PREPARATION AND EVALUATION OF ACECLOFENAC SODIUM PRONIOSOME TRANSDERMAL PATCHES

Shaik Md Zakir Hussain Sabreesh M, Manasa Swapna K.R, Thejasri K.S and Bharath C

THE OFFICIAL PUBLICATION OF INTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH (IJRSR)
http://www.recentscientific.com/recentscientific@gmail.com
RESEARCH ARTICLE

PREPARATION AND EVALUATION OF ACECLOFENAC SODIUM PRONIOSOME TRANSDERMAL PATCHES

Shaik Md Zakir Hussain1* Sabreesh M2, Manasa Swapna K.R3, Thejasri K.S4 and Bharath C5

1,3,4,5 Department of pharmaceutics Analysis, Sri Krishna Chaithanya college of Pharmacy, Madanapalle
2 Department of pharmaceutics, Krishna Teja College of pharmacy, Tirupathi

ARTICLE INFO

ABSTRACT

Proniosomes are one of the important novel drug delivery carriers of various drug molecules. Aceclofenac potent analgesic anti inflammatory agent used for the treatment of inflammation. The main objective of the study was to develop proniosomal containing aceclofenac for transdermal delivery using different ratios of cholesterol and non-ionic surfactants in order to achieve a sustained release of drug on topical administration. Proniosomes were prepared by using slurry method and evaluated for angle of repose, entrapment efficiency, thickness, folding endurance, percent moisture loss and absorption, drug content and in-vitro diffusion studies. As the concentration of the cholesterol decreases the entrapment efficiency decreases due to the low vesicle size formation the in-vitro diffusion and kinetic analysis were done for proniosomal patches. It showed the release of 51.28% at 8th hr and fitted into Zero order and follows non-fickian diffusion mechanism. The best formulation (F6) was composed of cholesterol and surfactant in the ratio of 1:2 showed the better sustain action. From the study it was observed that proniosomal transdermal patches are very stable and promising sustained delivery system for Aceclofenac

Components of proniosomes
1. Different components of proniosomes: Surfactants, Carrier material, Membrane stabilizer, Solvent and Aqueous phase, Polymer matrix or matrices, Permeation enhancers, Other excipients

<table>
<thead>
<tr>
<th>Table 1 List of Surfactants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-ionic Amphiphiles</td>
</tr>
<tr>
<td>Alkyl ethers and alkyl glyceryl ethers</td>
</tr>
<tr>
<td>Sorbitan fatty acid esters</td>
</tr>
<tr>
<td>Polyoxylethylene fatty acid esters</td>
</tr>
</tbody>
</table>

Preparation Of Proniosomes

Slurry method

Proniosomes are prepared by addition of the carrier and the surfactant solution in a round bottomed flask which is rigid to rotary flash evaporator and vacuum pressure was applied to form a arid and free flowing fine particles and resulting powder should be stored in tightly closed container under refrigeration

*Corresponding author: Shaik Md Zakir Hussain
Departmant of pharmaceutics Analysis, Sri Krishna Chaithanya college of Pharmacy, Madanapalle.
in light. The time required for Proniosome production is independent of the ratio of surfactant and the carrier.

Slow spray coating method

This method involves the spraying of surfactant in organic solvent onto the carrier and then evaporating the solvent. As the carrier is soluble in organic solvent the evaporation is repeated until the required surfactant loading is achieved.

Coacervation phase separation method

Mainly Proniosomal gels are prepared by this method. In this the surfactant, lipid and drug in a wide mouthed glass vial with small amount of alcohol. The mixture is warmed over water bath at 40-70°C for 5min until the surfactant & carrier is dissolved completely and cool it. Then aqueous phase is added with all the ingredients and warmed until a clear solution is formed which is then converted into powder.

Backing membrane

This forms a good bond with drug reservoir and prevents the loss of drug from the top. It is impermeable substance that guard the product during use on the skin, eg. metallic plastic laminate, occlusive base plate (aluminium foil), adhesive foam pad (flexible polyurethane) etc

Transdermal Drug Delivery

Transdermal drug delivery is defined as self-contained, discrete dosage form which when apply to unbroken skin deliver the drug through the skin at controlled rate to the systemic circulation. The transdermal patches use a polymer to control the rate of drug delivery from the reservoir through the skin and into the bloodstream. Some of the drugs to be combined with solvents, like alcohol as this increases their penetrability through the skin.

Skin status or conditions for drug permeation

Hydration, Broken or Irritated skin, Temperature, Sunburn, Psoriasis, Skin peels

Applications Of Transdermal Patches

- Nicotine patch which releases nicotine in controlled doses to help with cessation of tobacco smoking.
- Nitro-glycerine patches are prescribed for the management of Angina.
- The first antidepressant patch developed was Selegiline.

Based on the literature review observed we had planned to develop proniosomes in transdermal patches and evaluated. The prepared batches were evaluated and reported in this thesis.

Table 2 Polymers for Transdermal drug delivery system

<table>
<thead>
<tr>
<th>Natural polymers</th>
<th>Synthetic Elastomers</th>
<th>Synthetic polymers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose derivatives</td>
<td>Polybutadiene, Hydride rubber, Polysiloxane</td>
<td>Polyvinyl alcohol, Polyeylethlene, Polyeurea, Polymethyl methacrylate, Polyamide</td>
</tr>
<tr>
<td>Zein, Gelatin, Shellac, Waxes, Natural rubber, Starch</td>
<td>Silicone rubber, Neoprene</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 List of Carriers

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Carrier materials investigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maltodextrin</td>
</tr>
<tr>
<td>2</td>
<td>Sorbitol</td>
</tr>
<tr>
<td>3</td>
<td>Mannitol</td>
</tr>
<tr>
<td>4</td>
<td>Spray dried lactose</td>
</tr>
<tr>
<td>5</td>
<td>Glucose monohydrate</td>
</tr>
<tr>
<td>6</td>
<td>Lactose monohydrate</td>
</tr>
<tr>
<td>7</td>
<td>Sucrose stearate</td>
</tr>
</tbody>
</table>

Figure 1 Cross section of skin Mechanism of Transdermal Permeation

Figure 2 Simplified model of the human skin for mechanistic analysis of Skin Permeation

Figure 3 FT-IR spectra of Drug and Excipient
Scanning electron microscope image of Aceclofenac loaded proniosomal derived niosomes

Table 4 Drug excipients compatibility

<table>
<thead>
<tr>
<th>Drug and Excipients</th>
<th>Interpretation</th>
<th>2º NH</th>
<th>C=O Cest</th>
<th>Ac-c est</th>
<th>Di-subt Ar ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceclofenac</td>
<td></td>
<td>3318</td>
<td>1716</td>
<td>1056</td>
<td>609</td>
</tr>
<tr>
<td>Aceclofenac+S40+S60</td>
<td></td>
<td>3318</td>
<td>1716</td>
<td>1056</td>
<td>609</td>
</tr>
<tr>
<td>+T60+lactose+Chol</td>
<td></td>
<td></td>
<td>1056</td>
<td>609</td>
<td></td>
</tr>
<tr>
<td>Aceclofenac+HPMC</td>
<td></td>
<td>3319</td>
<td>1716</td>
<td>1142</td>
<td>608</td>
</tr>
</tbody>
</table>

Table 5 Formulations of Proniosomes

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
<th>F10</th>
<th>F11</th>
<th>F12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug (mg)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>500</td>
<td>250</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Cholesterol (mg)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>500</td>
<td>250</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Span40 (mg)</td>
<td>1000</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Span60 (mg)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1000</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tween60 (mg)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1000</td>
<td>2000</td>
<td>2000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lactose (mg)</td>
<td>1000</td>
</tr>
<tr>
<td>Diethyl ether (ml)</td>
<td>10</td>
</tr>
<tr>
<td>Methonal (ml)</td>
<td>5</td>
</tr>
</tbody>
</table>

MATERIALS AND METHODS

Location and duration of study

This study was conducted at pharmaceutics lab, Sri Krishna Chaitanya College of pharmacy Madanapalle.
The proniosomal powder was measured by funnel method.

Table 6 Parameters of all formulations

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>Angle of repose</th>
<th>Thickness (mm)</th>
<th>Drug content</th>
<th>Percent entrapment efficiency</th>
<th>Folding endurance</th>
<th>% moisture absorption</th>
<th>% moisture loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>33.1</td>
<td>0.203</td>
<td>83.7</td>
<td>72.45</td>
<td>108</td>
<td>3.87</td>
<td>0.77</td>
</tr>
<tr>
<td>F2</td>
<td>35.52</td>
<td>0.205</td>
<td>86.4</td>
<td>73.33</td>
<td>112</td>
<td>4.95</td>
<td>0.82</td>
</tr>
<tr>
<td>F3</td>
<td>32</td>
<td>0.201</td>
<td>88.2</td>
<td>75.29</td>
<td>103</td>
<td>5.79</td>
<td>0.72</td>
</tr>
<tr>
<td>F4</td>
<td>30.96</td>
<td>0.208</td>
<td>92.7</td>
<td>78.28</td>
<td>106</td>
<td>5.47</td>
<td>0.68</td>
</tr>
<tr>
<td>F5</td>
<td>33.06</td>
<td>0.204</td>
<td>93.6</td>
<td>79.06</td>
<td>117</td>
<td>5.19</td>
<td>0.64</td>
</tr>
<tr>
<td>F6</td>
<td>30</td>
<td>0.202</td>
<td>96.3</td>
<td>89.13</td>
<td>121</td>
<td>3.75</td>
<td>0.63</td>
</tr>
<tr>
<td>F7</td>
<td>32</td>
<td>0.21</td>
<td>91.8</td>
<td>84.21</td>
<td>104</td>
<td>6.47</td>
<td>0.71</td>
</tr>
<tr>
<td>F8</td>
<td>35.52</td>
<td>0.206</td>
<td>95.4</td>
<td>78.57</td>
<td>98</td>
<td>5.40</td>
<td>0.90</td>
</tr>
<tr>
<td>F9</td>
<td>33.1</td>
<td>0.204</td>
<td>89.1</td>
<td>68.38</td>
<td>94</td>
<td>5.38</td>
<td>0.76</td>
</tr>
<tr>
<td>F10</td>
<td>35.52</td>
<td>0.202</td>
<td>90.9</td>
<td>63.83</td>
<td>108</td>
<td>6.03</td>
<td>0.86</td>
</tr>
<tr>
<td>F11</td>
<td>32</td>
<td>0.208</td>
<td>84.6</td>
<td>92.36</td>
<td>113</td>
<td>6.97</td>
<td>0.77</td>
</tr>
<tr>
<td>F12</td>
<td>34.25</td>
<td>0.204</td>
<td>86.4</td>
<td>71.16</td>
<td>99</td>
<td>5.03</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Table 7 Dissolution profiles of different batches

<table>
<thead>
<tr>
<th>Time (hrs)</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
<th>F10</th>
<th>F11</th>
<th>F12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>3.93</td>
<td>2.43</td>
<td>3.37</td>
<td>5.06</td>
<td>2.81</td>
<td>2.25</td>
<td>3.37</td>
<td>1.87</td>
<td>5.06</td>
<td>3.37</td>
<td>2.43</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>2.55</td>
<td>4.34</td>
<td>3.67</td>
<td>2.50</td>
<td>4.82</td>
<td>3.12</td>
<td>4.24</td>
<td>3.93</td>
<td>2.50</td>
<td>8.49</td>
<td>4.82</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>19.34</td>
<td>28.09</td>
<td>30.96</td>
<td>22.55</td>
<td>24.07</td>
<td>32.77</td>
<td>51.28</td>
<td>59.08</td>
<td>31.27</td>
<td>51.28</td>
<td>30.96</td>
<td></td>
</tr>
</tbody>
</table>

Table 8 data of kinetic model

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Zero order</th>
<th>First order</th>
<th>Higuchi's model</th>
<th>Korsmeyer-peppas model</th>
</tr>
</thead>
<tbody>
<tr>
<td>F6</td>
<td>0.949</td>
<td>0.905</td>
<td>0.870</td>
<td>0.976</td>
</tr>
</tbody>
</table>

Active was received as a gift sample from Biophore India pvt. Ltd Andhra Pradesh, India, Span 40, Span 60, Tween 60, Cholesterol, HPMC, were recived from Lobachemie pvt. Ltd, mumbai, Lactose SD fine chemicals mumbai. Completion of this work Lasted for a period of three months.

Formulation of Proniosomes

Proniosomes are developed using slurry method. In this method drug, cholesterol, surfactant were dissolved in a round bottom flask heat until a clear solution formed then the carrier was added and stir contineously which is fixed to the rotary evaporator and vacuum was appiled until a dry powder forms.

Preparation of Transdermal Patches

Transdermal patches were prepared by using solvent evaporation method. In this polymer was dissolved in the methanol and the drug equivalent to 100 mg was weighed and dispersed in the the solution of the polymer to get the clear dispersion and then 2-3 drops of plasticizer was added to the polymer solution and air dried for 24 hrs in petridish with the help of inverted funnel and then the film was taken out.

Evaluation Of Proniosomes

Angle of Repose

The proniosomal powder was measured by funnel method. In this method the funnel was fixed at the height of 1.5 cm above the surface. Then the powder was poured through the funnel and to flow down the funnel to form the cone on the surface. Then the angle of repose was calculated by measuring the height of the cone and the diameter of its base.

Evaluations of Transdermal Patches

Thickness Uniformity

The thickness of the formulated film was measured at 3 different points using a Vernier calliper and average thickness was calculated.

Folding Endurance

It was measured manually a strip of film 1cm² was cut and repeatedly folded at the same place until it break. The number of times the film could be folded at the same place without breaking gives the value of folding endurance.

Percentage Moisture Absorption

The patches are weighed and placed in desiccator containing 100 ml of saturated solution of potassium chloride. After 3 days, the films were taken out and weighed. Then the percentage moisture absorption was calculated

\[
\text{% moisture absorption} = \frac{\text{Final weight} - \text{Initial weight}}{\text{Initial weight}} \times 100
\]

Percentage moisture loss

The patches are weighed and placed in the desiccator containing anhydrous calcium chloride. After 3 days, the patches are taken out and weighed. Then the percentage moisture loss was calculated.

\[
\text{% moisture loss} = \frac{\text{Initial weight} - \text{Final weight} \times 100}{\text{Initial weight}}
\]

Drug content

1 cm² area of the films was cut and dissolved in methanol. The volume was made up to 100ml. The absorbance was measured at 274nm. From the absorbance and the dilution factor, the drug content in the film was calculated.
In-vitro drug diffusion studies

In-vitro diffusion studies are carried out using Franz diffusion cell with a 25 ml capacity of receptor compartment. The cellophane membrane was placed between donor and receptor compartments. The patches are cut into size of 2 cm² and placed over the membrane and the receptor compartment was filled with buffer pH 6.8. Then it was placed on the magnetic stirrer and the solution was stirred using magnetic bead at 50 rpm. The sample were withdrawn at time interval of 10 mins, 30mins, 1, 2, 3, 4, 5, 6, 7 and 8 hrs then and it was replaced with same amount of fresh fluid and analyzed for spectrophotomerically at 274 nm.

Drug Release kinetics

To know the release kinetics the data obtained from the in-vitro release profile was fitted into various models like zero, first orders and Higuchi's model. Study the release kinetics; data obtained from in vitro drug release studies were plotted. In various kinetic models: zero order as cumulative amount of drug released Vs. time, first order as log cumulative percentage of drug remaining vs. time, And Higuchi’s model as cumulative percentage of drug released vs. square root of time.

Evaluations Of Transdermal Patches

Thickness uniformity

The thickness of the formulated film was measured at 3 different points using a Vernier calliper and average thickness was calculated.

Folding endurance

It was measured manually a strip of film 1cm² was cut and repeatedly folded at the same place until it break. The number of times the film could be folded at the same place without breaking gives the value of folding endurance.

Percentage moisture absorption

The patches are weighed and placed in desicants containing 100 ml of saturated solution of potassium chloride. After 3 days, the films were taken out and weighed. Then the percentage moisture absorption was calculated

\[
\text{% moisture absorption} = \frac{\text{Final weight} - \text{Initial weight}}{\text{Initial weight}} \times 100
\]

Percentage moisture loss

The patches are weighed and placed in the desicators containing anhydrous calcium chloride. After 3 days, the patches are taken out and weighed. Then the percentage moisture loss was calculated.

\[
\text{% moisture loss} = \frac{\text{Initial weight} - \text{Final weight}}{\text{Initial weight}} \times 100
\]

Drug content

1 cm² area of the films was cut and dissolved in methanol. The volume was made up to 100ml. The absorbance was measured at 274nm. From the absorbance and the dilution factor, the drug content in the film was calculated.

In-vitro drug diffusion studies

In-vitro diffusion studies are carried out using Franz diffusion cell with a 25 ml capacity of receptor compartment. The cellophane membrane was placed between donor and receptor compartments. The patches are cut into size of 2 cm² and placed over the membrane and the receptor compartment was filled with buffer pH 6.8. Then it was placed on the magnetic stirrer and the solution was stirred using magnetic bead at 50 rpm. The sample were withdrawn at time interval of 10 mins, 30mins, 1, 2, 3, 4, 5, 6, 7 and 8 hrs then and it was replaced with same amount of fresh fluid and analyzed for spectrophotomerically at 274 nm.

Drug Release kinetics

To know the release kinetics the data obtained from the in-vitro release profile was fitted into various models like zero, first orders and Higuchi's model. Study the release kinetics; data obtained from in vitro drug release studies were plotted. In various kinetic models: zero order as cumulative amount of drug released Vs. time, first order as log cumulative percentage of drug remaining vs. time, And Higuchi’s model as cumulative percentage of drug released vs. square root of time.

Zero Order

A plot was drawn cumulative drug release vs time in hrs

\[
C = K_0 \cdot t
\]

Where

- \(C \) is the zero-order rate constant concentration/time
- \(t \) is the time in hours.

First Order

A graph of concentration vs. time would yield a straight line with a slope equal to \(K_0 \) and intercept the origin of the axis.

\[
\log C = \log C_0 - kt/2:303
\]

Where

- \(C_0 \) is the initial concentration of drug,
- \(K \) is the first order constant, and \(t \) is the time.

Higuchi's Model

\[
Q = Kt^{1/2}
\]

Where

- \(K \) is the constant design variables of the system
- \(t \) is the time in hours.

Hence, drug release rate is proportional to the reciprocal of the square root of time. To evaluate the drug release with changes in the surface area and the diameter of the tablets, the data were
also plotted using the Hixson-Crowell cube root law

$$3\sqrt{Q_0} - 3\sqrt{Q_t} = kHC - t$$

Where

Q_0 is the amount of drug released in time t
Q_0 is the initial amount of the drug in the tablet

KHC is the rate constant for the Hixson-Crowell rate equation, as the cube root of the percentage of drug remaining in the matrix vs. time.

Korsmeyers-peppes Equation

It is to evaluate the release mechanism in this a plot of Log cumulative percentage of drug release vs Log the exponent n calculated through the slope of the straight line.

$$\frac{Mt-M_\infty}{M_\infty} = Kt^n$$

Where

Mt/M_∞ = The fractional solute release.
t = the release time.
K = kinetic constant characteristic of the drug

Stability Studies

The best formulation was tested for its stability. This formulation was stored three temperatures at 4° ± 2°, 25° ± 2°/60% RH ± 5% RH and 37° ± 2°/65% RH ± 5% RH in humidity control oven. After 45 days the sample was evaluated for the physical appearance, entrapment efficiency, and in-vitro drug release was determined by spectrophotometrically.

CONCLUSION

The present study revealed that Slurry method followed by evaporation in rotary evaporator produced Aceclofenac loaded proniosomes. The formulation containing non-ionic surfactant and cholesterol with 1:2 ratios is found to be better when it’s characterized for various pharmaceutical characters. The entrapment study also showed that the significant amount of drug was entrapped in proniosomal powder. The optimized proniosomes formulation showed maximum release at 8th hr. The formulation was incorporated into HPMC transdermal patch respectively. The incorporation of powder into patches showed more sustained release in the formulation with ratio of 1:2 of cholesterol and non-ionic surfactant. The release kinetics analysis indicated that most of the formulations fit into Zero order & release mechanism was based on non-fickian diffusion. In conclusion, the novel proniosomal formulations of Aceclofenac Sodium could be used for transdermal delivery in better treatment of rheumatoid arthritis. The results of stability study showed no significant alteration in physical and chemical parameters. Further studies using animal model will throw more light on the effectiveness of the formulation.

REFERENCES

