

International Journal Of

Recent Scientific Research

ISSN: 0976-3031

Volume: 7(11) November -2015

TOTAL EDGE LUCAS IRREGULAR LABELING FOR SOME CYCLE RELATED GRAPHS

Ponmoni A, Navaneetha Krishnan S, and Nagarajan A

THE OFFICIAL PUBLICATION OF INTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH (IJRSR) http://www.recentscientific.com/ recentscientific@gmail.com

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 6, Issue, 11, pp.7158-7161, November, 2015

International Journal of Recent Scientific Research

RESEARCH ARTICLE

TOTAL EDGE LUCAS IRREGULAR LABELING FOR SOME CYCLE RELATED GRAPHS

Ponmoni A¹ Navaneetha Krishnan S² and Nagarajan A³

¹Department of Mathematics, C.S.I.College of Engineering, Ketti, Tamilnadu, India. ^{2,3}Department of Mathematics, V.O.C. College, Tuticorin, Tamilnadu, India.

ARTICLE INFO

Article History:

Received 15thAugust, 2015 Received in revised form 21stSeptember, 2015 Accepted 06th October, 2015 Published online 28st November, 2015

Key words:

Graph labeling, irregularity strength, total labeling, Edge irregular labeling, total edge irregularity strength, total edge irregular labeling.

ABSTRACT

Let G = (V, E) be a (p, q) - graph. A total edge Lucas irregular labeling $f : V(G) \cup E(G) \rightarrow \{1, 2, 3, \dots, K\}$ of a graph G = (V, E) is a labeling of vertices and edges of G in such a way that for any different edges X and X if their weights X = (X - E) and X = (X - E) are distinct Lucas numbers. The total edge Lucas irregularity strength, tels X = (X - E) is defined as the minimum X = (X - E) and X =

Copyright © **Ponmoni** A *et al.***2015**, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

By a graph, we mean a finite, undirected graph without loops and multiple edges, for terms not defined here, we refer to Harary [2]. By labeling we mean any mapping that carries a set of graph elements to a set of numbers (usually positive integers), called labels. The notion of a total vertex irregular labeling and total edge irregular labeling are introduced by Baca *et al.* [1]A total vertex irregular labeling on a graph G with v vertices and edges is an assignment of integer labels to both vertices and edges so that the weights calculated at vertices are distinct. The weight of a vertex v in G is defined as the sum of the label of v and the labels of all the edges incident with v, that is $wt(v)=\lambda(v)+\sum_{uv\in E}\lambda(uv)$. The total vertex irregularity strength of G, denoted by tvs(G), is the minimum value of the largest label over all such irregular assignments.

For a graph G = (V,E), define a labeling $f : V(G) \cup E(G) \rightarrow \{1,2,...,K\}$ to be an edge irregular total K-labeling of the graph G if for every two different edges xy and x'y' of G the edge weights $wt(xy) \neq wt(x'y')$. The total edge irregularity strength, tels(G), is defined as the minimum K for which has an edge irregular total K-labeling. We defined the total edge Lucas irregular labeling [3].

MAIN RESULTS

Definition: 2.1

A total edge Lucas irregular labeling $f:V(G) \cup E(G) \rightarrow \{1,2,3,\ldots,K\}$ of a graph G=(V,E) is a labeling of vertices and edges of G in such a way that for any different edges xy and x'y' their weights f(x)+f(xy)+f(y) and f(x')+f(x'y')+f(y') are distinct Lucas numbers where Lucas series is $L_1=1$, $L_2=3$, $L_3=4$, $L_4=7$, $L_5=11$, $L_6=18$, $L_7=29$ etc.,The total edge Lucas irregularity strength, tels is defined as the minimum K for which G has total edge Lucas irregular labeling G is a total edge Lucas irregular labeling of G is a

Theorem 2.2

The graph $C_m@P_n$ admits a total edge Lucas irregular labeling and $tels(C_m@P_n) = L_{m+n-1}$ for all m and n.

Proof

Let $G = C_m@P_n$

^{*}Corresponding author: Ponmoni A

```
Let u_1, u_2, ..., u_m be the vertices of a cycle C_m and
                                                                                                                                                                          =L_{m+i-2}+L_{m+i-1}+L_{m+i-1}
v_1, v_2, \dots, v_n, v_{n+1} be the vertices of a path P_n
                                                                                                                                                                          =L_{m+i}+L_{m+i-1}
Which is attached with a vertex (u_m = v_1) of C_m
                                                                                                                                                                          =L_{(m+i+1)-1}+L_{(m+i+1)-2}
Here,E(G) = \{x_i = u_i u_{i+1} : 1 \le i \le m-1\} \cup \{u_m u_1\} \cup \{u_m
                                                                                                                                                                                                                        2 \le i \le n
                                                                                                                                                                          =L_{m+i+1},
{y_i = v_i v_{i+1} : 1 \le j \le n}
                                                                                                                                                       Thus,
                                                                                                                                                                            the
                                                                                                                                                                                       weights
Then, |V(G)| = m + n and |E(G)| = m + n
                                                                                                                                                                                                                    of
                                                                                                                                                                                                                                                  y_1, y_2, y_3, ..., y_n
                                                                                                                                                                                                                                                                                             are
                                                                                                                                                        L_{m+2}, L_{m+3}, L_{m+4}, \ldots, L_{m+n+1}.
Define f: V(G) \cup E(G) \to \{1,2,3,...,L_{m+n-1}\} by
                                                                                                                                                       Therefore, the weights of x_1, x_2, x_3, ..., x_m, y_1, y_2, y_3, ..., y_n are
f(u_1) = 1
                                                                                                                                                        L_2, L_3, L_4, \dots, L_m, L_{m+1}, L_{m+2}, L_{m+3}, L_{m+4}, \dots, L_{m+n+1}
                                                                                                                                                        respectively.
f(u_2) = 1
f(u_3) = 2
                                                                                                                                                        Hence, The graph C_m@P_n admits a total edge Lucas irregular
f(u_i) = L_{i-2},
                                                   4 \le i \le m
                                                                                                                                                        labelingand tels(C_m@P_n) = L_{m+n-1} for all m and n.
f(x_1) = 1
f(x_2) = 1
                                                                                                                                                        Theorem 2.3
f(x_3) = 2
f(x_i) = L_{i-1},
                                               4 \le i \le m-1
                                                                                                                                                        The graph C_m@K_{1,n} admits a total edge Lucas irregular labeling
f(x_m) = L_{m+1} - L_{m-2} - 1
                                                                                                                                                        and tels(C_m@K_{1,n}) =
f(u_m) = L_{m-2} = f(v_1)
f(v_i) = L_{m+i-2}, \quad 2 \le i \le n+1
                                                                                                                                                       L_{m+n+1} - L_{m-2} - \left| \frac{L_{m+n+1} - L_{m-2}}{2} \right| for all m and n.
f(y_1) = L_{m+1} - L_{m-2}

f(y_i) = L_{m+i-1}, 2
                                                    2 \le i \le n
                                                                                                                                                        Proof
By this labeling,
wt(x_1) = f(u_1) + f(x_1) + f(u_2)
                                                                                                                                                       Let G = C_m@K_{1,n}
                 = 1+1+1
                                                                                                                                                       Let V(G) = \{u_i : 1 \le i \le m\} \cup \{v_i : 1 \le i \le n\} and E(G) =
                 =3
                                                                                                                                                       {x_i = u_i u_{i+1}: 1 \le i \le m-1} \cup {u_m u_1} \cup {y_i = u_m v_i: 1 \le i \le m-1}
                 =L_2
wt(x_2) = f(u_2) + f(x_2) + f(u_3)
                                                                                                                                                       Then, |V(G)| = m + n and |E(G)| = m + n
                 = 1+1+2
                                                                                                                                                                                        f: V(G) \cup E(G) \rightarrow \{1,2,3,\dots,L_{m+n+1} - L_{m-2} - 1\}
                 =4
wt(x_3) = f(u_3) + f(x_3) + f(u_4)
                 = 2+2+3
                                                                                                                                                        f(u_1) = 1
                 = 7
                                                                                                                                                       f(u_2) = 1
                 =L_4
                                                                                                                                                       f(u_3) = 2
                                                                                                                                                       f(u_i) = L_{i-2},
                                                                                                                                                                                                          4 \le i \le m
In general,
                                                                                                                                                       f(x_1) = 1
wt(x_i) = f(u_i) + f(x_i) + f(u_{i+1})
                                                                                                                                                       f(x_2) = 1
                   =L_{i-2}+L_{i-1}+L_{i-1}
                                                                                                                                                       f(x_3) = 2
                   =L_i + L_{i-1}
                                                                                                                                                       f(x_i) = L_{i-1},
                                                                                                                                                                                                       4 \le i \le m-1
                   =L_{(i+1)-1}+L_{(i+1)-2}\;,
                                                                                                                                                       f(x_m) = L_{m+1} - L_{m-2} - 1
                    =L_{i+1}, 	 4 \le i \le m-1
                                                                                                                                                       f(v_i) = \left\lfloor \frac{L_{m+1+i} - L_{m-2}^2}{2} \right\rfloor, \quad 1 \le i \le n
wt(x_m) = f(u_m) + f(x_m) + f(u_1)
                     =L_{m-2}+L_{m+1}-L_{m-2}-1+1
                                                                                                                                                       f(y_i) = L_{m+i+1} - L_{m-2} - \left| \frac{L_{m+i+1} - L_{m-2}}{2} \right|,
Thus, the weights o x_1, x_2, x_3, ..., x_m are L_2, L_3, L_4, ..., L_m, L_{m+1}.
                                                                                                                                                        By this labelling,
wt(y_1) = f(v_1) + f(y_1) + f(v_2)
                                                                                                                                                        wt(x_1) = f(u_1) + f(x_1) + f(u_2)
                 =L_{m-2}+L_{m+1}-L_{m-2}+L_m
                                                                                                                                                                          = 1 + 1 + 1
                  =L_{m+1}+L_m
                                                                                                                                                                         =3
                 =L_{(m+2)-2}+L_{(m+2)-1}
                                                                                                                                                                         =L_2
                 =L_{m+2}
                                                                                                                                                        wt(x_2) = f(u_2) + f(x_2) + f(u_3)
wt(y_2) = f(v_2) + f(y_2) + f(v_3)
                                                                                                                                                                         = 1+1+2
                 =L_m + L_{m+1} + L_{m+1}
                 =L_{(m+2)-2}+L_{(m+2)-1}+L_{m+1}
                 =L_{m+2}+L_{m+1}
                                                                                                                                                        wt(x_3) = f(u_3) + f(x_3) + f(u_4)
                 =L_{(m+3)-1}+L_{(m+3)-2}
                                                                                                                                                                         = 2+2+3
                 =L_{m+3}
                                                                                                                                                                          = 7
```

 $=L_4$

 $wt(x_i) = f(u_i) + f(x_i) + f(u_{i+1})$

In general,

In general,

 $wt(y_i) = f(v_i) + f(y_i) + f(v_{i+1})$

$$= L_{i-2} + L_{i-1} + L_{i-1}$$

$$= L_i + L_{i-1}$$

$$= L_{(i+1)-1} + L_{(i+1)-2} ,$$

$$= L_{i+1}, \qquad 4 \le i \le m-1$$

$$wt(x_m) = f(u_m) + f(x_m) + f(u_1)$$

$$= L_{m-2} + L_{m+1} - L_{m-2} - 1 + 1$$

$$= L_{m+1}$$
Thus, the weights of $x_1, x_2, x_3, ..., x_m$ are $L_2, L_3, L_4, ..., L_m, L_{m+1}$. In general,
$$wt(y_i) = f(u_m) + f(y_i) + f(v_i)$$

$$= L_{m-2} + L_{m+i+1} - L_{m-2} - \left\lfloor \frac{L_{m+i+1} - L_{m-2}}{2} \right\rfloor + \left\lfloor \frac{L_{m+i+1} - L_{m-2}}{2} \right\rfloor$$

$$= L_{m+i+1}, \qquad 1 \le i \le n$$

Thus, the weights of y_1,y_2,y_3,\ldots,y_n are $L_{m+2},L_{m+3},L_{m+4},\ldots,L_{m+n+1}$. Therefore, the weights of $x_1,x_2,x_3,\ldots,x_m,y_1,y_2,y_3,\ldots,y_n$ are $L_2,L_3,L_4,\ldots,L_m,L_{m+1},L_{m+2},L_{m+3},L_{m+4},\ldots,L_{m+n+1}$ respectively. Hence, the graph $C_m@K_{1,n}$ admits a total edge Lucas irregular labelling and $tels(C_m@K_{1,n})=L_{m+n+1}-L_{m-2}-\left\lfloor\frac{L_{m+n+1}-L_{m-2}}{2}\right\rfloor$ for all m and n.

Theorem 2.4

The graph $C_m@2P_n$ admits a total edge Lucas irregular labeling and

$$tels(C_m@2P_n) = L_{m+2n+1} - L_{m+2n-1} - L_{m+2n-3}$$
 for all m and n .

Proof

Let
$$G = C_m@2P_n$$

Let $V(G) = \{w_i \colon 1 \le i \le m\} \cup \{u_i \colon 1 \le i \le n\} \cup \{v_i \colon 1 \le i \le n\}$ be the vertex set of G and the vertices of w_1 and w_m of w_m are identified with w_1 and w_2 of two paths of length n respectively.

$$\begin{split} & \text{Here}, E(G) = \{x_i = w_i w_{i+1} \colon 1 \leq i \leq m-1\} \cup \{w_m w_1\} \cup \\ \{z_i = v_i v_{i+1}, y_i = u_i u_{i+1} \colon 1 \leq i \leq n\} \\ & \text{Then}, |V(G)| = m+2n \ and \ |E(G)| = m+2n \\ & \text{Define} \quad f \colon V(G) \cup E(G) \to \{1,2,3,\dots,L_{m+2n+1}-L_{m+2n-1}-L_{m+2n-3}\} \ \text{by} \end{split}$$

$$f(w_1) = 1$$

$$f(w_2) = 1$$

$$f(w_3) = 2$$

$$f(w_i) = L_{i-2}, \qquad 4 \le i \le m$$

$$f(x_1) = 1$$

$$f(x_2) = 1$$

$$f(x_3) = 2$$

$$f(x_i) = L_{i-1}, \qquad 4 \le i \le m-1$$

$$f(x_m) = L_{m+1} - L_{m-2} - 1$$

$$f(u_1) = L_{m+1}$$

$$f(u_i) = L_{m+2i-2}, \qquad 2 \le i \le n$$

$$f(y_1) = L_{m+2} - L_{m+1} - 1$$

$$f(y_2) = L_{m+4} - L_{m+1} - L_{m+2}$$

$$f(y_i) = L_{m+2i} - L_{m+2i-2} - L_{m+2i-4}, \quad 3 \le i \le n$$

$$f(v_1) = L_{m+2}$$

$$\begin{split} &f(v_i) = L_{m+2i-1}, & 2 \le i \le n \\ &f(z_1) = L_{m+3} - L_{m-2} - L_{m+2} \\ &f(z_2) = L_{m+5} - L_{m+3} - L_{m+2} \\ &f(z_i) = L_{m+2i+1} - L_{m+2i-1} - L_{m+2i-3}, & 3 \le i \le n \end{split}$$
 By this labeling,
$$wt(x_1) = f(w_1) + f(x_1) + f(w_2) \\ &= 1 + 1 + 1 \\ &= 3 \\ &= L_2 \\ wt(x_2) = f(w_2) + f(x_2) + f(w_3) \\ &= 1 + 1 + 2 \\ &= 4 \\ &= L_3 \\ wt(x_3) = f(w_3) + f(x_3) + f(w_4) \\ &= 2 + 2 + 3 \\ &= 7 \\ &= L_4 \\ \ln \text{ general,} \\ wt(x_i) = f(w_i) + f(x_i) + f(w_{i+1}) \\ &= L_{i-2} + L_{i-1} + L_{i-1} \\ &= L_{i+1} + L_{i-1} \\ &= L_{i+1} + L_{i+1} \\ &= L_{i+1} + L_{i+1} - L_{m-2} - 1 + 1 \\ &= L_{m+2} + L_{m+1} - L_{m-2} - 1 + 1 \\ &= L_{m+2} + L_{m+1} - L_{m+2} - 1 + 1 \\ &= L_{m+2} + L_{m+1} - L_{m+2} - 1 + 1 \\ &= L_{m+2} \\ wt(y_1) = f(w_1) + f(y_1) + f(u_1) \\ &= 1 + L_{m+2} \\ wt(y_2) = f(u_1) + f(y_2) + f(u_2) \\ &= L_{m+1} + L_{m+4} - L_{m+1} - L_{m+2} + L_{m+2} \\ &= L_{m+4} \\ \ln \text{ general,} \\ wt(y_i) = f(u_{i-1}) + f(y_i) + f(u_i) \\ &= L_{m+2i-4} + L_{m+2i} - L_{m+2i-4} + L_{m+2i-2} \\ &= L_{m+2i} \\ \text{Thus, the weights of} \qquad y_1, y_2, y_3, \dots, y_n \text{ are } \\ L_{m+2i} - L_{m+4i} - L_{m+2i} - L_{m+2i-4} + L_{m+2i-2} \\ &= L_{m+3i} \\ \text{thus, the weights of} \qquad y_1, y_2, y_3, \dots, y_n \text{ are } \\ L_{m+2i} - L_{m+4i} - L_{m+2i} - L_{m+2i-4} + L_{m+2i-2} \\ &= L_{m+3i} \\ \text{thus, the weights of} \qquad y_1, y_2, y_3, \dots, y_n \text{ are } \\ L_{m+2i} - H_{m+3i} - L_{m+2i-1} - L_{m+2i-3} + L_{m+2i-1} \\ &= L_{m+3i} \\ \text{thus, the weights of} \qquad z_1, z_2, z_3, \dots, z_n \text{ are } \\ L_{m+3i} - L_{m+5i} - L_{m+2i-1} - L_{m+2i-3} + L_{m+2i-1} \\ &= L_{m+2i-3} + L_{m+2i+1} - L_{m+2i-1} - L_{m+2i-3} + L_{m+2i-1} \\ &= L_{m+3i} + L_{m+5i-1} - L_{m+2i-1} - L_{m+2i-3} + L_{m+2i-1} \\ &= L_{m+3i} + L_{m+5i-1} - L_{m+2i-1} - L_{m+2i-3} + L_{m+2i-1} \\ &= L_{m+3i} + L_{m+5i-1} - L_{m+2i-1} - L_{m+2i-3} + L_{m+2i-1} \\ &= L_{m+3i} + L_{m+5i-1} - L_{m+2i-1} - L_{m+2i-3} + L_{m+2i-1} \\ &= L_{m+3i} + L_{m+5i-1} - L_{m+2i-1} - L_{m+2i-3} + L_{m+2i-1} \\ &= L_{m+2i+1} + 1 \\ \text{Thus, the weights of} \qquad z_1, z_2, z_3, \dots, z_n \text{ are } \\ L_{m+3i} + L_{m+5i-1} - L_{m+2i-1} - L_{m+2i-3} +$$

Hence, The graph $C_m@2P_n$ admits a total edge Lucas irregular

 $tels(C_m@2P_n) = L_{m+2n+1} - L_{m+2n-1} L_{m+2n-3}$ for all m and n

Theorem 2.5

The graph $C_n \odot K_1$ admits a total edge Lucas irregular labeling and $tels(C_n \odot K_1) = L_{2n} - L_{2n-3} - 1$ for all $n \ge 3$.

Proof

Let
$$G = C_n \odot K_1$$

Let the vertex set be $V(C_n) = \{u_1, u_2, ..., u_n\}$ and $v_1, v_2, ..., v_n$ be the vertices adjacent to each vertex of C_n , the edge set $E(G) = \{x_i = u_i u_{i+1} : 1 \le i \le n-1\} \cup \{y_i = u_i v_i :$ $n\} \cup \{x_n = u_1 u_n\}$

Then
$$|V(G)| = 2n$$
 and $|E(G)| = 2n$

Define
$$f: V(G) \cup E(G) \rightarrow \{1,2,3,...,L_{2n} - L_{2n-3} - 1\}$$
 by $f(u_1) = 1$
 $f(u_2) = 1$
 $f(u_i) = L_{2i-3}, \qquad 3 \le i \le n$
 $f(v_1) = 2$
 $f(v_2) = 5$
 $f(v_i) = \left\lceil \frac{L_{2i+1} - L_{2i-3}}{2} \right\rceil, \qquad 3 \le i \le n$
 $f(x_1) = 1$
 $f(x_2) = 2$
 $f(x_i) = L_{2i-4}, \qquad 3 \le i \le n - 1$
 $f(y_1) = 1$
 $f(y_2) = 5$
 $f(y_i) = L_{2i+1} - L_{2i-3} - \left\lceil \frac{L_{2i+1} - L_{2i-3}}{2} \right\rceil, \qquad 3 \le i \le n$

By this labeling,

$$wt(x_1) = f(u_1) + f(x_1) + f(u_2)$$

$$= 1 + 1 + 1$$

$$= 3$$

$$= L_2$$

$$wt(x_2) = f(u_2) + f(x_2) + f(u_3)$$

$$= 1 + 2 + 4$$

$$= 7$$

$$= L_4$$

$$wt(x_3) = f(u_3) + f(x_3) + f(u_4)$$

$$= 4 + 3 + 11$$

$$= 18$$

$$= L_6$$

In general,

$$wt(x_i) = f(u_i) + f(x_i) + f(u_{i+1})$$

$$= L_{2i-3} + L_{2i-4} + L_{2i-1}$$

$$= L_{(2i-2)-1} + L_{(2i-2)-2} + L_{2i-1}$$

$$= L_{2i-2} + L_{2i+1}$$

$$= L_{2i}, 4 \le i \le n-1$$

$$wt(x_n) = f(u_n) + f(x_n) + f(u_1)$$

= $L_{2n-3} + L_{2n} - L_{2n-3} - 1 + 1$
= L_{2n}

Thus, the weights of $x_1, x_2, ..., x_n$ are $L_2, L_4, ..., L_{2n}$ respectively. $wt(y_1) = f(u_1) + f(y_1) + f(v_1)$

$$= 1 + 1 + 2$$

$$= 4$$

$$= L_3$$

$$wt(y_2) = f(u_2) + f(y_2) + f(v_2)$$

$$= 1 + 5 + 5$$

$$= 11$$

$$= L_5$$

$$wt(y_3) = f(u_3) + f(y_3) + f(v_3)$$

$$= 4 + 12 + 13$$

$$= 29$$

$$= L_7$$

In general,

$$\begin{split} wt(y_i) &= f(u_i) + f(y_i) + f(v_i) \\ &= L_{2i-3} + L_{2i+1} - L_{2i-3} - \left[\frac{L_{2i+1} - L_{2i-3}}{2}\right] + \left[\frac{L_{2i+1} - L_{2i-3}}{2}\right] \\ &= L_{2i+1}, \qquad 4 \leq i \leq n \end{split}$$
 Thus, the weights of y_1, y_2, \dots, y_n are $L_3, L_5, \dots, L_{2n+1}$

respectively.

Therefore, the weights of $x_1, y_1, x_2, y_2, x_3, y_3, ..., x_n, y_n$ are $L_2, L_3, L_4, \dots, L_{2n}, L_{2n+1}$ respectively.

Hence, The graph $G = C_n \odot K_1$ admits a total edge Lucas irregular labelling and $tels(C_n \odot K_1) = L_{2n} - L_{2n-3}$ for all $n \geq 3$.

References

- M.Baca, m StanislavJendrol, Mirka Miller, Joseph Ryan, On irregular total labeling, Discrete Math., 307(2007), 1378 - 138.
- F.Harary, Graph theory Addition Wesley reading, Mass, 2. 1972.
- A.Ponmoni, 3. S.Navaneethakrishnan, A.Nagarajan submitted for publication.

How to cite this article:

Ponmoni A, Navaneetha Krishnan S and Nagarajan A., Total Edge Lucas Irregular Labeling For Some Cycle Related Graphs. International Journal of Recent Scientific Research Vol. 6, Issue, 11, pp.7158-7161, November, 2015

