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Let G=(V, E) be a (p, q) — graph. A total edge Lucas irregular labeling f: V(G) U E(G) - {1,2,3, ....,K} of

a graph G=(V,E) is a labeling of vertices and edges of G in such a way that for any different edges xy and
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x’y’ their weights f(x)+f(xy)+f(y) and f(x*)+{(x’y’)+f(y’) are distinct Lucas numbers. The total edge Lucas
irregularity strength, tels (G), is defined as the minimum K for which G has a total edge Lucas irregular
labeling. In this paper, we prove that the graphs such as C,,, @P,,C;, @K, ,,,C;, @2B, and C,, © K; admit the
total edge Lucas irregular labeling.
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INTRODUCTION

By a graph, we mean a finite, undirected graph without loops
and multiple edges, for terms not defined here, we refer to
Harary [2]. By labeling we mean any mapping that carries a set
of graph elements to a set of numbers (usually positive
integers), called labels. The notion of a total vertex irregular
labeling and total edge irregular labeling are introduced by
Baca et al. [1]A total vertex irregular labeling on a graph G
with v vertices and e edges is an assignment of integer labels to
both vertices and edges so that the weights calculated at
vertices are distinct. The weight of a vertex v in G is defined as
the sum of the label of v and the labels of all the edges incident
with v, that is ~ wt(v)=A(v) + Y,per A(uv).The total vertex
irregularity strength of G, denoted by tvs(G), is the minimum
value of the largest label over all such irregular assignments.

For a graph G = (V,E), define a labeling f :V(G) VE (G) —»
{1,2,...,K} to be an edge irregular total K-labeling of the graph
G if for every two different edges xy and x'y’ of G the edge
weights wt(xy) # wt(x'y"). The total edge irregularity
strength, tels(QG), is defined as the minimum K for which has an
edge irregular total K- labeling. We defined the total edge Lucas
irregular labeling [3].

*Corresponding author: Ponmoni A

MAIN RESULTS

Definition: 2.1

A total edge Lucas irregular labeling f:V(G) UE(G) -
{1,2,3, ....,K} of a graph G=(V,E) is a labeling of vertices and
edges of G in such a way that for any different edges xy and
x’y’ their weights f(x)+f(xy)+f(y) and {(x’)+{(x’y’)+f(y’) are
distinct Lucas numbers where Lucas seriesis Ly =1, L, =3, L
=4, Ls=7, Ls= 11, L&=18, L,=29 etc.,The total edge Lucas
irregularity strength, tels is defined as the minimum K for
which G has total edge Lucas irregular labeling[3].Note that if f
is a total edge Lucas irregular labeling of G = (V,E) with
[V(G)l=p and |E(G)|=q then L,(3)<wt(xy) <

Lg+1 which implies that tels > [Lq%]

Theorem 2.2

The graph C,,,@P, admits a total edge Lucas irregular labeling
and tels(C,,@P,) = Lyy1n_1 for allmand n.

Proof

Let G = C,,@P,
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Let wuq,uy,....,u,, be the vertices of a cycle C, and
Vq,Vs,....,Upn, Uy be the vertices of a path P,

Which is attached with a vertex (u,, = v;) of C;,

Here,E(G) = {x; = wju;p: 1 <i<m—-1}U{u,u U

{yi =vVj: 1<) < n}

Then,|V(G)| =m +n and |[E(G)|=m+n

Define f:V(G) UE(G) - {1,2,3,.....Linsn_1} by

fuw) =1

fluy) =1

flug) =2

f(u,:) =Li—2' 4<i<m
flx) =1

flx) =1

flxz) =2

f(xi) =Li—1' 4<i<m-1

f(xm) = L‘m+1 - Lm_z -1
fQm) =Lz = f(vy)
fW) = Lpticzy 2=<is<n+1

f1) =Lmys =Ly
fO) =Llpticy 2<isn
By this labeling,
wt(xy) = f(uy) + f () + f(uz)
= [+1+1
=3
=1L,
wt(xz) = f(uz) + f(x2) + f(u3)
=1+14+2
=4
=L,
wt(x3) = f(us) + f(x3) + f(ug)
=2+2+3
=7
=1L,
In general,

wt(x;) = f(u) + f(x) + f (i)
=Lip+Li1+Li,

=Li+Liy
=Lg+1-1 + Larny-2 »
— Ly, 4<i<m-—1

wt(xp) = f () + f () + f ()
=Lma+ Ly —Lpr—1+1

=Lms1

Thus, the weights 0 x4, X3, X3,..., X, are Ly, L3, La,..., Ly, Lingq.-
wt(y1) = f(v) + f(y1) + f(v2)

=Llpma+Lpi1— L+ Ly

=Lmy1 + Ly

=Lan+2)-2 + Lan+2)-1

=Ly

wt(y,) = f(v2) + f(2) + f(v3)
=Ly +Lpi1+ Ling

=Lon+2)-2 + Lan+2)-1 + Linsa
=Lz + Ly

= Lontz)—1 + Lon+3)—2
=Lm4s

In general,

wt(y) = f(w) + f) + f(Wise)

Linyicg + Lipyicq + Lingiq

=Lmyi + Linyia
=Lm+i+n-1 + Lim+irn-2
=Lmyis1 s 2<isn
Thus, the  weights of Vi, Y2, Y30-e0 YV are

Lm+2' Lm+3' Lm+4'~ c Lm+n+1 '
Therefore,the weights of Xy, X5, X3,..., X;o Y1, V2, Y3, ) Yy aT€

LZ' L3' L4v c Lm' Lm+1' Lm+2' Lm+3' Lm+4v t Lm+n+1
respectively.

Hence, The graph C,,,@P, admits a total edge Lucas irregular
labelingand tels(C,,@P,) = Lyy1n_q1 for all mand n.

Theorem 2.3

The graph C,,, @K, ,admits a total edge Lucas irregular labeling
and tels(Cm@KLn) =

Lm4n+1—Lm—2

Lins1 — Lim—o — l 5 J for allm and n.

Proof

Let G = Cp @K, ,
Let V(G) ={w;:1<i<m}u{y;:1<i<n} and E(G) =
o, =wuip: 1 <i<m—-1U{uud Uiy, = upvi:1 <
i<n}

Then,|[V(G)| =m+n and |[E(G)| =m+n

Define FV(G)UEG) - {1,2,3,....,Lm+n+1 — Ly, —
[Lm+n+;—Lm—2J} by
fu) =1
flu) =1
flus) =2
f(ui) =Li—2' 4<i<m
flx1) =1
flx) =1
flx3) =2
f(xi) =Li—1' 4<i<m-1
f(tm) =Lmyr =Lz —1
fwy) m+1+12 Lm_ZJ , 1<i<n
Linyiv1r = Lin- ,
FOD = Lnaier = Lmo = [T 1
<n
By this labelling,
wt(xy) = f(uy) + f(x1) + f(uz)
=1+1+1
=3
=1L,
wt(xy) = f(up) + f(x2) + f(u3)
=1+1+2
=4
=L,
wt(x3) = f(uz) + f(x3) + f(uy)
=2+2+3
=7
=1L,
In general,

wt(x;) = f(u) + f(x) + f (W)
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=Lip+Li-s +Liy
=L + Li—y
=Lgip-1 + Las-2 »
:Li+1, 4Sl$m—1
wt(xp) = f(up) + f () + (1)
=Lm2+ Lyt —Lpr—1+1
=Ly
Thus, the weights of
Lz, L3, L4,.. . Lm, Lm+1.
In general,
wt(y) = f(um) + f() + f(v)
Limyi+1—Lm-
= L2+ Lptivr = Lm—2 — lLZJ +

2
le+i+1—Lm—2J
2

X1, X2, X3,..., Xy are

=Lptit1s 1<i<n

Thus, the

Lm+2' Lm+3' Lm+4v c Lm+n+1 .
Therefore, the weights of xq, X3, X3,..., X, V1, Y2, V3, - Y are

weights  of Y1,Y2, Y359 Yn  are

LZ'L3'L4'~'~'Lm' Lm+1' Lm+2'Lm+3ﬁLm+4v'~'Lm+n+1
respectively. Hence, the graph C,, @K, , admits a total edge
Lucas irregular labelling and telS(Cm@KLn) =Lyyin+1 —

Ly — ll“’""r”;&] for all m and n.

Theorem 2.4

The graph C,,, @2P, admits a total edge Lucas irregular labeling
and
tels(C,,@2B,) =

Lint2n+1 = Lm+an-1 = Lint2n-3 fOT' all m and n.

Proof

Let G = C,,,@2PB,

Let V@) ={wpl<ism}u{upl<i<n}lu
{vi:1 < i < n} be the vertex set of G and the vertices ofw; and
wp, of C,, are identified with v;and u, of two paths of length
n respectively.

Here,E(G) = {x; =wyw; 11 <i<m-—1} U {w,w} U
{zi=vvi,yi =wun1<i<nj}
Then,|V(G)| = m+ 2n and |E(G)| =m+ 2n

Define  f:V(G) UE(G) = {1,2,3,....Lmsans1 — Lmsan_1 —
Lm+2n—3} by

fw) =1

flw) =1

flws) =2

f(WL) = Li—Z' 4<i<m
flx) =1

flx) =1

flx3) =2

f(xi) =Li—1' 4<i<m-1
f(xm) = Lm+1 - Lm—z -1

f(u) =Lmys

fu) =Lnszioz, 2<isn
fO1) =Lpiz—Lmyr—1

f(2) =Lmys—Ling1 — Ly

fO) = Lmizi — Linszicz = Linszicas
f(1) =Ly

3<i<n

fW) =Lmizica, 2<i<n
f(Zl) = Lm+3 - Lm—2 — Lm+2
f(ZZ) = Lm+5 - Lm+3 bt Lm+2

f(z) = Lmizisr — Lins2icr — Ling2icz, 3<i<n
By this labeling,
wt(x;) = f(wy) + f(x1) + f(wy)
=1+1+1
=3
=1L,
wt(xy) = f(wy) + f(x2) + f(ws)
=1+1+2
=4
=L,
wt(x3) = f(w3) + f(x3) + f(wy)
=2+2+3
=17
=L,
In general,

wt(x) = fw) + f(x) + f(wigy)
=Li;+Liy+Li4
:Li + Li—l
=LG+1)-1 + Larny-2
~ Lty 4<i<m-1
wt(Xp) = f(Wi) + f () + f(wy)
=Lpm2+tLlpys —Lpp—1+1
= Lm+1
Thus, the weights of
Ly Lay Ly Lo Loy
wt(y,) = f(wy) + f(y1) + f(uy)
=1+Lpmyz =Ly =1+ Ly
=Lz
wt(yz) = fu) + f(2) + f ()

= Lm+1 + Lm+4 - Lm+1 - Lm+2 + Lm+2

X1, X5, X3,..0, Xy ar€

:Lm+4

In general,

wt(y) = fui-1) + f () + f(w)

= Lint2i-a + Lims2i = Lint2i-2 = Lnt2i-a + Lint2i—2
:Lm+2i , 3 <i<n

Thus, the weights of Vi, Y2, Y30ee0 YV are

Lm+2r Lm+4-r~ s Lm+2n .

wt(z1) = f(Wy) + f(21) + f(v1)
= Lm—z + Lm+3 - Lm—Z_Lm+2 + Lm+2
=Lmys

wt(zz) = f(v) + f(22) + f(v,)
=Ly + Lipgs — Lipys — Lipgz + Linys
:Lm+5

In general,

wt(z) = f(vi—) + f(z) + f(vy)

Lm+2i—3 + Lm+2i+1 - Lm+2i—1 - Lm+2i—3 + Lm+2i—1

=Lm+2is1 3<isn
Thus, the weights of Z4,Z3,Z3,...,Z,  are
Lm+3' Lm+5'~ c Lm+2n+1 .
Therefore, the weights of

X1,X2, X300y Xy V1,21, Y2, Z2) ooy Yy Zpare
LZ' L3' L4'~ c Lm' Lm+1' Lm+2' Lm+3' Lm+4'~ t Lm+2n ’ Lm+2n+1
respectively.

Hence, The graph C,,@2P, admits a total edge Lucas irregular
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telS(Cm@ZPn) = Linton+1 — Linyzn-1 —
forallmandn

labelingand

Lm+2n—3
Theorem 2.5

The graph C,, © K; admits a total edge Lucas irregular labeling
and tels(C, O K;) =Ly, —Lyp_5—1 foralln = 3.

Proof

Let 6G=C,0OK

Let the vertex set be V(C,) = {uy, uy,....,uyyand vy, vy,....,0p
be the vertices adjacent to each vertex of C,,, the edge set
EG)={x;=wu:1<i<n—-1JUu{y,=uyv:1<i<
n}uU {xp, = usuy}

Then |V(G)| =2n and |E(G)| =2n

Define f:V(G) U E(G) » {1,2,3,.....Lan — Lyn_3 — 1} by

flu)) =1
flu) =1
fw) = Lai_s, 3<i<n
flv) =2
f(vy) = 5L L
Fv) = [ 2i+1 . 21—3]’ 3<i<n
flx) =1
flx) =2
fx) = Lais 3<i<n-1
f(xn) =Lon —Lpns—1
f) =1
f(r)=5 L L
fi) = Lajs1 — Lai—3- [—Zlﬂ > 2L_3] ) 3<isn
By this labeling,
wt(xy) = f(u) + f(xq) + f(uz)
=1+1+1
=3
=1L,
wt(x;) = f(uy) + f(xz) + f(us)
=14+2+4
=7
=1,
wt(x3) = f(uz) + f(x3) + f(uy)
=4+3+11
=18
=1L,

In general,
wt(x) = f(w) + f(x) + f(wig1)
=Ly 3+ Lygt+ Ly
=Li-2)-1 + Li-2)-2 T Lai—1
=Ly + Lyt
= Ly, 4<i<n-—-1

wt(x,) = f(un) + () + f (1)

=Lop-s+Lon—Lyp3—1+1

=Ly

Thus, the weights ofx;, x,,..., X, are Ly, Ly, ..., L, respectively.
wt(y1) = f(u) + f(r1) + f(v1)
=1+1+2
=4
=1L,
wt(yz) = fuz) + f(32) + f(v2)
=14+54+5
=11
=L
wt(ys) = f(us) + f(y3) + f(v3)
=4+12+13
=29
=1,
In general,

wt(y;) = f(w) + F() +f(LVz) i . i
2i+1 — L2i—3 2i+1 — L2i—3
=Ly g+ Lyjp1 — Lyi3— [ = > l ] + [ = > l ]

=Ly,
Thus, the weights
respectively.
Therefore, the weights of  x1, V1, X5, Vo, X3, ¥3,..., Xp, Yy Qr€
Ly L3, Ly, Lo, Lopsa
respectively.

4<i<n

ofy,¥a,.., ¥y are Lg,Ls,...,Lopiq

Hence, The graph G = C, © K; admits a total edge Lucas
irregular  labelling and tels(C, © Ky) = Ly, — Lop_5 —
1 foralln=3.
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