscientific@gmail.com

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 6, Issue, 11, pp. 7632-7634, November, 2015 International Journal of Recent Scientific Research

RESEARCH ARTICLE

STUDIES ON THERMAL PROPERTIES OF INDIAN WOOD SPECIES

Vasubabu M1*, Suresh babu C2, Jeevan Kumar R3

¹Department of Applied Sciences, St.Ann's College of Engineering and Technology, Chirala, India ^{2,3}Department of Physics, Sri Krishnadevaraya University, Anantapur, India

ARTICLE INFO	ABSTRACT
Article History:	This paper presents systematic study on thermal properties such as thermal conductivity, specific heat and
Received 06 th August, 2015 Received in revised form 14 th September, 2015 Accepted 23 rd October, 2015 Published online 28 st November, 2015	thermal diffusivity of twelve different wood species of different botanical families. A significant variation in thermal properties is observed with respect to each species as well as in same species also. The variation in thermal properties is critically discussed with density and porosity. Structural variations in wood have been analyzed on the basis of variation in thermal parameters.
Key words:	
Indian woods, thermal conductivity, specific heat,	

conductivity, specific heat, thermal diffusivity, density, porosity, structural variation

Copyright © **Vasubabu M** *et al.* **2015**, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Wood is a natural complex composite material, lignocelluloses, which is comprised of components having different chemical nature. Because of temperature variation, the crystalline structure of cellulose may be altered, resulting change in strength and considerable variations in physical behaviour, including its ability to conduct heat (Yacipi. F2011).

Thermal properties of wood are of high interest in the wood industry such as drying, thermal treatment, steaming and hot gluing to optimize their process technology, more essential in building physics for modeling energy efficient and its applications in timber constructions. Thereby, thermal conductivity, heat capacity and thermal diffusivity are the most important parameters necessary to most accurately calculate and simulate the thermal behavior of wood. Wood is an anisotropic material; thermal conductivity and diffusivity depend strongly on the anatomical direction. The heat capacity is a material-immanent parameter independent from the anisotropic structure and has similar values for all wood species. All three parameters are strongly influenced by temperature and moisture (Pozgaj *et al.* 1997, Niemz *et al.* 2010), density (Harada *et al.* 1998), moisture content (Hrcka 2010), temperature (Olek *et al.* 2003), mechanical load (Bucar and Straze 2008), etc.

In view of the importance of thermal properties, the present investigation is confined to study the various thermal properties such as specific heat, thermal conductivity and thermal diffusivity of twelve selected woods in the tangential direction.

MATERIAL AND METHODS

For the study of Thermal properties, twelve types of wood species are taken in the form of pellet. Thermal conductivity is determined by Lee's apparatus; Specific heat of materials is determined by the method of mixtures and thermal diffusivity is computed from experimental values of thermal conductivity, specific heat and density.

The sample pieces, spherical in shape, were heated to a study temperature (θ_2) in a Regnault's apparatus .The weight of copper calorimeter with stirrer (W_1) was determined by using single pan balance. The calorimeter was filled with water just sufficient to immerse the solid samples in it. The weight of the calorimeter, stirrer and water (W_2) was determined. The initial temperature (θ_1) of calorimeter and water kept at room

^{*}Corresponding author: Vasubabu M

Department of Applied Sciences, St.Ann's College of Engineering and Technology, Chirala, India

temperature was noted. The calorimeter was enclosed in a wooden box with wool to minimize lose of heat due to conduction and convection. Loss of heat due to radiation the solid sample pieces, at temperature θ_2 , was then dropped into calorimeter containing water. The mixture was stirred well and the resultant temperature (θ_3) was measured. The weight (W₃) of calorimeter with stirrer, water and the samples was determined.

If S' is the specific heat of the calorimeter, the specific heat 'S' of the samples is given by

$$S = \frac{[(W2 - W1) + W1s](\theta 3 - \theta 1)}{(W3 - W)(\theta 2 - \theta 3)}$$

If S' is the specific heat of the disc, the thermal conductivity (K) of the samples is given by

$$K = \frac{\mathrm{ms}(\mathrm{r+2d})\,\mathrm{\alpha t}}{2(\mathrm{r+d})\,\mathrm{\pi r2}\,(\mathrm{\theta 1-\theta 2})}$$

Here mass (m) of the lower bras disc without the attachment of strings was determined by a single pan balance. The thickness (d) and the diameter (2r) of the lower brass disc were determined with vernier calipers. The thickness of the sample (t) was determined by a screw gauge.

Thermal diffusivity of the samples is calculated from experimentally obtained values of specific heat, thermal conductivity and density

> Thermal diffusivity = <u>Thermal conductivity</u> Specific heat X density

RESULTS AND DISCUSSION

Heat exchange in living organisms, under natural conditions, is one of the most important processes where this process is under constant interaction with external environment. Thermo regulation in living organism, through the process of heat transfer, can be understood by the study of thermal capacity and thermal conductance of macro molecular, fluids and extracts present in different systems which carry out life process.

Results on thermal parameters of the selected wood species reveal that considerable variations in different wood samples of the same wood, obtained from the variation in different wood samples. This may be attributed to the inhomogeneous deposition of mineral content in different wood samples and also in different specimens of the same wood, obtained from various parts of the tree. Wood density and porosity investigated based on the thermal parameters were significantly interrelated. The present investigations on thermal properties of woods reveals that values of specific heat and thermal conductivity of hard woods and soft woods are different in woods belonging to different botanical families. Specific heat of hard woods and soft woods of different species are independent of density (Simpson and TenWolde, 1999). The heat capacity of fresh wood that contains water is greater than that of dry wood; specific heat of wood depends on the temperature and moisture content of the wood. The dependence of specific heat with temperature reveals that bound water undergoes only a limited phase change which occurs over a large temperature range.

Fig 1 A Comparison on thermal parameters of Indian wood species

Thermal conductivity of hard woods (*Pouteria sapota* (PS): 5.25, ± 0.42) is found to be more compared to soft woods (*Annona squamosa* (AS): 1.58, ± 0.33 ;*Murraya koenigii* (MK): 1.47, ± 0.22 ;). The variation in thermal conductivity in different woods of same and in different botanical families is due to the density variations (shahin kol and Altun; 2009). Wood is a good thermal insulator; its thermal conductivity values are low. The thermal conductivity of wood is affected by a number of basic factors: density, moisture content, extractive content, grain direction, structural irregularities such as checks and knots, fibril angle, and temperature. Thermal conductivity increases as density, moisture content, temperature, or extractive content of the wood increases.

Name of the wood species	Туре	Botanical Family	Density gm/cm ³	Percentage of porosity	specific heat cal gm ⁻¹ °C ⁻¹	Thermal conductivity K(X10 ⁻⁴ cal s ⁻¹ cm ⁻¹⁰ C ⁻¹)	Thermal diffusivity cm ² S ⁻¹
Mangifera indica L (MI)	Hard wood	Anacardiaceae	0.66±0.021	56.86±0.33	0.65±0.03	2.81±0.15	6.02±1.26
Azadirachta indica(AI)	Hard wood	Meliaceae	0.81±0.103	47.05±0.72	0.55±0.03	3.21±0.49	6.26±0.69
Ficus religiosa(FR)	Hard wood	Moraceae	0.63 ± 0.01	58.82±0.53	0.51±0.021	2.79±0.07	13.32±1.83
Casuarinaceae(CA)	Hard wood	Casuarinaceae	0.72 ± 0.07	52.94±1.56	0.41±0.02	2.93±0.01	10.1±0.38
Murraya koenigii(MI)	Soft wood	Rutaceae	0.42 ± 0.1	72.55±1.92	0.48 ± 0.05	1.47±0.22	8.29±1.68
Haldina cordifolia(HC)	Hard wood	Rubiaceae	0.72 ± 0.11	52.94±1.19	0.6±0.03	2.89±0.22	6.67±0.76
Tectona grandis L(TG)	Hard wood	Lamiaceae	0.71±0.04	53.59±1.48	0.44 ± 0.03	3.06±0.06	10.44±1.11
Terminalia arjuna(TA)	Hard wood	Combretaceae	0.82 ± 0.03	46.41±1.64	0.77±0.03	3.37±0.78	5.27±1.42
Tamarindus indica(TI)	Hard wood	Fabaceae	0.78 ± 0.18	49.02±1.63	0.56 ± 0.04	2.92±0.036	5.71±1.21
Shorea robusta(SR)	Hard wood	Dipterocarpaceae	0.66 ± 0.15	56.86±1.07	0.47 ± 0.06	2.29±0.29	7.35±1.19
Annona squamosa(AS)	Soft wood	Annonaceae	0.47 ± 0.07	69.28±1.27	0.61±0.07	1.58±0.33	5.19±1.14
Pouteria sapota(PS)	Hard wood	Sapotaceae	1.12 ± 0.11	26.67±1.24	0.71±0.06	5.25±0.42	7.59±1.32

Table 1 Data on thermal properties of wood species

The significant variation in specific heat and thermal conductivity of wood species of different botanically families are due to the structural and composition of organic and inorganic matter present in wood. Thermal diffusivity is a measure of how quickly a material can absorb heat from its surroundings. Thermal diffusivity of different wood species of different families varies with density and porosity is present in wood. It is evident that 12 species of woods of different botanical families exhibits considerable variation in observed parameters as represented in graph.

CONCLUSIONS

Thermal characteristics of wood are affected by composition, water absorption and extractives present in wood. If significant porosity exists in structure, the area available for conduction is reduced and rate of heat flow is reduced.

References

- Shahin kol.H and Altun S (2009) "Effect of chemicals on thermal conductivity of impregnated laminated veneer lumbers bonded with poly (vinyl Acetate) and melamine –formaldehyde adhesives", Drying technology,27 1010-1016.
- 2. Fatih Y, Gokhan G, Ayhan O (2010) The Effect of some production factors on thermal conductivity of oriented stand board. Technology,13(2);65-70.
- Bučar, B., Straže, A., 2008: Determination of the thermal conductivity of wood by the hot plate method: The influence of morphological properties of fir wood (*Abies alba* Mill.) to the contact thermal resistance. Holzforschung 62(3): 362–367.

- Harada, T., Hata, T., Ishihara, S., 1998: Thermal constants of wood during the heating process measured with laser flash method. Journal of Wood Science 44(6): 425-431.
- Hrčka, R., 2010: Variation of thermal properties of beech wood in the radial direction with moisture content and density. In.: Wood structure and properties '10, edited by J. Kúdela and R. Lagaňa, Arbora Publishers, Zvolen, Slovakia, 2010. Pp 111–115.
- Niemz, P., Sonderegger, W., Hering, S., 2010: Thermal conductivity of Norway spruce and European beech in the anatomical directions. In.: Annals of Warsaw University of Life Sciences – SGGW, Forestry and Wood Technology No. 72. Pp 66-72.
- 7. Olek, W., Weres, J., Guzenda, R., 2003: Effects of thermal conductivity data on accuracy of modeling heat transfer in wood. Holzforschung 57(3): 317-325.
- Şahin, H., 2009: The transverse thermal conductivity coefficients of some hardwood species grown in Turkey. Forest Product Journal 59(10): 58–63.
- Simpson, W., TenWolde, A., 1999: Physical properties and moisture relations of wood. Forest Products Laboratory, 1999. Wood handbook—Wood as an engineering material. Gen. Tech. Rep. FPL–GTR–113, Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 463 pp, chapter 3. Pp 1-25.
- Požgaj, A., Chovanec, D., Kurjatko, S., Babiak, M., 1997: Wood structure and properties. (Štruktúra a vlastnosti dreva). Bratislava, Priroda, 486 pp (in Slovak).

How to cite this article:

Vasubabu M et al., Studies On Thermal Properties Of Indian Wood Species. International Journal of Recent Scientific Research Vol. 6, Issue, 11, pp. 7632-7634, November, 2015
