ISSN: 0976-3031

International Journal of Recent Scientific Research

Impact factor: 5.114

ON THE TERNARY CUBIC DIOPHANTINE EQUATION $7x^2 - 4y^2 = 3z^3$

Gopalan M.A., Thiruniraiselvi N and Krithika V

Volume: 6 Issue: 9

THE PUBLICATION OF INTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH

http://www.recentscientific.com E-mail: recentscientific@gmail.com

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research

International Journal of Recent Scientific Research Vol. 6, Issue, 9, pp.6197-6199, September, 2015

RESEARCH ARTICLE

ON THE TERNARY CUBIC DIOPHANTINE EQUATION $7x^2 - 4y^2 = 3z^3$

Gopalan M.A¹., Thiruniraiselvi² N and Krithika V³

^{1,2,3}Department of Mathematics, SIGC, Trichy

ARTICLE INFO

Article History:

Received 05thJune, 2015 Received in revised form 08th July, 2015 Accepted 10thAugust, 2015 Published online 28st September, 2015

Key words:

Ternary cubic, integer solutions, polygonal numbers, pyramidal numbers.2010 mathematics subject classification: 11D25

ABSTRACT

The ternary cubic Diophantine equation given by $7x^2 - 4y^2 = 3z^3$ is analyzed for its non-zero distinct integer points on it. Different patterns of integer points for the equation under consideration are obtained. A few interesting relations between solutions and special numbers are obtained.

Copyright © **Gopalan M.A** *et al.* **2015**, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The ternary cubic diophantine equation offer an unlimited field of research due to their variety [Carmichael. R.D (1959), Dickson. L.E (2005), Mordell. L.J (1969)]. For an extensive of various problems, one may refer [Gopalal. M.A (2010,2011,2012,2013a,b,c,2014)]. This communication concerns with yet another interesting ternary cubic diophantine equation $7x^2 - 4y^2 = 3z^3$ for determining its infinitely many non-zero integral points. Also, a few interesting relations between the solutions and special numbers are presented.

Notations

 $CP_{m,n}$ - Centered Pyramidal number of rank n with size m

 $T_{m,n}$ - Polygonal number of rank n with size m.

Pr_n - Pronic number of rank n.

 P_n^m -Pyramidal number of rank n with size m.

Method of Analysis

The Diophantine equation to be solved for its non-zero distinct integral solution is,

$$7x^2 - 4y^2 = 3z^3 \tag{1}$$

To start with, it is seen that (1) is satisfied by the following triples of integers:

$$(1,1,1), (-3,6,-3), (-19,76,-19), (r^3,r^3,r^2),$$

$$\left(\frac{7\cdot2^{3k}-2^{k+2}}{3},\frac{7\cdot4^k-4}{3},\frac{7\cdot4^k-4}{3}\right)$$

In what follows, we illustrate methods of obtaining non-zero distinct integer solutions to (1).

The substitution of linear transformations

$$x = 2X_1 + 4T, y = 2X_1 + 7T, z = 2Z_1$$
 (2)

in (1) leads to

$$X_1^2 - 7T^2 = 2Z_1^3 \tag{3}$$

Assume
$$Z_1 = Z_1(a,b) = a^2 - 7b^2; a,b > 0$$
 (4)

(3) is solved through different approaches and different patterns of solutions thus obtained for (1) are illustrated below: *Method:* 1

Write 2 as
$$2 = (3 + \sqrt{7})(3 - \sqrt{7})$$
 (5)

*Corresponding author: Gopalan M.A Department of Mathematics, SIGC, Trichy Using (4) and (5) in (3) and employing the method of factorization it is written as

$$(X_1 + \sqrt{7}T)(X_1 - \sqrt{7}T) = (3 + \sqrt{7})(3 - \sqrt{7})(a + \sqrt{7}b)^3(a - \sqrt{7}b)^3$$

which is equivalent to the system of equations

$$(X_1 + \sqrt{7}T) = (3 + \sqrt{7})(a + \sqrt{7}b)^{3}$$

$$(X_1 - \sqrt{7}T) = (3 - \sqrt{7})(a - \sqrt{7}b)^{3}$$
(6)

Equating the rational and irrational parts in (6), we have

$$X_1 = 3a^3 + 63ab^2 + 21a^2b + 49b^3$$
$$T = a^3 + 21ab^2 + 9a^2b + 21b^3$$

Employing (2), the values of x,y and z satisfying (1) are given by

$$x = x(a,b) = 10a^{3} + 210ab^{2} + 78a^{2}b + 182b^{3}$$

$$y = y(a,b) = 13a^{3} + 273ab^{2} + 105a^{2}b + 245b^{3}$$

$$z = z(a,b) = 2a^{2} - 14b^{2}$$

Properties

1.
$$x(2.b) + z(2,b) - 182CP_{6.b} - 406t_{4.b} \equiv 88 \pmod{312}$$

2.
$$y(2,a) - x(2,a) - 126P_a^5 - 63t_{4,a} \equiv 24 \pmod{108}$$

3.
$$y(2,a) - 490P_a^5 - 301Pr_a \equiv 104 \pmod{119}$$

- 4. 3[-z(a,a)] represents a perfect square.
- 5. Each of the following expressions represents a cubical integer:

A.
$$3042[y(a,a)-x(a,a)]$$

B.
$$5766[y(a,a) + x(a,a)]$$

Method: 2

One may write (3) as

$$X_1^2 - 7T^2 = 2Z_1^3 * 1$$

$$(4 + \sqrt{7})(4 - \sqrt{7})$$

Write 1 as $1 = \frac{(4 + \sqrt{7})(4 - \sqrt{7})}{9}$ (8)

Using (4), (5) and (8) in (7); employing the method of factorization and equating positive factors, we get

$$(X_1 + \sqrt{7}T) = (3 + \sqrt{7})\frac{(4 + \sqrt{7})}{3}(a + \sqrt{7}b)^3$$
 (9)

Equating rational and irrational parts of (9), we have

$$X_1 = \frac{1}{3} \left[19a^3 + 399ab^2 + 147a^2b + 343b^3 \right]$$
$$T = \frac{1}{3} \left[7a^3 + 147ab^2 + 57a^2b + 133b^3 \right]$$

As our aim is to find integer solutions choosing a=3A, b=3B we obtain as follows:

$$X_1 = 171A^3 + 3591AB^2 + 1323A^2B + 3087B^3$$

$$T = 63A^3 + 1323AB^2 + 513A^2B + 1197B^3$$

$$Z_1 = 9A^2 - 63B^2$$

In view of (2), the integer solutions of (1) are given by

$$x = x(a,b) = 594A^{3} + 12474AB^{2} + 4698A^{2}B + 10962B^{3}$$
$$y = y(a,b) = 783A^{3} + 16443AB^{2} + 6237A^{2}B + 14553B^{3}$$
$$z = z(a,b) = 18A^{2} - 126B^{2}$$

Properties

1.
$$y(A,1) - x(A,1) - 1134P_A^3 - 972t_{AA} \equiv 0 \pmod{3591}$$

2.
$$x(A,1)-z(A,1)-1188 P_A^5-4086 \text{ Pr}_A = 2700 \pmod{8388}$$

3.
$$y(A, A) - x(A, A) - 66744CP_{6A} = 0$$

4.
$$849[y(A, A) - x(A, A)]$$
 is a cubical integer.

5.
$$2[-z(A, A)]$$
 represents a nasty number.

Note

It is worth to note that 2 in (5) and 1 in (8) are also represented in the following ways:

$$2 = \frac{\left(5 + \sqrt{7}\right)\left(5 - \sqrt{7}\right)}{9} \qquad 2 = \frac{\left(27 + \sqrt{7}\right)\left(27 - \sqrt{7}\right)}{361}$$
$$2 = \frac{\left(13 + \sqrt{7}\right)\left(13 - \sqrt{7}\right)}{81} \qquad 1 = \left(8 + 3\sqrt{7}\right)\left(8 - 3\sqrt{7}\right)$$

By introducing the above representations instead of (5) and (8), one may obtain 6 different distinct integer solutions to (1).

Remarkable Observation

Let (x_0, y_0, z_0) be any given integer solution to (1). In what follows, we illustrate a process of obtaining a general form of integer solutions to (1) based on the given solution.

$$x_{1} = -3^{3} x_{0} + h$$
Let $y_{1} = 3^{3} y_{0} + h$ (10)
$$z_{1} = 3^{2} z_{0}$$

be the second solution of (1)

Substituting (10) in (1), and simplifying, we get

$$h = 126x_0 + 72y_0$$

$$x_1 = 99x_0 + 72y_0$$
And thus,
$$y_1 = 126x_0 + 99y_0$$
(11)

The matrix representation of (11) is

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 99 & 72 \\ 126 & 99 \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

The repetition of the above process leads to the general solution of (1) to be

$$x_n = Y_n x_0 + 2X_n y_0$$
$$y_n = Y_n y_0 + \frac{7}{2} X_n x_0$$
$$z_n = 3^{2n} z_0$$

where (X_n, Y_n) is the general solution of the Pellian equation $v^2 = 7x^2 + 27^2$

CONCLUSION

In this paper, we have presented different sets of non-zero distinct integer solutions to the ternary cubic equation $7x^2 - 4y^2 = 3z^3$.

As the cubic diophantine equations are rich in variety, one may search for other choices of equations along with their solutions and relations among the solutions.

References

- Carmichael, R.D. 1959. The Theory of Numbers and Diophantine Analysis, New York, Dover.
- 2. Dickson, L.E. 2005. History of Theory of Numbers, vol.2, Diophantine Analysis, New York, Dover.
- Gopalan M.A, Pandichelvi V,2010,., On the ternary 3. cubic equation $y^2 + gz^2 = (k^2 + g)x^3$, Impact J.Sci. Tech, Vol. 4, No. 4, 117-123.
- Gopalan M.A.,.Srividya G, 2011, Integral Solutions of 4. ternary cubic Diophantine equation $x^3 + y^3 = z^2$, Acta Ciencia Indica, Vol. XXXVII M, No.4, , 805-808.
- Gopalan M.A, Sivakami B, 2012, On the ternary cubic 5. Diophantine equation $2xz = y^2(x+z)$, Bessel J. Math 2(3), 171-177.
- Gopalan M.A., Geetha K. 2013,, On the ternary cubic Diophantine equation $x^2 + y^2 - xy = z^3$, Bessel J.Math., 3(2), 119-123.
- Gopalan M.A, Vidhyalakshmi S., Kavitha A. 2013,, 7. Observations on the ternary cubic equation $x^2 + y^2 + xy = 12z^3$, Antartica J.Math 10(5), 453-
- Gopalan M.A., Vidhyalakshmi S., Mallika S. 2013,, On 8. the ternary non-homogenous cubic equation $x^3 + y^3 - 3(x + y) = 2(3k^2 - 2)z^3$, Impact J.Sci. Tech, Vol.7, No. 1, 41-45.
- Gopalan M.A., Vidhyalakshmi S., Kavitha A. oct-2014,' On the ternary cubic equation $5(X^2 + Y^2) - 9XY + X + Y + 1 = 23Z^3$ ijirr,1(10),099-101
- Mordell L.J., Diophantine Equations, Academic press, New York, 1969.

How to cite this article:

Gopalan M.A et al. 2015, On The Ternary Cubic Diophantine Equation $7x^2 - 4y^2 = 3z^3$. International Journal of Recent Scientific Research. 6(9), pp. 6197-6199,.

International Journal of Recent Scientific Research

