
ISSN: 0976-3031

International Journal of Recent Scientific
Research

Impact factor: 5.114

Volume: 6 Issue: 10

THE PUBLICATION OF
INTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH

http://www.recentscientific.com
E-mail: recentscientific@gmail.com

COMPACT IMPLEMENTATION OF SECURE
CRYPTOGRAPHIC SHA-3 ALGORITHM

Christy Ann Luke

*Corresponding author: Christy Ann Luke
Department of ECE, Mangalam College of Engineering, Kerala, India

ISSN: 0976-3031

RESEARCH ARTICLE

COMPACT IMPLEMENTATION OF SECURE CRYPTOGRAPHIC SHA-3 ALGORITHM

Christy Ann LukeDepartment of ECE, Mangalam College of Engineering, Kerala, India
ARTICLE INFO ABSTRACT

Article History:

Received 16thJuly, 2015
Received in revised form
24thAugust, 2015
Accepted 23rd September, 2015
Published online 28st

October, 2015

Cryptographic hash functions have many security based applications in message authentication, digital
signatures and data integrity. Secure Hash Algorithm-3(SHA-3) is a new cryptographic algorithm that was
selected on Oct 2012 after five year public contest organized by National Institute of Standards and
Technology (NIST), USA. This paper presents a compact and secured design of SHA-3 Algorithm on
Xilinx Field Programmable Gate Array (FPGA) device Virtex-5. The design is logically optimized for
area efficiency by merging Theta, Rho, and Pi steps of algorithm into single step. The security of the
design is also increased by using a 64-bit LFSR. By logically merging these three steps, latency is
reduced and maximum operating frequency of design is enhanced. Comparing the results with the
previously reported FPGA implementations of SHA3-512, this design shows the best throughput per area
(TPA) ratio of 47.Key words:

SHA-3, Cryptography, Security,
Compact Implementation

Copyright © Christy Ann Luke. 2015, This is an open-access article distributed under the terms of the Creative CommonsAttribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work isproperly cited.
INTRODUCTION

There is no doubt about the fact that electronic communication
has revolutionized this world. The world has progressed from
communication with mainly letters written on paper and sent
through the post office to instant communication via
email, chat and social networking websites like Facebook
and Google+. Many communication activities that were
traditionally done via post are now done through electronic
means. These activities include transferring documents,
images, audio and video.

Communication needs to be secure to avoid fraudulent
activities. Documents created by an institution such as
transcripts can be digitally signed; images created by a
camera can be digitally watermarked, all is an effort to
ensure secure communication. These schemes, such as digital
signatures and digital watermarking, utilize a number of
cryptographic primitives. Cryptography is the art of secret
writing. Cryptographic hash functions are primitives or
building blocks utilized in the schemes that are used to provide
information security. The cryptographic hash functions on
their own do not typically provide full information security;
however, they play a critical role in the schemes that do
provide information security. Hence the security and speed
of the cryptographic hash function can significantly impact
the overall security and computational efficiency of an
information security scheme.

Recent secure hash algorithms were found susceptible to
attacks including MD5, SHA-0, SHA-1 and SHA-2. Secure
hashing algorithms take a block of data (message), and return a
fixed size bit string (hash value), such that any change on data
leads to a change on the hash value (digest). This can be
considered as a scenario that describes briefly the mechanism
of the secure hashing algorithm. The long term security of
these algorithms was uncertain, which led to requirement of
new cryptographic hash function. Therefore National Institute
of Standards and Technology (NIST) announced Keccak
algorithm as new secure hash algorithm (SHA-3) in the year
2012 and announced as Federal Information Processing
Standard Publication 202 in April, 2014[FIPS-202, 2014].

Secure Hash Algorithm -3 (Sha-3)

Keccak is recognized as a new Secure Hash Algorithm-3 i.e.
SHA-3[FIPS-202, 2014] announced by NIST. The Keccak-f
permutation is the basic component of Keccak Hash function
and supports 224-bit, 256-bit, 384-bit and 512-bit hash
variants. It consists of number of rounds (nr=12+2l) and each
round is the combination of logical operations and bit
permutations. Keccak is generated from sponge function with
Keccak [r, c] members. It is categorized by these additional
functions i.e, bit rate (r) and capacity (c). The addition of r + c
gives width of the Keccak function permutation and is it is
further limited to values as indicated 25, 50, 100, 200, 400,
800, 1600. The value of r = 25*2l .The Keccak team introduced

Available Online at http://www.recentscientific.com
International Journal
of Recent Scientific

ResearchInternational Journal of Recent Scientific Research
Vol. 6, Issue, 10, pp. 6749-6752, October, 2015

Christy Ann Luke., Compact Implementation of Secure Cryptographic Sha-3 Algorithm

6750 | P a g e

the Keccak [1600] function for SHA-3 proposal with different
values of ’r’ and ’c. Keccak [1600] was selected because of its
increased number of rounds in order to provide improved
security margin. For 256-bit hash value r = 1088 and c = 512.
For 512-bit hash output, the values of r and c are 576 and 1024
respectively [Alia Arshad, Dur-e-Shahwar kundi, Arshad Aziz,
2014].

Initially, the 1600-bit input of the compression function is
stored in the 5x5 state matrix (A) and distributed into twenty
five 64-bit words from A[0,0] to A[4,4] as shown below,

A[0][0]=l[63:0],A[0][1]=l[127:64],A[0][2]=l[191:128],………
…, A[4][4]=l[1599:1536]

Every single compression function of Keccak composed of 24
rounds and each round is sub-divided into five steps i.e. Theta
(ϴ), Rho (ρ) and Pi (π), Chi (χ), and Iota (i) as shown in eq.(1)
to (6).

THETA (ϴ) STEP

C[X] = A[X,0]⊕ A[X,1]⊕ A[X,2]⊕ A[X,3]⊕ A [X,4] , 0≤ X ≤ 4 (1)

D[X] = C[X-1] ⊕ ROT(C[X+1, 1], 0 ≤ X ≤ 4
(2)
A[X, Y] = A[X, Y] ⊕ D[X], 0 ≤ X, Y ≤ 4
(3)

Rho (Ρ) And Pi (Π) Step

B [Y, 2X+3Y] = ROT (A[X,Y], r[X,Y]) , 0 ≤ X, Y ≤ 4
(4)

Chi (Χ) Step

A[X, Y] = B[X, Y]⊕ ((NOT B[X+1,Y]) AND B[X+2,Y]) , 0≤ X, Y ≤ 4 (5)

Iota (I) Step

A [0, 0] = A [0, 0]⊕ RC (6)

The above five steps of compression function are the core of
SHA-3. In the above equations all operations within indices are
performed modulo 5. The complete permutation state array is
denoted by 5x5 state matrix (A) and A[x, y] denotes a
particular 64-bit word in that state. B[x, y], C[x] and D[x] are
intermediate variables. Other operations include bitwise XOR,
NOT and AND logical operations. In eq. (2) and (4) ROT is
used to represent a bit-rotation operation. The constant r[x, y]
provides the rotation bit scheme for the updated bits of A[x, y],
and the RC is a 64-bit word that is unique for each round of the
compression function.

The SHA-3 hash function operation consists of three phases
that include: initialization, absorbing and squeezing.
Initialization is simply the initialization of state matrix (A) with
all zeros. In the absorbing phase each r-bit (bitrate) wide block
of the message is XORed with the current matrix state and 24

rounds of the SHA-3 compression function are performed.
After absorbing all blocks of the input message, there comes
the squeezing phase. In this phase the resultant state matrix of
the absorbing phase is simply truncated to the desired length of
the output hash [Alia Arshad, Dur-e-Shahwar kundi, Arshad
Aziz, 2014].

Architecture of Sha -3

An iterative design of SHA-3 512-bit for compact
implementation [Alia Arshad, Dur-e-Shahwar kundi, Arshad
Aziz, 2014] is shown below. The architecture has 128-bit input
data just to save extra input bits. The next block in proposed
design is padder block which pads the required number of zeros
with the input data in order to form 1600-bit state and then
inversion is applied on each byte. The output from the padder
block is forwarded to 2 x 1.Multiplexer (MUX) which drives
the output data from padder to the compression-box of the
architecture and selects the input data for the first round and
feed-back data for other twenty three rounds of Keccak with
the help of controlling signal (Ctrl 1).

When Ctrl 1 is low, MUX select the input data and at high,
MUX will select the feedback data. First padded message is
directly copied to Reg A which previously initialized with all
zeroes and resulting bits are forward to Compression-Box (C
Box).

Table1 Cyclic Shift Offset for KECCAK

X=3 X=4 X=0 X=1 X=2
Y=2 25 39 3 10 43
Y=1 55 20 36 44 6
Y=0 28 27 0 1 62
Y=4 56 14 18 2 61
Y=3 21 8 41 45 15

Table.2 RC values in Hexadecimal

RC[0] = 0x0000000000000001 RC[12] =
0x000000008000808B

RC[1] = 0x0000000000008082 RC[13] =
0x800000000000008B

RC[2] = 0x800000000000808A RC[14] =
0x8000000000008089

RC[3] = 0x8000000080008000 RC[15] =
0x8000000000008003

RC[4] = 0x000000000000808B RC[16] =
0x8000000000008002

RC[5] = 0x0000000080000001 RC[17] =
0x8000000000000080

RC[6] = 0x8000000080008081 RC[18] =
0x000000000000800A

RC[7] = 0x8000000000008009 RC[19] =
0x800000008000000A

RC[8] = 0x000000000000008A RC[20] =
0x8000000080008081

RC[9] = 0x0000000000000088 RC[21] =
0x8000000000008080

RC[10] = 0x0000000080008009 RC[22] =
0x0000000080000001

RC[11] = 0x000000008000000A RC[23] =
0x8000000080008008

International Journal of Recent Scientific Research Vol. 6, Issue, 10, pp. 6749-6752, October, 2015

6751 | P a g e

It is basically the implementation of compression function in
SHA-3 algorithm which comprises of theta (ϴ),

rho (ρ), pi (π), chi (χ) and iota (i) step. For performance, the
design is optimized by implementing rho (ρ), pi (π) and chi (χ)
steps as a single step. After completing 24 iterations, final
output is forwarded to Reg B for storage in order to
synchronize the data-path. The last component in the
architecture is Truncating component where inversion per byte
is performed on the output bits and then truncated to the
desired length of hash output.

Proposed Implementation of Sha -3

The Proposed architecture of SHA-3 Algorithm involves two
phases.

1. Logically combining theta (ϴ), rho (ρ) and pi (π) steps
of SHA-3 compression function.

2. Increasing the security of SHA-3 algorithm by using
Linear Feedback Shift Register.

Logically combining theta (ϴ), rho (ρ) and pi (π) steps

In the existing method, Keccak algorithm consists of five steps.
In these five steps, three steps, i.e., rho (ρ) and pi (π) steps are
merged together and given to chi (γ) step to form a single step.
In theta (ϴ) step, two intermediate matrixes’ like C[x] and D[x]
are used. These intermediate matrixes’s can be avoided and can
form a direct equation for matrix A in Theta step. This equation
of matrix A can be directly given to rho and pi step and these
three steps can be written in single equation.

To combine the intermediate matrixes, C[x] is taken (i.e,
eq.(1)). C[x-1] and C[x+1] is found using eq. (1). D[x] is
obtained by combining eq. (7) and eq. (8)

C[X] = A[X,0]⊕ A[X,1]⊕ A[X,2]⊕ A[X,3]⊕ A[X,4] (1)

C[X-1] = A[X-1,0]⊕ A[X-1,1]⊕ A[X-1,2]⊕ A[X-1,3]⊕ A
[X-1,4] (7)

C[X+1] = A[X+1,0]⊕ A[X+1,1]⊕ A[X+1,2]⊕ A[X+1,3]⊕
A [X+1,4] (8)
D[X] = C[X-1]⊕ ROT(C[X+1,1]) (2)

D[X] = (A[X-1,0]⊕ A[X-1,1] ⊕ A[X-1,2] ⊕ A[X-1,3] ⊕ A
[X-1,4]) ⊕ (ROT (A[(X+1,0),1])⊕ ROT (A[(X+1,1),1]) ⊕
ROT (A[(X+1,2),1]) ⊕ ROT (A[(X+1,3),1]) ⊕ ROT (A
[(X+1,4),1])) (9)

Eq.(9) can be applied in eq.(3) to obtain A[x,y] and matrix
C[x] and D[x] can be avoided

A[X, Y] = A[X, Y]⊕ D[X] (3)

A[X, Y] = {A[X, Y]} ⊕ {(A[X-1,0]⊕ A[X-1,1] ⊕ A[X-1,2]⊕ A[X-1,3] ⊕ A [X-1,4]) ⊕ (ROT (A[(X+1,0),1])⊕ ROT
(A[(X+1,1),1]) ⊕ ROT (A[(X+1,2),1]) ⊕ ROT (
A[(X+1,3),1])⊕ROT(A[(X+1,4),1])) (10)

Let’s assume, m=x-1 and n=x+1

A[X, Y] = {A[X, Y]} ⊕ {(A[m,0]⊕ A[m,1] ⊕ A[m,2] ⊕
A[m,3]⊕ A [m,4])⊕ (ROT (A[(n,0),1])⊕ ROT (A[(n,1),1])⊕ ROT (A[(n,2),1]) ⊕ ROT (A[(n,3),1]) ⊕ ROT (A
[(n,4),1]))}
(11)

A[x,y] obtained from theta step can be applied to rho and pi
step to obtain B[x,y]

B [Y, 2X+3Y] = ROT (A[X,Y], r[X,Y]) (4)

B [Y, 2X+3Y] = {ROT (A[X,Y], r[X,Y]) }⊕ {ROT (A[m,0],
r[X,Y]) ⊕ ROT (A[m,1], r[X,Y]) ⊕ ROT (A[m,2], r[X,Y])⊕ ROT (A[m,3], r[X,Y]) ⊕ ROT (A[m,4], r[X,Y]) } ⊕
(ROT (ROT (A[(n,0),1]))⊕ ROT (ROT (A[(n,1),1])) ⊕ROT
(ROT (A[(n,2),1])) ⊕ ROT (ROT (A[(n,3),1])) ⊕ ROT ROT
(A [(n,4),1])))} (12)

As the theta, rho and pi steps are merged to form B[x,y] by
avoiding the intermediate matrixes. Thus area can be reduced
and the speed of the system can be increased.

Linear Feedback Shift Register (LFSR)

In the existing method, the third step of the compression box,
i.e., iota step, consist of many round constants. As these values
are constant in all operations, to increase the security instead of
using these values, a concept of password can be introduced.
This can be done by using 64-bit LFSR.

A password which can be a four digit or five digit secret
numbers can be used while transferring messages from one end
to another. This four or five digit password can be converted to
64-bit data and is given to 64-bit LFSR. The value generated
from the LFSR can be used instead of round constants in iota
step for each round. Thus the hash value of the message can be
obtained.

A linear feedback shift register (LFSR) is the heart of any
digital system that relies on pseudorandom bit sequences
(PRBS), with applications ranging from cryptography and bit-
error-rate measurements, to wireless communication systems
employing spread spectrum or CDMA techniques. The most

Figure 1 Existing 128 bit Keccak sequential architecture

International Journal of Recent Scientific Research Vol. 6, Issue, 10, pp. 6749-6752, October, 2015

6751 | P a g e

It is basically the implementation of compression function in
SHA-3 algorithm which comprises of theta (ϴ),

rho (ρ), pi (π), chi (χ) and iota (i) step. For performance, the
design is optimized by implementing rho (ρ), pi (π) and chi (χ)
steps as a single step. After completing 24 iterations, final
output is forwarded to Reg B for storage in order to
synchronize the data-path. The last component in the
architecture is Truncating component where inversion per byte
is performed on the output bits and then truncated to the
desired length of hash output.

Proposed Implementation of Sha -3

The Proposed architecture of SHA-3 Algorithm involves two
phases.

1. Logically combining theta (ϴ), rho (ρ) and pi (π) steps
of SHA-3 compression function.

2. Increasing the security of SHA-3 algorithm by using
Linear Feedback Shift Register.

Logically combining theta (ϴ), rho (ρ) and pi (π) steps

In the existing method, Keccak algorithm consists of five steps.
In these five steps, three steps, i.e., rho (ρ) and pi (π) steps are
merged together and given to chi (γ) step to form a single step.
In theta (ϴ) step, two intermediate matrixes’ like C[x] and D[x]
are used. These intermediate matrixes’s can be avoided and can
form a direct equation for matrix A in Theta step. This equation
of matrix A can be directly given to rho and pi step and these
three steps can be written in single equation.

To combine the intermediate matrixes, C[x] is taken (i.e,
eq.(1)). C[x-1] and C[x+1] is found using eq. (1). D[x] is
obtained by combining eq. (7) and eq. (8)

C[X] = A[X,0]⊕ A[X,1]⊕ A[X,2]⊕ A[X,3]⊕ A[X,4] (1)

C[X-1] = A[X-1,0]⊕ A[X-1,1]⊕ A[X-1,2]⊕ A[X-1,3]⊕ A
[X-1,4] (7)

C[X+1] = A[X+1,0]⊕ A[X+1,1]⊕ A[X+1,2]⊕ A[X+1,3]⊕
A [X+1,4] (8)
D[X] = C[X-1]⊕ ROT(C[X+1,1]) (2)

D[X] = (A[X-1,0]⊕ A[X-1,1] ⊕ A[X-1,2] ⊕ A[X-1,3] ⊕ A
[X-1,4]) ⊕ (ROT (A[(X+1,0),1])⊕ ROT (A[(X+1,1),1]) ⊕
ROT (A[(X+1,2),1]) ⊕ ROT (A[(X+1,3),1]) ⊕ ROT (A
[(X+1,4),1])) (9)

Eq.(9) can be applied in eq.(3) to obtain A[x,y] and matrix
C[x] and D[x] can be avoided

A[X, Y] = A[X, Y]⊕ D[X] (3)

A[X, Y] = {A[X, Y]} ⊕ {(A[X-1,0]⊕ A[X-1,1] ⊕ A[X-1,2]⊕ A[X-1,3] ⊕ A [X-1,4]) ⊕ (ROT (A[(X+1,0),1])⊕ ROT
(A[(X+1,1),1]) ⊕ ROT (A[(X+1,2),1]) ⊕ ROT (
A[(X+1,3),1])⊕ROT(A[(X+1,4),1])) (10)

Let’s assume, m=x-1 and n=x+1

A[X, Y] = {A[X, Y]} ⊕ {(A[m,0]⊕ A[m,1] ⊕ A[m,2] ⊕
A[m,3]⊕ A [m,4])⊕ (ROT (A[(n,0),1])⊕ ROT (A[(n,1),1])⊕ ROT (A[(n,2),1]) ⊕ ROT (A[(n,3),1]) ⊕ ROT (A
[(n,4),1]))}
(11)

A[x,y] obtained from theta step can be applied to rho and pi
step to obtain B[x,y]

B [Y, 2X+3Y] = ROT (A[X,Y], r[X,Y]) (4)

B [Y, 2X+3Y] = {ROT (A[X,Y], r[X,Y]) }⊕ {ROT (A[m,0],
r[X,Y]) ⊕ ROT (A[m,1], r[X,Y]) ⊕ ROT (A[m,2], r[X,Y])⊕ ROT (A[m,3], r[X,Y]) ⊕ ROT (A[m,4], r[X,Y]) } ⊕
(ROT (ROT (A[(n,0),1]))⊕ ROT (ROT (A[(n,1),1])) ⊕ROT
(ROT (A[(n,2),1])) ⊕ ROT (ROT (A[(n,3),1])) ⊕ ROT ROT
(A [(n,4),1])))} (12)

As the theta, rho and pi steps are merged to form B[x,y] by
avoiding the intermediate matrixes. Thus area can be reduced
and the speed of the system can be increased.

Linear Feedback Shift Register (LFSR)

In the existing method, the third step of the compression box,
i.e., iota step, consist of many round constants. As these values
are constant in all operations, to increase the security instead of
using these values, a concept of password can be introduced.
This can be done by using 64-bit LFSR.

A password which can be a four digit or five digit secret
numbers can be used while transferring messages from one end
to another. This four or five digit password can be converted to
64-bit data and is given to 64-bit LFSR. The value generated
from the LFSR can be used instead of round constants in iota
step for each round. Thus the hash value of the message can be
obtained.

A linear feedback shift register (LFSR) is the heart of any
digital system that relies on pseudorandom bit sequences
(PRBS), with applications ranging from cryptography and bit-
error-rate measurements, to wireless communication systems
employing spread spectrum or CDMA techniques. The most

Figure 1 Existing 128 bit Keccak sequential architecture

International Journal of Recent Scientific Research Vol. 6, Issue, 10, pp. 6749-6752, October, 2015

6751 | P a g e

It is basically the implementation of compression function in
SHA-3 algorithm which comprises of theta (ϴ),

rho (ρ), pi (π), chi (χ) and iota (i) step. For performance, the
design is optimized by implementing rho (ρ), pi (π) and chi (χ)
steps as a single step. After completing 24 iterations, final
output is forwarded to Reg B for storage in order to
synchronize the data-path. The last component in the
architecture is Truncating component where inversion per byte
is performed on the output bits and then truncated to the
desired length of hash output.

Proposed Implementation of Sha -3

The Proposed architecture of SHA-3 Algorithm involves two
phases.

1. Logically combining theta (ϴ), rho (ρ) and pi (π) steps
of SHA-3 compression function.

2. Increasing the security of SHA-3 algorithm by using
Linear Feedback Shift Register.

Logically combining theta (ϴ), rho (ρ) and pi (π) steps

In the existing method, Keccak algorithm consists of five steps.
In these five steps, three steps, i.e., rho (ρ) and pi (π) steps are
merged together and given to chi (γ) step to form a single step.
In theta (ϴ) step, two intermediate matrixes’ like C[x] and D[x]
are used. These intermediate matrixes’s can be avoided and can
form a direct equation for matrix A in Theta step. This equation
of matrix A can be directly given to rho and pi step and these
three steps can be written in single equation.

To combine the intermediate matrixes, C[x] is taken (i.e,
eq.(1)). C[x-1] and C[x+1] is found using eq. (1). D[x] is
obtained by combining eq. (7) and eq. (8)

C[X] = A[X,0]⊕ A[X,1]⊕ A[X,2]⊕ A[X,3]⊕ A[X,4] (1)

C[X-1] = A[X-1,0]⊕ A[X-1,1]⊕ A[X-1,2]⊕ A[X-1,3]⊕ A
[X-1,4] (7)

C[X+1] = A[X+1,0]⊕ A[X+1,1]⊕ A[X+1,2]⊕ A[X+1,3]⊕
A [X+1,4] (8)
D[X] = C[X-1]⊕ ROT(C[X+1,1]) (2)

D[X] = (A[X-1,0]⊕ A[X-1,1] ⊕ A[X-1,2] ⊕ A[X-1,3] ⊕ A
[X-1,4]) ⊕ (ROT (A[(X+1,0),1])⊕ ROT (A[(X+1,1),1]) ⊕
ROT (A[(X+1,2),1]) ⊕ ROT (A[(X+1,3),1]) ⊕ ROT (A
[(X+1,4),1])) (9)

Eq.(9) can be applied in eq.(3) to obtain A[x,y] and matrix
C[x] and D[x] can be avoided

A[X, Y] = A[X, Y]⊕ D[X] (3)

A[X, Y] = {A[X, Y]} ⊕ {(A[X-1,0]⊕ A[X-1,1] ⊕ A[X-1,2]⊕ A[X-1,3] ⊕ A [X-1,4]) ⊕ (ROT (A[(X+1,0),1])⊕ ROT
(A[(X+1,1),1]) ⊕ ROT (A[(X+1,2),1]) ⊕ ROT (
A[(X+1,3),1])⊕ROT(A[(X+1,4),1])) (10)

Let’s assume, m=x-1 and n=x+1

A[X, Y] = {A[X, Y]} ⊕ {(A[m,0]⊕ A[m,1] ⊕ A[m,2] ⊕
A[m,3]⊕ A [m,4])⊕ (ROT (A[(n,0),1])⊕ ROT (A[(n,1),1])⊕ ROT (A[(n,2),1]) ⊕ ROT (A[(n,3),1]) ⊕ ROT (A
[(n,4),1]))}
(11)

A[x,y] obtained from theta step can be applied to rho and pi
step to obtain B[x,y]

B [Y, 2X+3Y] = ROT (A[X,Y], r[X,Y]) (4)

B [Y, 2X+3Y] = {ROT (A[X,Y], r[X,Y]) }⊕ {ROT (A[m,0],
r[X,Y]) ⊕ ROT (A[m,1], r[X,Y]) ⊕ ROT (A[m,2], r[X,Y])⊕ ROT (A[m,3], r[X,Y]) ⊕ ROT (A[m,4], r[X,Y]) } ⊕
(ROT (ROT (A[(n,0),1]))⊕ ROT (ROT (A[(n,1),1])) ⊕ROT
(ROT (A[(n,2),1])) ⊕ ROT (ROT (A[(n,3),1])) ⊕ ROT ROT
(A [(n,4),1])))} (12)

As the theta, rho and pi steps are merged to form B[x,y] by
avoiding the intermediate matrixes. Thus area can be reduced
and the speed of the system can be increased.

Linear Feedback Shift Register (LFSR)

In the existing method, the third step of the compression box,
i.e., iota step, consist of many round constants. As these values
are constant in all operations, to increase the security instead of
using these values, a concept of password can be introduced.
This can be done by using 64-bit LFSR.

A password which can be a four digit or five digit secret
numbers can be used while transferring messages from one end
to another. This four or five digit password can be converted to
64-bit data and is given to 64-bit LFSR. The value generated
from the LFSR can be used instead of round constants in iota
step for each round. Thus the hash value of the message can be
obtained.

A linear feedback shift register (LFSR) is the heart of any
digital system that relies on pseudorandom bit sequences
(PRBS), with applications ranging from cryptography and bit-
error-rate measurements, to wireless communication systems
employing spread spectrum or CDMA techniques. The most

Figure 1 Existing 128 bit Keccak sequential architecture

Christy Ann Luke., Compact Implementation of Secure Cryptographic Sha-3 Algorithm

6752 | P a g e

commonly used linear function of single bits is exclusive-or
(XOR). Thus, an LFSR is most often a shift register whose
input bit is driven by the XOR of some bits of the overall shift
register value. The maximum-length of an LFSR sequence is2 − 1 , where n is the degree of polynomial.
The polynomial equation for 64-bit LFSR is,+ + + + 1 (13)

By using LFSR the security of the performance of the system
can be increased.

Modified 128 bit Keccak sequential architecture

IMPLEMENTATION RESULTS AND
COMPARISON

The designs has been implemented and verified on Xilinx ISI
Design Suite, System Edition 14.2 tool. The targeted device for
the implementation was a Xilinx Virtex 5 (xc5vlx330t-
2ff1738). The technique that was propose is unique and
provides a throughput of 3.32 Gbps and TPA of 46.29 on
Virtex-5 FPGA as compare to previously published results as
given in table 3. The implementation aim was to get maximum
throughput by tightening the timing constraints. The throughput
(TP) of the given design can be calculated by eq. (14).

Throughput= ˟Frequency (14)

where the block size of the message in bits is given by Block
Size i.e. 576 for 512-bit variant and latency is the number of
clock cycles required for a valid hash output.

CONCLUSION
Secure Hash Algorithm-3 (SHA-3) is a new cryptographic
algorithm organized by National Institute of Standards and
Technology (NIST). In this paper, a compact and secured
design of SHA-3 Algorithm on Xilinx Field Programmable
Gate Array (FPGA) device Virtex-5 is presented. The design is
logically optimized for area efficiency by merging Theta, Rho,
and Pi steps of algorithm into single step. The security of the
design is also increased by using a 64-bit LFSR instead of
round constants in the design. By logically merging these three
steps, latency is reduced and maximum operating frequency of
design is improved. Comparing the results with the previously
reported FPGA implementations of SHA3-512, this design
shows the best throughput per area (TPA) ratio of 46. This
implementation can be used in giga-bit communication
networks due to its improved throughput.

References

1. Alia Arshad, Dur-e-Shahwar kundi, Arshad Aziz,
“Compact Implementation of SHA3-512 on FPGA”
Conference on Information Assurance and Cyber
Security (CIACS), 2014.

2. X. Wang,, D. Feng, X. Lai, and H. Yu, “Collisions for
hash functions md4, md5, haval-128 and ripemd,”
IACR, August 2004.

3. Schneier, Bruce, "Cryptanalysis of MD5 and SHA:
Time for a New Standard". Computerworld, Retrieved
15 October 2014.

4. K. Gaj, E. Homsirikamol, and M. Rogawski,
“Comprehensive comparison of hardware performance
of fourteen round 2 sha-3 candidates with 512-bit
outputs using field programmable gate arrays,” 2nd SHA-
3 Candidate Conference, pp 23-24, August 2010.

5. B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne,
M. O Neill, and W.P. Marnane, “FPGA
implementations of the round two sha-3 candidates,”
The second SHA-3 Candidate Conference, 2010.

6. FIPS-202, “Federal information processing standards
publication fips-202, secure hash algorithm-3 (sha-3),”
2014.

7. S. Kerckhof, F. Durvaux, N.V. Charvillon, F.
Regazzoni, G.M. de Dormale, and F.X. Standaert,
“Compact fpga implementations of the five sha-3
finalists,” Springer Berlin Heidelberg, vol. 7079, pp.
217–233, 2011.

8. A. Akin, A. Aysu, O.C. Ulusel, E. Savas, “Efficient
hardware implementations of high throughput sha-3
candidates keccak, luffa and blue mid night wish for
single- and multi-message hashing,” ACM, pp. 168–177,
2010.

Figure 2 Modified 128 bit Keccak sequential architecture

Table 3 Obtained results

Implementation Platform Area Frequency
(mhz)

Throughput
(gbps)

Tpa

This work Virtex 5 81 508.182 3.75 46.29
[1] Virtex 5 240 301.02 7.2 30.1
[7] Virtex 6 188 285 0.08 0.425
[8] Virtex 4 2024 143 6.07 2.99
[4] Virtex 5 1229 238.4 1.08 0.879

How to cite this article:

Christy Ann Luke.2015, Compact Implementation of Secure Cryptographic Sha-3 Algorithm. Int J Recent Sci Res. 6(10), pp.
6749-6752.

Christy Ann Luke., Compact Implementation of Secure Cryptographic Sha-3 Algorithm

6752 | P a g e

commonly used linear function of single bits is exclusive-or
(XOR). Thus, an LFSR is most often a shift register whose
input bit is driven by the XOR of some bits of the overall shift
register value. The maximum-length of an LFSR sequence is2 − 1 , where n is the degree of polynomial.
The polynomial equation for 64-bit LFSR is,+ + + + 1 (13)

By using LFSR the security of the performance of the system
can be increased.

Modified 128 bit Keccak sequential architecture

IMPLEMENTATION RESULTS AND
COMPARISON

The designs has been implemented and verified on Xilinx ISI
Design Suite, System Edition 14.2 tool. The targeted device for
the implementation was a Xilinx Virtex 5 (xc5vlx330t-
2ff1738). The technique that was propose is unique and
provides a throughput of 3.32 Gbps and TPA of 46.29 on
Virtex-5 FPGA as compare to previously published results as
given in table 3. The implementation aim was to get maximum
throughput by tightening the timing constraints. The throughput
(TP) of the given design can be calculated by eq. (14).

Throughput= ˟Frequency (14)

where the block size of the message in bits is given by Block
Size i.e. 576 for 512-bit variant and latency is the number of
clock cycles required for a valid hash output.

CONCLUSION
Secure Hash Algorithm-3 (SHA-3) is a new cryptographic
algorithm organized by National Institute of Standards and
Technology (NIST). In this paper, a compact and secured
design of SHA-3 Algorithm on Xilinx Field Programmable
Gate Array (FPGA) device Virtex-5 is presented. The design is
logically optimized for area efficiency by merging Theta, Rho,
and Pi steps of algorithm into single step. The security of the
design is also increased by using a 64-bit LFSR instead of
round constants in the design. By logically merging these three
steps, latency is reduced and maximum operating frequency of
design is improved. Comparing the results with the previously
reported FPGA implementations of SHA3-512, this design
shows the best throughput per area (TPA) ratio of 46. This
implementation can be used in giga-bit communication
networks due to its improved throughput.

References

1. Alia Arshad, Dur-e-Shahwar kundi, Arshad Aziz,
“Compact Implementation of SHA3-512 on FPGA”
Conference on Information Assurance and Cyber
Security (CIACS), 2014.

2. X. Wang,, D. Feng, X. Lai, and H. Yu, “Collisions for
hash functions md4, md5, haval-128 and ripemd,”
IACR, August 2004.

3. Schneier, Bruce, "Cryptanalysis of MD5 and SHA:
Time for a New Standard". Computerworld, Retrieved
15 October 2014.

4. K. Gaj, E. Homsirikamol, and M. Rogawski,
“Comprehensive comparison of hardware performance
of fourteen round 2 sha-3 candidates with 512-bit
outputs using field programmable gate arrays,” 2nd SHA-
3 Candidate Conference, pp 23-24, August 2010.

5. B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne,
M. O Neill, and W.P. Marnane, “FPGA
implementations of the round two sha-3 candidates,”
The second SHA-3 Candidate Conference, 2010.

6. FIPS-202, “Federal information processing standards
publication fips-202, secure hash algorithm-3 (sha-3),”
2014.

7. S. Kerckhof, F. Durvaux, N.V. Charvillon, F.
Regazzoni, G.M. de Dormale, and F.X. Standaert,
“Compact fpga implementations of the five sha-3
finalists,” Springer Berlin Heidelberg, vol. 7079, pp.
217–233, 2011.

8. A. Akin, A. Aysu, O.C. Ulusel, E. Savas, “Efficient
hardware implementations of high throughput sha-3
candidates keccak, luffa and blue mid night wish for
single- and multi-message hashing,” ACM, pp. 168–177,
2010.

Figure 2 Modified 128 bit Keccak sequential architecture

Table 3 Obtained results

Implementation Platform Area Frequency
(mhz)

Throughput
(gbps)

Tpa

This work Virtex 5 81 508.182 3.75 46.29
[1] Virtex 5 240 301.02 7.2 30.1
[7] Virtex 6 188 285 0.08 0.425
[8] Virtex 4 2024 143 6.07 2.99
[4] Virtex 5 1229 238.4 1.08 0.879

How to cite this article:

Christy Ann Luke.2015, Compact Implementation of Secure Cryptographic Sha-3 Algorithm. Int J Recent Sci Res. 6(10), pp.
6749-6752.

Christy Ann Luke., Compact Implementation of Secure Cryptographic Sha-3 Algorithm

6752 | P a g e

commonly used linear function of single bits is exclusive-or
(XOR). Thus, an LFSR is most often a shift register whose
input bit is driven by the XOR of some bits of the overall shift
register value. The maximum-length of an LFSR sequence is2 − 1 , where n is the degree of polynomial.
The polynomial equation for 64-bit LFSR is,+ + + + 1 (13)

By using LFSR the security of the performance of the system
can be increased.

Modified 128 bit Keccak sequential architecture

IMPLEMENTATION RESULTS AND
COMPARISON

The designs has been implemented and verified on Xilinx ISI
Design Suite, System Edition 14.2 tool. The targeted device for
the implementation was a Xilinx Virtex 5 (xc5vlx330t-
2ff1738). The technique that was propose is unique and
provides a throughput of 3.32 Gbps and TPA of 46.29 on
Virtex-5 FPGA as compare to previously published results as
given in table 3. The implementation aim was to get maximum
throughput by tightening the timing constraints. The throughput
(TP) of the given design can be calculated by eq. (14).

Throughput= ˟Frequency (14)

where the block size of the message in bits is given by Block
Size i.e. 576 for 512-bit variant and latency is the number of
clock cycles required for a valid hash output.

CONCLUSION
Secure Hash Algorithm-3 (SHA-3) is a new cryptographic
algorithm organized by National Institute of Standards and
Technology (NIST). In this paper, a compact and secured
design of SHA-3 Algorithm on Xilinx Field Programmable
Gate Array (FPGA) device Virtex-5 is presented. The design is
logically optimized for area efficiency by merging Theta, Rho,
and Pi steps of algorithm into single step. The security of the
design is also increased by using a 64-bit LFSR instead of
round constants in the design. By logically merging these three
steps, latency is reduced and maximum operating frequency of
design is improved. Comparing the results with the previously
reported FPGA implementations of SHA3-512, this design
shows the best throughput per area (TPA) ratio of 46. This
implementation can be used in giga-bit communication
networks due to its improved throughput.

References

1. Alia Arshad, Dur-e-Shahwar kundi, Arshad Aziz,
“Compact Implementation of SHA3-512 on FPGA”
Conference on Information Assurance and Cyber
Security (CIACS), 2014.

2. X. Wang,, D. Feng, X. Lai, and H. Yu, “Collisions for
hash functions md4, md5, haval-128 and ripemd,”
IACR, August 2004.

3. Schneier, Bruce, "Cryptanalysis of MD5 and SHA:
Time for a New Standard". Computerworld, Retrieved
15 October 2014.

4. K. Gaj, E. Homsirikamol, and M. Rogawski,
“Comprehensive comparison of hardware performance
of fourteen round 2 sha-3 candidates with 512-bit
outputs using field programmable gate arrays,” 2nd SHA-
3 Candidate Conference, pp 23-24, August 2010.

5. B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne,
M. O Neill, and W.P. Marnane, “FPGA
implementations of the round two sha-3 candidates,”
The second SHA-3 Candidate Conference, 2010.

6. FIPS-202, “Federal information processing standards
publication fips-202, secure hash algorithm-3 (sha-3),”
2014.

7. S. Kerckhof, F. Durvaux, N.V. Charvillon, F.
Regazzoni, G.M. de Dormale, and F.X. Standaert,
“Compact fpga implementations of the five sha-3
finalists,” Springer Berlin Heidelberg, vol. 7079, pp.
217–233, 2011.

8. A. Akin, A. Aysu, O.C. Ulusel, E. Savas, “Efficient
hardware implementations of high throughput sha-3
candidates keccak, luffa and blue mid night wish for
single- and multi-message hashing,” ACM, pp. 168–177,
2010.

Figure 2 Modified 128 bit Keccak sequential architecture

Table 3 Obtained results

Implementation Platform Area Frequency
(mhz)

Throughput
(gbps)

Tpa

This work Virtex 5 81 508.182 3.75 46.29
[1] Virtex 5 240 301.02 7.2 30.1
[7] Virtex 6 188 285 0.08 0.425
[8] Virtex 4 2024 143 6.07 2.99
[4] Virtex 5 1229 238.4 1.08 0.879

How to cite this article:

Christy Ann Luke.2015, Compact Implementation of Secure Cryptographic Sha-3 Algorithm. Int J Recent Sci Res. 6(10), pp.
6749-6752.

International Journal of Recent Scientific
Research

	ISSN.pdf
	3617.pdf
	2.pdf

