International Hournal of Recent Scientific Researeh

Parvinder Singh

Volume: 6

RESEARCH ARTICLE INTRODUCTION TO LEBESGUE INTEGRATION Parvinder Singh

Department of Mathematics, S.G.G.S. Khalsa College, Mahilpur

ARTICLE INFO

Article History:

Received $16^{\text {th }}$ June, 2015
Received in revised form $24^{\text {th }}$
July, 2015
Accepted $23^{\text {rd }}$ August, 2015
Published online $28^{\text {st }}$
September, 2015

Key words:

Characteristic function, Simple
function, Step function,
Measurable set, Measurable
function.

Abstract

In this article, we define the integral of real-valued functions on an arbitrary measure space and derive some of its basic properties. We refer to this integral as the Lebesgue integral, whether or not the domain of the functions is subset of equipped with Lebesgue measure. The Lebesgue integral applies to a much wider class of functions than the Riemann integral and is better behaved with respect to point wise convergence. We carry out the definition in three steps: first for positive simple functions, then for positive measurable functions, and finally for extended real-valued measurable functions and gives the proof of the Fatou's Lemma and at the end proves the Lebasgue Dominated Convergence Theorem.

Copyright © Parvinder Singh.2015, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Definition: Let ϕ be any non zero simple function and $\phi=\sum_{i=1}^{n} \alpha_{i} C_{E_{i}}$ where α_{i} are non zero distinct and E_{i} are non empty disjoint measurable sets. Then $\phi=\sum_{i=1}^{n} \alpha_{i} C_{E_{i}}$ is called the Standard form or Canonical form of ϕ.
Definition: Let ϕ be any non negative simple function, then if $\phi=0$ on X then we
define $\int_{X} \phi \mathrm{~d} \mu=0$.
Suppose $\phi \neq 0$ and $\phi=\sum_{i=1}^{n} \alpha_{i} C_{E_{i}}$ is the standard form of ϕ, then we define
$\int_{X} \phi \mathrm{~d} \mu=\sum_{i=1}^{n} \alpha_{i} \mu\left(E_{i}\right)$ where E_{i} are all disjoint measurable sets.
Theorem: Let ϕ and ψ are non negative simple functions, α be any non negative real number. then

$$
\begin{equation*}
\int \alpha \phi=\alpha \int \phi \text { and (2) } \int(\phi+\psi)=\int \phi+\int \psi \tag{1}
\end{equation*}
$$

Proof: Let $\alpha_{1}, \alpha_{2}, \ldots \ldots \alpha_{n}$ are the values of ϕ and $E_{i}=\left\{\phi=\alpha_{i}\right\}$ then $\phi=\sum_{i=1}^{n} \alpha_{i} C_{E_{i}}$ where α_{i} are non negative, E_{i} are disjoint measurable sets and $\mathrm{X}=\bigcup_{1=1}^{n} E_{i}$

Similarly Let $\beta_{1}, \beta_{2}, \ldots \ldots \beta_{\mathrm{m}}$ be all the values of $\psi, F_{j}=\left\{\psi=\beta_{j}\right\}$ then $\psi=\sum_{j=1}^{m} \beta_{j} C_{\mathrm{F}_{j}}$ where β_{j} are all non negative and F_{j} are all disjoint and measurable and $\bigcup_{j=1}^{m} F_{j}=\mathrm{X}$.
(1) If $\alpha=0$ then both sides are zero, hence equal.

[^0]Let $\alpha>0$ then $\alpha \phi=\sum_{i=1}^{n}\left(\alpha \alpha_{i}\right) C_{E_{i}}=\sum_{i=1}^{n}\left(\alpha_{i}^{*}\right) C_{E_{i}}$ where $\alpha_{i}^{*}=\alpha \alpha_{i}, \alpha_{i}^{*}$ are all non negative, E_{i} are all disjoint measurable,
Therefore $\int \alpha \phi=\sum_{i=1}^{n}\left(\alpha_{i}^{*}\right) \mu\left(E_{i}\right)=\sum_{i=1}^{n}\left(\alpha \alpha_{i}\right) \mu\left(E_{i}\right)=\alpha \sum_{i=1}^{n}\left(\alpha_{i}\right) \mu\left(E_{i}\right)=\alpha \int \phi$.

$$
\begin{equation*}
\phi+\psi=\sum_{-i=1}^{n} \sum_{j=1}^{m}\left(\alpha_{i}+\beta_{j}\right) C_{E_{i} \cap F_{j}} \text { where } \alpha_{i}+\beta_{j} \text { are non negative, } E_{i} \cap F_{j} \tag{2}
\end{equation*}
$$

are measurable.
Hence $\int \phi+\psi=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(\alpha_{i}+\beta_{j}\right) \mu\left(E_{i} \cap F_{j}\right)$

$=\underset{\boldsymbol{\Sigma}}{\substack{\mathbf{I}_{i=1} \\ n}} \alpha_{i} \mu\left[\bigcup_{j=1}^{m}\left(E_{i} \cap F_{j}\right)\right]+\sum_{j=1}^{m} \beta_{\mathrm{j}} \mu\left[\bigcup_{i=1}^{n}\left(E_{i} \cap F_{j}\right)\right]$
$\begin{aligned} & \sum_{n}{ }_{n} \alpha_{i} \mu\left[E_{i} \cap\left(\bigcup_{j=1}^{m}\left(F_{j}\right)\right]+\sum_{j=1}^{m} \beta_{j} \mu\left[\left(\bigcup_{i=1}^{n}\left(E_{i}\right) \cap F_{j}\right)\right]\right. \\ = & \left.\sum_{i=1}^{n} \alpha_{i=1} \alpha_{i} \mu\left[E_{i} \cap \mathrm{X}\right]+\sum_{j=1}^{m} \beta_{\mathrm{j}} \mu\left[\mathrm{X} \cap F_{j}\right)\right]=\sum_{i=1}^{n} \alpha_{i} \mu\left[E_{i}\right]+\sum_{j=1}^{m} \beta_{\mathrm{j}} \mu\left[F_{j}\right]=\int \phi+\int \psi .\end{aligned}$
Hence $\int \phi+\psi=\int \phi+\int \psi$.
$\boldsymbol{\operatorname { C o r }}(\mathbf{1})$: If $\phi_{1}, \phi_{2} \ldots \ldots \ldots \phi_{n}$ are n non negative simple functions then above said result can be extended as $\int\left(\phi_{1}+\phi_{2}+\right.$ $\left.\cdots \ldots+\phi_{n}\right)=\int \phi_{1}+\int \phi_{2}+\cdots \ldots \ldots+\int \phi_{n}$.
$\boldsymbol{C o r}$ (2): If $\phi \& \psi$ are non negative simple functions and α, β are non negative real numbers then $\int(\alpha \phi+\beta \psi)=\alpha \int \phi+\beta \int \psi$.
Cor (3): If $\phi_{1}, \phi_{2} \ldots \ldots \ldots \phi_{n}$ are n non negative simple functions and $\alpha_{1}, \alpha_{2}, \ldots \ldots \ldots, \alpha_{n}$ are non negative real numbers, then $\int \sum_{i=1}^{n} \alpha_{i} \phi_{i}=\sum_{i=1}^{n} \alpha_{i} \int \phi_{i}$.
$\boldsymbol{C o r}$ (4): Let $\phi=\sum_{i=1}^{n}\left(\alpha_{i}\right) C_{E_{i}}$ where α_{i} are non negative and E_{i} are measurable then $\int \phi=\sum_{i=1}^{n} \alpha_{i} \mu\left(E_{i}\right)$.
Definition: Let ϕ be any non negative simple function and E be any measurable set. Let ϕ^{*} be the restriction of ϕ to E . Then we define $\int_{E} \phi=\int \phi^{*}$.

Note: $\int_{E} \phi=\int \phi C_{E}$
Theorem: Let ϕ be a non negative simple function. For measurable set E
define $\lambda(\mathrm{E})=\int_{E} \phi \mathrm{~d} \mu$, Then λ is a measure.
Proof: Obviously $\lambda \geq 0$. Moreover $\lambda(\phi)=\int_{\phi} \phi=\int \phi C_{\phi}=0$
But E being measurable set, $\phi=\sum_{i=1}^{\imath_{i}^{n}} \alpha_{i} \mathcal{C}_{E_{i}}$ be the standard form of ϕ. Fof any measurable set A we define $\mu_{i}(\mathrm{~A})=\mu\left(\mathrm{A} \cap E_{i}\right)$ then μ_{i} is a measure.

We have $\lambda(E)=\int_{E} \phi=\int \phi C_{E}=\int \sum_{i=1}^{n} \alpha_{i} C_{E \cap E_{i}}=\sum_{i=1}^{n} \alpha_{i} \mu_{i}(\mathrm{E})$
Hence $\lambda(E)=\left(\sum_{i=1}^{n} \alpha_{i} \mu_{i}\right)\left(E_{i}\right) \forall$ measurable set E_{i}.
This means $\lambda=\sum_{i=1}^{n} \alpha_{i} \mu_{i}$, Since $\alpha_{i} \geq 0$ for every $1 \leq \mathrm{i} \leq \mathrm{n}$. It follows that λ is a measure.
Cor (1): If ϕ is any non negative simple function, A and B are any measurable disjoint sets then $\int_{A \cup B} \phi=\int_{A} \phi+\int_{B} \phi$ but $\lambda(E)=$ $\int_{E} \phi$ then λ is a measure.
Then $\lambda(A \cup B))=\lambda(A)+\lambda(B) \Rightarrow \int_{A \cup B} \phi=\int_{A} \phi+\int_{B} \phi$.
$\boldsymbol{\operatorname { C o r }}$ (2): If N be a null set and ϕ is a non negative simple function.
Then $\int_{N} \phi=0 \Rightarrow \lambda(N)=\int_{N} \phi=0$.
$\boldsymbol{C o r}$ (3): Let $\phi=0$ a. e. then $\int \phi=0$
Suppose $\phi=0$ on X-N where N is a null set. Then $\int_{X} \phi=\int_{(\mathrm{X}-\mathrm{N}) \cup \mathrm{N}} \phi$
$=\int_{X-N} \phi+\int_{X} \phi=0+-0=0$.
Definition: Let f be any non negative measurable function, we define
$\int f=\operatorname{Sup}\left\{\int \phi / 0 \leq \phi \leq f: \phi\right.$ is simple $\}$
Definition: Let f be any non negative measurable function and E be any measurable set. Let f^{*} be the restriction of f to E , Define $\int_{E} f=\int f^{*}$.

Note: $\int_{E} f=\int f C_{E}$.
Theorem: Let f and g be any non negative measurable functions, then
$\int f=0$ if $f=0$ a. e.
$\int_{N} f=0$ if N is a null set.
$\int_{A} f \leq \int_{B} f$ if $\mathrm{A} \subset \mathrm{B}$
$\int f \leq \int g$ if $f \leq g$ a.e.
$\int f=\int g$ if $f=g$ a.e.
$\int_{A \cup N} f=\int_{A} f$ for every null set N .

Proof:

1. Suppose $f=0$ a.e. Let $0 \leq \phi \leq f, \phi$ be any simple function. It follows that $\phi=0$ a.e.
$\Rightarrow \int \phi=0 \Rightarrow \operatorname{Sup}\left\{\int \phi / 0 \leq \phi \leq f: \phi\right.$ is simple $\}=0 \Rightarrow \int f=0$.
2. Let $f^{*}=f C_{N}$ then $f^{*}=0$ a.e.
$\Rightarrow \int f^{*}=0 \Rightarrow \int_{N} f C_{N}=0 \Rightarrow \int_{N} f=0$
3. Let $\mathrm{A} \subset \mathrm{B}$ be any measurable set. Let ϕ be any simple function such that $0 \leq \phi \leq f_{c_{A}}$

Since $\mathrm{A} \subset \mathrm{B}$, we have $C_{A} \leq C_{B} \Rightarrow f_{c_{A}} \leq f_{c_{B}} \Rightarrow 0 \leq \phi \leq f_{c_{B}} \Rightarrow \int \phi \leq \int f_{c_{B}}$
$\Rightarrow \operatorname{Sup}\left\{\int \phi\right\} \leq \int f_{c_{B}} \Rightarrow \int f_{c_{A}} \leq \int f_{c_{B}}$
$\Rightarrow \int_{A} f \leq \int_{B} f$.
4. Suppose $f \leq g$ on $\mathrm{X}-\mathrm{N}$ where N is a null set. Let ϕ be a simple function such that
$0 \leq \phi \leq f$, Then $0 \leq \phi \leq f$ on X-N $\Rightarrow 0 \leq \phi \leq g$ on X-N. $\Rightarrow \int_{X \sim N} \phi \leq \int_{X-N} g$
$\Rightarrow \int_{X-N} \phi \leq \int_{X} g \quad$ [Because $\int_{X-N} g \leq \int_{X} g$]
$\Rightarrow \int_{X-N} \phi+\int_{N} \phi \leq \int g \quad\left[\int_{N} \phi=0\right]$
$\Rightarrow \int_{X-N} \phi \leq \int g \Rightarrow \int \phi \leq \int g \Rightarrow \operatorname{Sup} \int \phi \leq \int g \Rightarrow \int f \leq \int g$.
5. Suppose $f=g$ a.e. Then $f \leq g$ a.e. $\Rightarrow \int f \leq \int g$

Similarly $g \leq f$ a.e. $\Rightarrow \int g \leq \int f$ Hence $\Rightarrow \int f=\int g$.
Let ϕ be any simple function such that $0 \leq \phi \leq f$ on AU N.
6. Then $0 \leq \phi \leq f$ on $\mathrm{A} \Rightarrow \int_{A} \phi \leq \int_{A} f \Rightarrow \int_{A} \phi+\int_{N} \phi \leq \int_{A} f \quad\left[\int_{N} \phi=0\right]$
$\Rightarrow \int_{A \cup N} \phi \leq \int_{A} f \Rightarrow \operatorname{Sup} \int_{A \cup N} \phi \leq \int_{A} f \quad$ From (3) we get
$\Rightarrow \int_{A} f \leq \int_{A \cup N} f$ Hence $\int_{A \cup N} f=\int_{A} f$.
Monotone Convergence Theorem: Let $\left\{f_{n}\right\}$ be an increasing sequence of non negative measurable functions and f be non negative such that $f_{n} \rightarrow f$ a.e. then $\int f_{n} \rightarrow \int f$.

Proof: First we note that f is measurable because the limit of a sequence of measurable functions is measurable.
And $f_{n} \leq f \forall \mathrm{n} \quad$ [Because for increasing sequence Limit $A_{n}=\bigcup_{1}^{\infty} A_{n}$
And for decreasing sequence Limit $A_{n}=\bigcap_{1}^{\infty} A_{n}$]
$\Rightarrow \int f_{n} \leq \int f \forall n \Rightarrow \operatorname{Limt} \int f_{n} \leq \int f$
Let $0<\alpha<1$ be any real number. And $0 \leq \phi \leq f$ be any simple function.

Define $A_{n}=\left\{\alpha \phi \leq f_{n}\right\}$, Since $\alpha \phi, f_{n}$ are measurable functions, it follows that A_{n} is measurable for all n . As $\left(f_{n}\right)$ is an increasing sequence, it is clear that A_{n} is also an increasing sequence. Let $x \in X$, Suppose $f(x)=0$ then $\phi(x)=0 \Rightarrow \alpha \phi(x)=0$
$\Rightarrow \alpha \phi(x) \leq f_{n}(\mathrm{x}) \quad \forall \mathrm{n} \Rightarrow x \in\left\{\alpha \phi \leq f_{n}\right\} \Rightarrow x \in A_{n} \Rightarrow x \in \bigcup_{1}^{\infty} A_{n}$
But $f(x)>0$ then $\alpha \phi(x) \leq \alpha f(x)<f(x) \Rightarrow \alpha \phi(x)<f(x)$. As $f_{n} \rightarrow f$ we can find k
s.t. $f_{k}(\mathrm{x})>\alpha \phi(x) \Rightarrow x \in\left\{\alpha \phi \leq f_{\mathrm{k}}\right\} \Rightarrow x \in A_{k}, x \in \bigcup_{1}^{\infty} A_{n}$ shows that $x \in \bigcup_{1}^{\infty} A_{n}$,

Hence $\bigcup_{1}^{\infty} A_{n}=\mathrm{X}$
For measurable set E define $\lambda(E)=\int_{E} \phi$, then λ is a measure
From (2) we have $\left(A_{n}\right) \uparrow \mathrm{X}$ therefore $\lambda\left(A_{n}\right) \uparrow \lambda(\mathrm{X}) \quad$ [Because of the continuity of the measure for increasing limits]
$\Rightarrow \operatorname{Limit} \lambda\left(A_{n}\right)=\lambda(\mathrm{X}) \Rightarrow \operatorname{Limt} \int_{A_{n}} \phi=\int \phi$
By definition of A_{n} we have $\alpha \phi \leq f_{n}$ on $A_{n} \Rightarrow \int_{A_{n}} \alpha \phi \leq \int_{A_{n}} f_{n} \Rightarrow \alpha \int_{A_{n}} \phi \leq \int f_{n}\left[\int_{A_{\mathrm{n}}} f_{n} \leq \int_{\mathrm{X}} f_{n}\right]$
$\Rightarrow \operatorname{Limt} \alpha \int_{A_{n}} \phi \leq \operatorname{Limt} \int f_{n} \Rightarrow \alpha \operatorname{Lim} t \int_{A_{n}} \phi \leq \operatorname{Limt} \int f_{n} \Rightarrow \alpha \int \phi \leq \operatorname{Limt} \int f_{n}[F r o m(3)]$
Taking limit as $\alpha \rightarrow 1$ we obtain $\int \phi \leq \operatorname{Limt} \int f_{n} \Rightarrow \operatorname{Sup}\left\{\int \phi\right\} \leq \operatorname{Limt} \int f_{n}$
$\Rightarrow \int f \leq \operatorname{Limt} \int f_{n}$
From (1) and (4) we get Limt $\int f_{n}=\int f$ proved.
Note: If the sequence $\left\{f_{n}\right\}$ is not an increasing sequence then Monotone Convergence Theorem does not hold. Consider the following example.

Let $(\mathcal{R}, \mathcal{M}, m)$ be the L^{\prime} - measure space. Let $f_{n}=\frac{1}{n} C_{[0, n]}$ then $f_{n} \geq 0, f_{n}$ is measurable $\forall \mathrm{n}$ and $f_{n} \rightarrow 0$ but $\int f_{n} \nrightarrow \int 0$

Also Another example let $f_{n}=\frac{1}{n} C_{[n, \infty]}$ then $f_{n} \geq 0$ and $\left(f_{n}\right)$ is monotonic decreasing sequence of measurable functions and $f_{n} \rightarrow 0$ uniformly but $\int f_{n} \nrightarrow \int 0$.

Fatou's Lemma: Let $\left\{f_{n}\right\}$ be a sequence of non negative measurable functions and $f_{n} \rightarrow f$ a.e. on a set E then $\int_{E} f \leq \underline{\operatorname{Limt}} \int_{\mathrm{E}} f_{n}$.
Proof: Without any loss of generality we may assume that the convergence being everywhere. Since integrals over set of measure zero are zero. Let h be a bounded measurable function which is not greater than f and which vanish outside a set E^{\prime} of finite measure.

Define h_{n} by letting $h_{n}(\mathrm{x})=\min \left\{h(x), f_{n}(x)\right\}$ then h_{n} is bounded by the bound of h and vanish outside E^{\prime}.
Now $h_{n} \rightarrow \mathrm{~h}$ for each $x \in E^{\prime}$ then we have $\int_{E} h=\int_{E^{\prime}} h=\operatorname{limt} \int_{E^{\prime}} h_{n} \leq \underline{\operatorname{Limt}} \int_{E^{\prime}} f_{n}$.
Taking sup over h we get $\int_{E} h \leq \underline{\operatorname{Limt}} \int_{\mathrm{E}} f_{n}$. Proved.

Another Proof: Let $f=\underline{\text { Limt }} f_{n}$. Define $g_{n}=\operatorname{Inf}\left\{f_{n}, f_{n+1}, f_{n+2}, \ldots \ldots \ldots\right\}$
$=\operatorname{Inf}\left\{f_{k} / \mathrm{k} \geq \mathrm{n}\right\}$ Then $\left\{g_{n}\right\}$ is a monotonic increasing sequence of non negative measurable functions. Then Limit $\left(g_{n}\right)=$ $\sup _{n}\left(g_{n}\right)=\sup \left\{\operatorname{Inf}\left(f_{k}\right) / \mathrm{k} \geq \mathrm{n}\right\}=\underline{\operatorname{Limt}} f_{n}=f$.

Thus From Monotone Convergence Theorem $\int f=\operatorname{limit} \int g_{n}$
$g_{n} \leq f_{k} \forall \mathrm{k} \geq \mathrm{n} \Rightarrow \int g_{n} \leq \int f_{k} \quad \forall \mathrm{k} \geq \mathrm{n} \Rightarrow \int g_{n} \leq \underline{\operatorname{Limt}} \int f_{k} \Rightarrow \operatorname{Limit} \int g_{n} \leq \underline{\operatorname{Limt}} \int f_{k}$
$\Rightarrow \int f \leq \underline{\operatorname{Limt}} \int f_{k}$
$\Rightarrow \int \underline{\operatorname{Limt}}\left(f_{n}\right) \leq \underline{\operatorname{Limt}} \int f_{n}$. Proved.
Cor: If $\left\{f_{n}\right\}$ be any sequence of non negative measurable functions and $f_{n} \rightarrow f$ then $\Rightarrow \int f \leq \underline{\operatorname{Limt}} \int f_{\mathrm{n}}$
Preposition: Let $f \& g$ are non negative measurable functions and α be any non negative constant, then

1. $\int \alpha f=\alpha \int f$ and (2) $\int(f+g)=\int f+\int g$

Proof: Since $f \& g$ are non negative measurable functions, we can find increasing sequences $\left\{\phi_{n}\right\}$ and $\left\{\psi_{n}\right\}$ of non negative simple functions s.t. $\phi_{n} \rightarrow f$ and $\psi_{n} \rightarrow g$.

1. $\left(\alpha \phi_{n}\right)$ is an increasing sequence of non negative simple functions and $\alpha \phi_{n} \rightarrow \alpha f$ therefore $\int \alpha \phi_{n} \rightarrow \int \alpha f$ [By M.C.T.]
$\Rightarrow \int \alpha f=\operatorname{limt} \int \alpha \phi_{n}=\operatorname{limt} \alpha \int \phi_{n}=\alpha \operatorname{limt} \int \phi_{n}=\alpha \int f \quad$ [By M.C.T.]
2. $\left(\phi_{n}+\psi_{n}\right)$ is monotone increasing sequence of non negative simple functions and $\phi_{n}+\psi_{n} \rightarrow f+g$

Therefore $\int\left(\phi_{n}+\psi_{n}\right) \rightarrow \int(f+g)$
$\int(f+g)=\operatorname{limt} \int\left(\phi_{n}+\psi_{n}\right)=\operatorname{limit}\left(\int\left(\phi_{n}\right)+\int\left(\psi_{n}\right)\right)$
$=\operatorname{limt}\left(\int\left(\phi_{n}\right)+\operatorname{limt} \int\left(\psi_{n}\right)=\int f+\int g\right.$
[By M.C.T.]
Proved.
Cor (1) Let $f \& g$ are non negative measurable functions and α and β be any non negative constants, then
$\int(\alpha f+\beta g)=\alpha \int f+\beta \int g$.
$\boldsymbol{C o r}$ (2) If $f_{1}, f_{2}, \ldots, f_{n}$ are non negative measurable functions and $\alpha_{1}, \alpha_{2}, \ldots \ldots \ldots, \alpha_{n}$ are non negative constants then $\int \sum_{i=1}^{n} \alpha_{i} f_{i}$ $=\sum_{i=1}^{n} \alpha_{\mathrm{i}} \int f_{i}$.

Theorem: Let $\sum_{n=1}^{\infty} f_{n}$ be a series of non negative measurable functions,
then $\int \sum_{n=1}^{\infty} f_{n}=\sum_{n=1}^{\infty} \int f_{n}$.
Proof: Let $g_{n}=\sum_{i=1}^{n} f_{i}$ and $f=\sum_{n=1}^{\infty} f_{n}$ then $\left(g_{n}\right) \rightarrow f$ and $\left(g_{n}\right)$ is an increasing sequence of non negative measurable functions. Hence by M.C.T. we have
$\int f=\operatorname{limit} \int g_{n} \Rightarrow \int \sum_{n=1}^{\infty} f_{n}=\operatorname{limt} \int\left(f_{1}+f_{2}+\cdots . .+f_{n}\right)=\operatorname{Limt}\left(\int f_{1}+\int f_{2}+\cdots . .+f_{n}\right)$
$=\operatorname{limit}\left(\sum_{i=1}^{n} \int f_{i}\right)=\sum_{i=1}^{\infty} \int f_{i}$ which shows that $\int \sum_{n=1}^{\infty} f_{n}=\sum_{n=1}^{\infty} \int f_{n}$.
Preposition: Let f be non negative measurable function. For any measurable set E define $\lambda(E)=\int_{E} f$, then λ is a measure.
Proof: It is clear that $\lambda \geq 0$ and $\lambda(\phi)=0$
Let $\left(\mathrm{E}_{n}\right)$ be any sequence of disjoint measurable sets and $\mathrm{E}=\bigcup_{n=1}^{\infty} E_{n}$. since the sets are disjoint we get
$C_{E}=\sum_{n=1}^{\infty} C_{E_{n}} \Rightarrow \int C_{E}=\sum_{n=1}^{\infty} \int C_{E_{n}} \Rightarrow \int f C_{E}=\int \sum_{n=1}^{\infty} f C_{E_{n}}=\sum_{n=1}^{\infty} \int f C_{E_{n}}$
$\Rightarrow \int_{E} f=\sum_{n=1}^{\infty} \int_{E_{n}} f \Rightarrow \lambda(E)=\sum_{n=1}^{\infty} \lambda\left(E_{n}\right)$. Which proves that λ is a measure.
$\boldsymbol{C o r}(\mathbf{1})$: If A and B are disjoint measurable sets, then $\int_{A \cup B} f=\int_{A} f+\int_{B} f$.
$\boldsymbol{\operatorname { C o r }}(2)$: Let $\left(E_{n}\right)$ is any sequence of disjoint measurable sets, then $\int_{\underset{1}{\infty} E}^{\infty} f=\sum_{1}^{\infty} \int_{E_{n}} f$.
Theorem: Let f be non negative measurable function, then $\int f=0$ iff $f=0$ a.e.
Proof: If $f=0$ a.e. then $\int f=0$ obviously.
Conversely let $\int f=0$ a.e., to show that $f=0$ a.e.
Define $\mathrm{E}_{n}=\left\{f>\frac{1}{n}\right\}$, and $\mathrm{E}=\{f>0\}$ then $\mathrm{E}=\cup \cup_{1}^{\infty} \mathrm{E}_{n}$.
Since $\frac{1}{n} C_{E_{n}} \leq f$ we get $\int \frac{1}{n} C_{E_{n}} \leq \int f \Rightarrow \frac{1}{n} \mu\left(E_{n}\right) \leq 0 \quad \forall \mathrm{n} \Rightarrow \mu\left(E_{n}\right) \leq 0 \quad \forall \mathrm{n} \Rightarrow \mu\left(E_{n}\right)=0 \quad \forall \mathrm{n}$
$\Rightarrow \sum_{1}^{\infty} \mu\left(E_{n}\right)=0 \Rightarrow \mu(\mathrm{E}) \leq \sum_{1}^{\infty} \mu\left(E_{n}\right)$ We find that $\mu(\mathrm{E})=0$, Thus E is a null set and $f=0$ on X-E. Proves that $f=0$ a.e.
Definition: Let f be any non negative measurable function. If $\int f<\infty$ then f is said to be integrable.

Note: $f \vee g=\frac{(f+g)+|f-g|}{2}$ and $f \wedge g=\frac{(f+g)-|f-g|}{2}$
Also $f^{+}=f \vee 0:=\frac{(f)+|f|}{2}$ and $f^{-}=-\{f \wedge 0\}=-\frac{(f)-|f|}{2}=\frac{(|f|)-f}{2} \Rightarrow f^{+}-f^{-}=f$ and $f^{+}+f^{-}=|f|$
Definition: Let f be any measurable function. If f^{+}and f^{-}both are integrable then f is said to be integrable and we define $\int f=$ $\int f^{+}-\int f^{-}$.

Theorem: Let f be measurable function then (1) f is integrable iff $|f|$ is integrable and
$\left|\int f\right| \leq \int|f|$. (2) If g is integrable and $|f| \leq g$ then f is integrable.
Proof: (1) Suppose $|f|$ is integrable. Then $f^{+}+f^{-}=|f|$, we see that $f^{+} \leq|f|, f^{-} \leq|f|$
$\Rightarrow \int f^{+} \leq \int|f|, \int f^{-} \leq \int|f| \Rightarrow \int f^{+}<\infty$ and $\int f^{-}<\infty \Rightarrow f^{+}$and f^{-}both are integrable.
$\Rightarrow f$ is integrable.
For the converse assume that f is integrable. That means f^{+}and f^{-}both are integrable.
$\Rightarrow \int f^{+}<\infty$ and $\int f^{-}<\infty$ But $|f|=f^{+}+f^{-}$which gives $\int|f|=\int\left(f^{+}+f^{-}\right)$
$=\int f^{+}+\int f^{-}<\infty \Rightarrow \int|f|<\infty$ shows that $|f|$ is integrable.
Further $\left|\int f\right|=\left|\int f^{+}+\int f^{-}\right| \leq\left|\int f^{+}\right|+\left|\int f^{-}\right|=\int f^{+}+\int f^{-}=\int\left(f^{+}+f^{-}\right)=\int|f|$.
(1) Let g be integrable and $|f| \leq g$ then $\int|f| \leq \int g<\infty \Rightarrow|f|$ is integrable
(2) $\quad \Rightarrow f$ is integrable. [From part (1)]

Definition: Let f be any measurable function and E be any measurable set. Let $f^{*}=f / E$. If f^{*} is integrable then we say that f is integrable over E and $\int_{E} f=\int_{E} f^{*}$.

Remark: f is integrable over E iff $f_{c_{E}}$ is integrable and $\int_{E} f=\int f_{c_{E}}$.
Theorem: Let f be any measurable function, then

1. If f is integrable and E is any measrurable set, then f is integrable over E .
2. $\int_{N} f=0$ if N be a null set.
3. $\int f=0$ if $f=0$ a.e.
4. If f is integrable and $g=f$ a.e. then g is integrable. And $\int f=\int g$
5. If f is integrable and for a measurable set $\mathrm{E} v(E)=\int_{E} f$ then v is finite, $v(\phi)=0$ and $\quad v$ is countably additive.

Proof: Suppose f is integrable and E be a measurable set then f^{+}and f^{-}are integrable
$\Rightarrow \int f^{+}<\infty$ and $\int f^{-}<\infty$ from $\int_{E} f^{+} \leq \int_{X} f^{+}<\infty, \int_{E} f^{-} \leq \int_{X} f^{-}<\infty$
Note that f^{+}and f^{-}are integrable over $\mathrm{E} \Rightarrow f$ is integrable over E .
(2) Let N be a null set then $\int_{N} f^{+}=0$ and $\int_{N} f^{-}=0 \Rightarrow \int_{N} f=\int_{N} f^{+}-\int_{N} f^{-}=0-0=0$
(3) Let $f=0$ a.e. then $f^{+}=0$ a.e. and $f^{-}=0$ a.e. $\Rightarrow \int f^{+}=0$ and $\int f^{-}=0$
$\Rightarrow \int f=\int f^{+}-\int f^{-}=0 \Rightarrow \int f=0$.
(4) Let f be integrable and $g=f$ a.e then $g^{+}=f^{+}$a.e. and $g^{-}=f^{-}$a.e.
$\Rightarrow g^{+}$and g^{-}are integrable, $\Rightarrow g$ is integrable.
(5) $\int_{E} f$ is finite for every $\mathrm{E} \Rightarrow v(E)$ is finite and $v(\phi)=\int_{\phi} f=0$

Let $\left(E_{n}\right)$ be any sequence of disjoint measurable sets then
$v\left(\underset{1}{\infty} E_{n}\right)=\int_{\bigcup_{1}^{\infty} E_{n}}^{\infty} f=\int_{\substack{1 \\ V_{n}}}^{\infty} f^{+}-\int_{\substack{U_{n} \\ \infty}} f^{-}=\sum_{1}^{\infty} \int_{E_{n}} f^{+}-\sum_{1}^{\infty} \int_{E_{n}} f^{-}=\sum_{1}^{\infty}\left(\int_{E_{n}} f^{+}-\int_{E_{n}} f^{-}\right)$
$=\sum_{1}^{\infty} f_{E_{n}} f=\sum_{1}^{\infty} v\left(E_{n}\right)$.
Note: $(1)(\alpha f)^{+}=\alpha f^{+},(\alpha f)^{-}=\alpha f^{-}$if $\alpha \geq 0$
and $(\alpha f)^{+}=(-\alpha) f^{-},(\alpha f)^{-}=(-\alpha) f^{+}$if $\alpha<0$.
Theorem: Let f and g be two integrable functions and α, β be any constants then

1. αf is integrable and $\int \alpha f=\alpha \int f$
2. $f+g$ is integrable and $\int(f+g)=\int f+\int g$.

Proof: (1) If $\alpha=0$ then $\alpha f=0, \int \alpha f=0, \alpha \int f=0$ Hence no further argument is needed.
Let $\alpha \geq 0$ then $\int(\alpha f)^{+}=\int \alpha f^{+}=\alpha \int f^{+}<\infty$ shows that $(\alpha f)^{+}$is integrable.
Also $\int(\alpha f)^{-}=\int \alpha f^{-}=\alpha \int f^{-}<\infty$ shows that $(\alpha f)^{-}$is integrable.
And $\int \alpha f=\int(\alpha f)^{+}-\int(\alpha f)^{-}=\alpha \int f^{+}-\alpha \int f^{-}=\alpha\left[\int f^{+}-\int f^{-}\right]=\alpha \int f$.
Suppose $\alpha<0$ then $\int(\alpha f)^{+}=\int(-\alpha) f^{-}=(-\alpha) \int f^{-}<\infty$
$\Rightarrow \int(\alpha f)^{-}=\int(-\alpha) f^{+}=-\alpha \int f^{+}<\infty$ shows that αf is integrable.
$\int \alpha f=\int(\alpha f)^{+}-\int(\alpha f)^{-}=(-\alpha) \int f^{-}-(-\alpha) \int f^{+}=\alpha\left[\int f^{+}-\int f^{-}\right]=\alpha \int f$.
(2) Write $\mathrm{h}=f+g$ then $h^{+}-h^{-}=f^{+}-f^{-}+g^{+}-g^{-} \Rightarrow h^{+}+f^{-}+g^{-}=f^{+}+g^{+}+h^{-}$

These all are non negative measurable functions
Consequently $\int\left(h^{+}+f^{-}+g^{-}\right)=\int\left(f^{+}+g^{+}+h^{-}\right)$
Gives $\int h^{+}+\int f^{-}+\int g^{-}=\int f^{+}+\int g^{+}+\int h^{-}$
$\Rightarrow \int h^{+}-\int h^{-}=\int f^{+}-\int f^{-}+\int g^{+}-\int g^{-}$
$\Rightarrow \int h=\int f+\int g \Rightarrow \int(f+g)=\int f+\int g$.
$\boldsymbol{C o r}$ (1) Let f and g be two integrable functions and α, β be any constants then $\alpha f+\beta g$ is integrable and $\int(\alpha f+\beta g)=\alpha \int f$ $+\beta \int g$.
$\boldsymbol{\operatorname { C o r }}(2)$ Let $f_{1}, f_{2}, \ldots \ldots, f_{n}$ be finitely many integrable functions and $\alpha_{1}, \alpha_{2}, \ldots \ldots, \alpha_{n}$ are constants then then $\alpha_{1} f_{1}+\alpha_{2} f_{2}+$ $\cdots \ldots \ldots+\alpha_{n} f_{n}$ is integrable and $\int \sum_{i=1}^{n} \alpha_{i} f_{\mathrm{i}}=\sum_{i=1}^{n} \alpha_{i} \int f_{\mathrm{i}}$.

Lebesgue Dominated Convergence Theorem: Let $\left\{f_{n}\right\}$ be any sequence off measurable functions, g be any integrable function such that $\left|f_{n}\right| \leq g$ for all n , If $f_{n} \rightarrow f$ a.e. then f is integrable and $\int f_{n} \rightarrow \int f$.

Proof: Since g is integrable, f_{n} is measurable and $\left|f_{n}\right| \leq g$ for all n , it follows that f_{n} is integrable for all n. From $\left|f_{n}\right| \leq g$ we get $-g$ $\leq f_{n} \leq g$. The fact that $f_{n} \rightarrow f$
gives $-g \leq f_{n} \leq g \Rightarrow|f| \leq g$.
Thus as $f_{n} \rightarrow f \Rightarrow f=\operatorname{limt}\left(f_{n}\right)$ and f_{n} is measurable for all n , It follows that f is measurable. Hence f is integrable.
Now for every n we have $\quad-g \leq f_{n} \leq g$
From $\left(^{*}\right)$ we see that $\left(g+f_{n}\right)$ is a sequence of non negative measurable functions. Using Fatou's Lemma, we obtain $\int \operatorname{Limt}(g+$ $\left.f_{n}\right) \leq \operatorname{Limt} \int\left(g+f_{n}\right)$
$\Rightarrow \int(g+f) \leq \underline{\operatorname{Limt}}\left(\int g+\int f_{n}\right)=\int g+\underline{\operatorname{Limt}} \int f_{n}$
$\Rightarrow \int g+\int f \leq \int g+\underline{\text { Limt }} \int f_{n} \Rightarrow \int f \leq \underline{\operatorname{Limt}} \int f_{n}$
Also from (*) we note that $\left(g-f_{n}\right)$ is a sequence of non negative measurable functions. Using Fatou's Lemma we obtain $\int \operatorname{Limt}(g$ $\left.-f_{n}\right) \leq \underline{\operatorname{Limt}} \int\left(g-f_{n}\right)$
$\Rightarrow \int(g-f) \leq \underline{\operatorname{Limt}}\left(\int g-\int f_{n}\right) \Rightarrow \int g-\int f \leq \int g-\overline{\operatorname{Limt}} \int f_{n} \Rightarrow-\int f \leq-\overline{\operatorname{Limt}} \int f_{n}$
$\Rightarrow \overline{\operatorname{Limt}} \int f_{n} \leq \int f$
From (1) and (2) we get $\overline{\operatorname{Limt}} \int f_{n} \leq \int f \leq \underline{\operatorname{Limt}} \int f_{n}$
Since Limt $\int f_{n} \leq \overline{\operatorname{Limt}} \int f_{n}$, we must have Limt $\int f_{n}=\overline{\operatorname{Limt}} \int f_{n}=\int f$
$\Rightarrow \operatorname{Limt} \int f_{n}=\int f$ i.e. $\int f_{n} \rightarrow \int f$. Proved.

References

Bartle, R.G. (1995). The elements of integration and Lebesgue measure. Wiley Interscience.
Royden, H.L. (1988). Real analysis. Prentice Hall.
Williams, D. (1991). Probability with martingales. Cambridge University Press. ISBN 0-521- 40605-6.

How to cite this article:

Parvinder Singh.(2015). Introduction to Lebesgue Integration. Int J Recent Sci Res, 6(9), 6277-6283.

International \mathcal{H} ournal of Recent Scientific Research

[^0]: *Corresponding author: Parvinder Singh
 Department of Mathematics, S.G.G.S. Khalsa College, Mahilpur

