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In this paper, we construct a special   kind of   g-splines,  which are the solution of ( 0, 1, 3, 4 )- 
interpolation problem : Let Δ:  0 = �� < �� <  . . .   < ���� < ��   = 1 be a partition of the interval I=[0,1] 

with ���� − �� = ℎ�  , � = �(1)� − 1 and a set of real numbers {��
(�)

},  k=0(1)n where q = 0,1,3,4. Now 
we solve the problem and proves convergence theorems that satisty the theory of best approximation using 
spline polynomials of degree 5&6. 
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INTRODUCTION 
 
Spline interpolation method, as applied to the solution of 
differential equation employ some from approximating 
function such as polynomials to approximate the solution by 
evaluating the function for sufficient number of points in the 
domain of the solution. Spline functions are a good tool for the 
numerical approximation of functions on one hand and they 
suggest new challenging and rewarding problem’s on the other 
hand. Piecewise linear functions as well as step functions have 
along been important theoretical and practical tools for 
approximation of function. Lacunary interpolation by splines 
appears whenever observation gives scattered or irregular 
information about a function and its derivatives. The data in the 
problem of lacunary interpolation has also values of the 
functions and its derivatives but without Hermite conditions 
that only consecutive derivative is used at each node. Spline 
function are arise in many problems of mathematical Physics 
such as viscoelasticity, hydrodynamics, electromagnetic theory, 
mixed boundary problems in mathematical physics, biology 
and Engineering. 
 
Th Fawzy ( [3] [4] ) constructed special kinds of lacunary 

quintic g-splines and proved that for functions � ∈ �(�) the 
method converges faster that investigated by A.K. Verma[1] 

and for functions  � ∈ �(�)  the order of approximation is the 
same as the best order of approximation using quintic g- 
splines. Saxena and Tripathi [ 7  ] have studied splines methods 

for solving the (0,1,3) interpolation problem. They have used 

spline interpolants of degree six for functions f ∈ �(�) to solved 
the problem. R.S.Misra and K.K. Mathur [2] solved lacunary 
interpolation  by splines  (0;0 2,3) and(0;0,2,4) cases. During 
the past twentieth both theories of splines and experiences with 
their use in numerical analysis have undergone a considerable 
degree of development. According to Fawzy [3 ] the interest in 
spline function is due to the fact that spline function are a good 
tool for the numerical approximation of functions. The 
collection of polynomials that form the curve of polynomials 
that form the curve is collectively referred to as “the spline”. 
The traditional and constrained cubic splines are few different 
groups of the same family. The group of traditional cubic 
splines can furthermore be divided into sub group natural, 
parabolic, runout, cubic run-out and damped cubic splines. The 
natural cubic spline is by far the most popular and widely used 
version of the cubic splines family. Spline functions are used in 
many areas such as interpolation, data fitting, numerical 
solution of ordinary partial differential equation and also 
numerical solution of integral equations Lacunary interpolation 
by splines appears function about a function and its derivatives 
but without Hermite condition in which consecutive derivatives 
are used at each nodes, Several researchers have studied the use 
of spline to solve such interpolation [5 ,8 , 9 ,10 , 11 ] One uses 
polynomial for approximation because they can be evaluated. 
cubic spline interpolation is the most common piecewise 
polynomial method and is referred as “piecewise” since a 
unique polynomial is fitted between each pair of data points. 
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In addition to the paper mentioned above dealing with best 
interpolation on approximation by splines there were also few 
papers that deal with constructive properties of space of splines 
interpolation. In my earlier work [6] [12] [13] [14] some kinds 
of lacunary interpolation by g-splines have been investigated. 
In this paper we will continue to discuss the problem. 
 
This paper is organized as follows- In Section 2, we construct a  
lacunary interpolation (0,1,3, 4) through g-spline of degree six. 
In section 3, we construct almost quintic spline interpolant – ( 
0, 1, 3, 4).  we establish the convergence behavior of  

Interpolatory polynomials for f ∈ �(�) and f ∈ �(�)  here  we 
also  define a Lemma and theorems about  spline method 
converges faster  than the earlier investigations. 
 

spline interpolant ( 0, 1,3, 4 ) for f ∈ �(�)(�) 
 
LetΔ:  0 = �� < �� <  . . .   < ���� < ��   = 1 
be a partition of the interval I = [0,1] with ���� − �� = ℎ�  , 
� = �(1)� − 1.  
 
And ��,Δ be a piecewise polynomial of degree  ≤  6,which is a 
solution of             ( 0,1,3,4 )- interpolation for functions� ∈

�(�)[��,��] in the form :  
 

(2.1)	s�,Δ(x)≡ s�,�(x)=	Σ���
� ��,�

(�)

�!
(x− x�)

�,x� ≤ x ≤ x��� for 

k = O(1)n − 1, 
 

Where ��,�
(�)

 , s are explicitly given below in terms of the 

prescribed data {��
(�)

} ,       j =  0,1,3,4; K = 0(1)n 
 
In particular, for j = 0,1,3,4  
 

(2.2 ) ��,�
(�)

    =  ��
(�)

   ,  k  =  0(1) n-1 and for     j  =  2, 5, 6,  

we have 
 

 (2.3) ��,�
(�)

=
�

��  [���� − �� − 	hf�
(�)

−
��

�!
��

(�)
−

��

�!
��

(�)
−

��

�!
��,�

(�)
−

��

�!
��,�

(�)
]  

 
and 
 
(2.4) 

      ��
(�)

  =	
���

��
 

�

�� [{���� − �� − 	hf�
(�)

−
��

�!
��

(�)
−

��

�!
��

(�)
}−

�

�
�	����

(�)
− ��

(�)
− 	

��

�!
��

(�)
−

��

�!
	��

(�)
� + ℎ(�)�����

(�)
− ��

(�)
−

h��
(�)� −

���

�!
	ℎ(�)	(	����

(�)
− ��

(�)
	)	]  

 

(2.5)      ��
(�)

  =− 	
���

��
 

�

��  [{���� − �� − 	hf�
(�)

−
��

�!
��

(�)
−

��

�!
��

(�)
}−

�

�
�	����

(�)
− ��

(�)
− 	

��

�!
��

(�)
−

��

�!
	��

(�)
� + ℎ(�)�����

(�)
−

��
(�)

− h��
(�)� −

���

�.�!
	ℎ(�)	(	����

(�)
− ��

(�)
}	] 

  

The coefficients	��,�
(�)

, j = 2,5,6 have been determined by the 

conditions : 
 
That  

��
(�)

��,�(����)= 	��
(�)

��,���(����),p = 0,1,3,4; 		k =
0(1)	n − 1 
Thus 
 

��,Δ��(�.�,�,�)[I]= �	f∶	�(�) ∈ C(I)	}	,p = 0,1,3,4	�.  
Is a unique piecewise polynomial of degree six  satisfying 
interpolatory conditions (2.2 ). 
 
Lemma 2.1 
 
If  f∈ �(�) [I],  then owing to (2.3) – (2.5) and using Taylor 
‘ s expansion, we have 
 

(2.6)   ���,�
(�)

− ��
(�)

� ≤ ��,�
(�)

ℎ���⍵��(�)	; h	�,			j	= 2,5,6; 	k =

0(1)n − 1	 
 

Where the constant  ��,�
(�)

  are given by : 

��,�
(�)

= 	
���

���
	,��,�

(�)
	= 		

���

���
			and		��,�

(�)
 = 

���

�����
  . 

 

Proof 

For j = 2, 5 and 6, Using Taylor’s expansion from (2.1)-(2.5), 
we have  
 

(2.7)   ���,�
(�)

		��
(�)

� ≤ 	
���

���
		⍵��(�)	; h	�,			 

 (2.8)  ���,�
(�)

− 		��
(�)

� ≤ 	
���

���
	h⍵��(�)	; h	�,			 

(2.9)  ���,�
(�)

− 		��
(�)

� ≤ 	
���

�����
	ℎ(�)	⍵��(�)	; h	�,			 

��,�
(�)

= 	
���

�����
	,��,�

(�)
	= 		

���

���
		,��,�

(�)
 =  

���

���
 . 

 
Theorem 2.1 

Let    f ∈ �(�) (�)   and  	S�,�  ∈ �(�,�,�,�)		[I]   be the unique  
spline interpolant  (0, 1,3, 4 ) given in  ( 2.1 ) -  (2.5 ), 
Then 
 

(2.10)    | �(�)  (f-��,� )  | |  

��	[��	
�,�����]	≤ 	��,�

�
	ℎ������(�),ℎ�,   j =0(1) 6;    k=0 (1) n-1 

 

Where the constants  ��,�
(�)

 ‘s are given by  

 

 ��,�
(�)

 =  
���

�����
  ,   ��,�

(�)
 =  

����

������
  ,     ��,�

(�)
 =  

�����

�����
  ,      ��,�

(�)
 =  

���

����
  

,     ��,�
(�)

 = 
����

���
   ��,�

(�)
 = 

����

���
,	��,�

(�)
 = 

���

���
  . 

 
 Proof  
 
      For  k = 0(1)n-1 ,  j = 0(1)6                                                                                             
| f (x) -  ��,�  |  ≤  | f (x) -  �� (x)  |                                                                                   

≤    	Σ���
� 				

|�(�)(��)���
(�)

|	�(�)	

�!
  +  

|�(�)(��)���
(�)

|	�(�)	

�!
 

 
 
Where ��	  <   ��   < 	����	 Using Lemma 2.1 and the 

definition of the modulus of continuity of �(�)(x), we obtain 
 

(2.11)            ��(�) − 	��(�)	� ≤ 	
���

�����
	ℎ(�)	⍵��(�)	; h	�,			 
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(2.12)            ��(�)(�)− 		S�
(�)(x)� ≤ 	

����

������
	ℎ(�)	⍵��(�)	; h	�,			 

(2.13)            ��(�)(�)− 		S�
(�)(x)� ≤ 	

�����

�����
	ℎ(�)	⍵��(�)	; h	�,			 

(2.14)            ��(�)(�)− 		S�
(�)(x)� ≤ 	

���

����
	ℎ(�)	⍵��(�)	; h	�,			 

(2.15)           ��(�)(�)− 		S�
(�)(x)� ≤ 	

����

���
	ℎ(�)	⍵��(�)	; h	�,			 

(2.16)          ��(�)(�)− 		S�
(�)(x)� ≤ 	

����

���
	h	⍵��(�)	; h	�,			 

(2.17)         ��(�)(�)− 		S�
(�)(x)� ≤ 	

���

���
		⍵��(�)	; h	�,			 

 
Using (2.11)-(2.17), completes the Proof of  the Theorem  2.1 
 
Almost Quintic Spline Interpolant  ( 0,1, 3, 4 ) *  for      f 

∈ �(�) (I). 
 
Almost quintic-spline interpolant ( 0,1,3, 4 )*  is a piecewise 
polynomial of degree 5 in each subinterval except in the last 
one, where it is a polynomial of degree  6. In this case, we have 

(3.1)  ��,∆
∗ (�)= 	��,�

∗ (�)	= 		∑
��,�

∗(�)

�!

�
��� (� − ��)

�		,			�� ≤ �	≤

����		,						� = 0(1)� − 2		    
  

 =∑
����,�
∗(�)

�!

�
�	�� (� − ����)

�			,���� ≤ � ≤ ��		,� = � − 1		 

 

The coefficients  ��,�
∗(�)

 are explicitly given in terms of the data. 

 In particular , for K=O(1) n-1, we prescribe  
 

(3.2)    ��,�
∗(�)

  =  ��
(�)

   ,   j  = 0,1, 3, 4 . 

 

For  k  = 0(1)n-2 and   j = 2, 5,  ��,�
∗(�)

   are given by  

K=0(1)n-2, j=2,5 
 

(3.3) ��,�
∗(�)

  = 
��

�� [{���� − �� − 	hf�
(�)

−
��

�!
��

(�)
−

��

�!
��

(�)
}−

	
��

��
		{	����

(�)
− h��

(�)
− 	

��

�!
��

(�)
}]		  

and 

(3.4) ��,�
∗(�)

  = 
��

�
  

�

�� [{���� − �� − 	hf�
(�)

−
��

�!
��

(�)
−

��

�!
��

(�)
}−

	
��

�
		{	����

(�)
− h��

(�)
− 	

��

�!
��

(�)
}]		 

 
          K=n-1,  j=2,5,6 

(3.5) ����,�
∗(�)

  =  
�

�� [ �� − ���� − 	hf���
(�)

−
��

�!
����

(�)
−

��

�!
����

(�)
−

��

�!
		����,�

∗(�)
−

��

�!
	����,�

∗(�)
		]		 

  

(3.6) ����,�
∗(�)

  = 
���

��
  

�

�� [ {	�� − ���� − 	hf���
(�)

−
��

�!
����

(�)
−

��

�!
����

(�)
}−

�

�
	���

(�)
− ����

(�)
− 	

��

�!
����

(�)
−

��

�!
����

(�)
� + 	ℎ��	��

(�)
−

����
(�)

− 	h����
(�)� +

���

�!
	ℎ�{��

(�)
− 	����

(�)
}]		  

 

(3.7) ����,�
∗(�)

  = 
����

��
  

�

�� [ {	�� − ���� − 	hf���
(�)

−
��

�!
����

(�)
−

��

�!
����

(�)
}−

�

�
	���

(�)
− ����

(�)
− 	

��

�!
����

(�)
−

��

�!
����

(�)
� + 	ℎ��	��

(�)
−

����
(�)

− 	h����
(�)� −

���

�.�!
	ℎ�{��

(�)
− 	����

(�)
}]		  

 

Here,     (3.3) and (3.4) are obtained from the condition. 

(3.8)     ��,∆
∗ ∈ �(�) [I] , 

While (3.5)-(3.7) are determined from interpolatory conditions  
(3.2) for  k  =   n-1 in  (3.1). 
 

Analogous to (2.6) for  ∈ �(�) [I] , one can establish  

(3.9)      |		��,�
∗(�)

  -    ��
(�)

| ≤ ��,�
∗(�)

ℎ���⍵ (�(�) , h) , 

 

Where the constants   ��,�
∗(�)

    are given by  

 

��,�
∗(�)

= 	�
�

��
			, � = 2

��

�
			, � = 5

�;          k=0(1)n-2 

��,�
∗(�)

= �
���

����
			, � = 2

���

���
		, � = 5

�;      for  k=n-1 

 
Finally, similar to theorem 2.1 , we have  
 
Theorem  3.1                 
 

Let      f ∈ �(�) [I]  and ��,∆
∗   be the unique almost quintic spline 

interpolant (0, 1, 3, 4 )* , given by (3.1) , then 
 

(3.10)   ��(�)(� − ��,∆
∗ )��∞[��

�,�����]≤ ��,�
∗(�)

ℎ������(�),ℎ�, 

 

Where the constants  ��,�
∗(�)

  are given by  

 
 
 
 
 
 
 
 

CONCLUSION 
 
In this paper, we have studied the existence and uniqueness of 
the  lacunary g-splines 0f degree six and almost quintic spline 
interpolant - (0,1,3,4).Also we conclude that this new technique 
which we have used in the proving of two important theorems 
which are solutions of (0,1,3,4)- interpolation and obtained 

their local approximations with functions belonging to �(�)(I) 

and �(�)(I). Our methods are of lower degree having better 
convergence property than the earlier investigations. 
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