

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 6, Issue, 10, pp. 6560-6562, October, 2015 International Journal of Recent Scientific Research

RESEARCH ARTICLE

BRENT BROTZMAN PROTOCOL FOR IMPROVING HIP RANGE OF MOTION IN PROFESSIONAL FAST BOWLERS WITH LOW BACK PAIN

Vijay Selvan N¹., *Arunachalam Ramachandran²., Vijai Krishna³ and Nagaraj Srinivasan⁴

^{1,3,4}Madha College of Physiotherapy, Chennai ²Saveetha College of Physiotherapy, Chennai

ARTICLE INFO

Article History:

ABSTRACT

Received 05thJuly, 2015 Received in revised form 08thAugust, 2015 Accepted 10th September, 2015 Published online 16st October, 2015

Key words:

Brent Brotzman Protocol, low back pain, professional fast bowlers, hip Range of motion It is estimated that 10- 15% of the athletic population experiences back injuries. Athletes who participate in sporting events that require repeated hyperextension or flexion of the spine, such as cricket pace bowlers, may be particularly at risk. This study aims to find the effectiveness of Brent Brotzman Protocol in improving hip range of motion in professional fast bowlers with low back pain. 20elite professional cricket fast bowlers (mean age of 25.65) who had low back pain underwent Brent Brotzman rehabilitation protocol for 12 weeks. The outcome measures are bilateral hip range of motion. Pre – post rehabilitation measurements were compared using t test. The Results of the study showed that the range of motion of bilateral hip improved statistically significantly (p<0.001). This study concludes that Brent Brotzman Rehabilitation protocol is very effective in improving hip range of motion in professional fast bowlers with low back pain.

Copyright © **Vijay Selvan N** *et al.* **2015**, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Cricket has had a history of being regarded as a leisurely, gentleman's game (Clark, 1996). Today, with a solid ball weighing approximately 156 grams propelled from a distance of 20m at a speed of about 140 km/h to an awaiting batter, it can hardly be called a gentleman game (Stockhill& Bartlett, 1993). Bowling involves repetitive twisting, extension and rotation in a short period while body tissues and footwear must absorb large ground reaction forces. However, it is the speed and the force of the action that singles fast bowlers out as being particularly prone to injury. The fast bowler uses one of two bowling techniques or a combination of these, known as sideon, front-on or mixed bowling. Particular bowling techniques predispose bowlers to injury more than do others. Bowling too many overs in a single spell or bowling for too many spells is another factor which predisposes the fast bowler to injury. High performance young fast bowlers are more likely to bowl excessively throughout the growth period when the spine is immature. As a result they are more vulnerable to injury as the forces associated with fast bowling are unable to be absorbed. Mechanical factors are widely accepted in the aetiology of degenerative process and particularly to injuries of the lumbar spine. This is especially relevant in fast bowling, where a

player must absorb both vertical and horizontal components of the ground reaction force up to a half of a tonne (Watson, 2005) during foot impact in the delivery stride. Such forces are transmitted to the spine through the lower limb, where the additional forces caused by rapid trunk hyperextension/flexion, lateral flexion and twisting are added as a result of the bowling action during delivery. The upper body motion at delivery is produced by counter-rotation away from the batsman in the transverse plane about the longitudinal axis of the body. Counter-rotations of 12-40% of shoulders on pelvis during delivery stride have been predicted to increase the incidence lumbar spondylolysis, disc abnormality and muscle injury in fast bowlers (Elliot, et al, 2002). To address improving trunk and hip mobility, this study focused on a set of training protocol as this has been shown to be a safe and effective way of increasinglumbar and hip joint mobility (Herzog et al., 1988; Gal et al., 1994; Herzog, 2000; Gatterman, 2003).

METHODOLOGY

This was a randomized, controlled, prospective, investigative trial. 45 fast bowlers were given screening questionnaire table1 from various professional cricket academies and teams who are professionally participating in league matches

^{*}Corresponding author: Arunachalam Ramachandran Madha College of Physiotherapy, Chennai

regularly. Out of them, 20 elite fast bowlers who have Low Back Pain were taken to this study. Among those 20 bowlers, 15 were using mixed bowling action. 3 bowlers were bowling in side- arm action and 2 were using front- arm bowling action. The study was performed at Southern Railway stadium, Perambur, Chennai. All the subjects signed an informed consent form after carefully reading the information sheet provided by the researcher. The subjects were included in the study if they fulfil the following criteria. Only male subjects, who were between the ages of 18 to 35 years who have been playing Action Cricket for at least six months. Subjects who had any injuries in lower limb, cervical pain or any other medical ailment that will interfere with the study results according to the researcher, player who were all-rounder or part time wicket keepers were excluded. The outcome measures of this study were Hip joint Range of motion Both Side - Flexion, Extension, Abduction, Adduction, Internal rotation and External rotation. Range of motion measures for hips were taken using goniometry.

Table 1 screening questionnaire

S. No	Demographic parameter	Mean	Standard Deviation
1.	Age	25.65	2.47
2.	Mass (in kg)	75.9	6.49
3.	BMI (in kg/m2)	24.81	1.48
4.	Duration of Bowling (in years)	11.8	1.98
5.	Average overs per week	44.5	9.44

Table 2 Demographic Data of participants

S. No	Demographic parameter	Mean	Standard Deviation
1.	Age	25.65	2.47
2.	Mass (in kg)	75.9	6.49
3.	BMI (in kg/m2)	24.81	1.48
4.	Duration of Bowling (in years)	11.8	1.98
5.	Average overs per week	44.5	9.44

The results are presented as mean and standard deviation (mean \pm SD). The outcome measures were used before the intervention, at the end of 6th week and at the end of 12th week.

 Table 3 Test for Hip Flexion (Right) (unit - degree)

		Mean	Sdt. Deviation	t - value	Significance
Pair 1	Pre- Test	96	8.417	14.12	0.000*
Pair I	6 th week			14.12	0.000*
Pair 2	6 th week 12 th week	112.05	7.957	15.543	0.000*
Pall 2	12 th week	127.65	6.115	15.545	
Pair 3	Pre- Test	96	8.417	25.261	0.000*
Pair 5	12 th week	127.65	6.115	25.261	0.000*

Table 4 T-Test for Hip Flexion (Left) (unit - degree)

		Mean	Sdt. Deviation	t – value	Significance
Pair 1	Pre- Test	94.85	6.683	13.809	0.000*
Pair I	6 th week	109.45	7.302	13.809	0.000*
Pair 2	6 th week	109.45	7.302	14.074	0.000*
Pair 2	12 th week	125.40	5.452	14.874	
Pair 3	Pre- Test	94.85	6.683	28.889	0.000*
	12th week	125.4	5.452		

Table 5 T-Test for Hip Extension (Right) (unit - degree)

-		Mean	Sdt. Deviation	t – value	Significance
Pair 1	Pre- Test	25.65	3.588	12.918	0.000*
Pair I	6 th week	32.40	3.633	12.918	0.000*
Pair 2	6 th week	32.40	3.633	9.911	0.000*
Pair 2	12th week	38.35	2.777		
D-:- 2	Pre- Test	25.65	3.588	17765	0.000*
Pair 3	12th week	38.35	2.777	17.765	0.000*

Changes during the 12 weeks were calculated and compared between groups using Student's paired t tests with 99% confidence intervals (CIs). Two-tailed significance tests were used in all the statistical analysis.

 Table 6 T-Test for Hip Extension (Left) (unit - degree)

		Mean	Sdt. Deviation	t – value	Significance
Pair 1	Pre- Test	24.45	3.137	9.796	0.000*
Pair I	6 th week	30.25	3.323	9.790	0.000
Pair 2	6 th week	30.25	3.323	9.234	0.000*
Pair 2	12 th week	36.40	2.583	9.234	
Pair 3	Pre- Test	24.45	3.137	16.115	0.000*
Pair 5	12th week	36.40	2.583	10.115	0.000*

Table 7 T-Test for Hip Abduction (Right) (unit - degree)

		Mean	Sdt. Deviation	t – value	Significance
Pair 1	Pre- Test	39.10	4.077	9.233	0.000*
Pair I	6 th week	43.00	3.146	9.255	0.000*
D · 0	6 th week	43.00	3.146	9.609	0.000*
Pair 2	12th week	48.05	2.743		
Pair 3	Pre- Test	39.10	4.077	12 244	0.000*
	12 th week	48.05	2.743	13.344	

Table 8 T-Test for Hip Abduction (Left) (unit – degree)

		Mean	Sdt. Deviation	t – value	Significance
Pair 1	Pre- Test	37.80	3.942	6.791	0.000*
Pair I	6 th week	41.40	3.016	0.791	0.000*
D-:- 0	6 th week	41,40	3.016	11 720	0.000*
Pair 2	12 th week	46.95	2.982	11.738	
Pair 3	Pre- Test	37.80	3.942	16.665	0.000*
	12th week	46.95	2.982	16.665	

Table 9 T-Test for Hip Adduction (Right) (unit - degree)

		Mean	Sdt. Deviation	t – value	Significance	
Pair 1	Pre- Test	24.80	2.505	10.167	0.000*	
Pair I	6 th week	28.90	1,971	10.167	0.000*	
D-:- 2	6 th week	28.90	1.971	0 201	0.000*	
Pair 2	12 th week	33.10	2.808	8.391		
D-:- 2	Pre- Test	24.80	2.505	20 102	0.000*	
Pair 3	12 th week	33.10	2.808	20.193	0.000*	

Table 10 T-Test for Hip Adduction (Left) (unit - degree)

		Mean	Sdt. Deviation	t – value	Significance
Pair 1	Pre- Test	23.90	2.553	7.310	0.000*
Pair I	6 th week	27.85	2.540	7.510	0.000**
Pair 2	6 th week	27.85	2.540	9.275	0.000*
Pair 2	12 th week	33.10	2.808	9.275	
Pair 3	Pre- Test	23.90	2.553	11.051	0.000*
	12th week	33.10	2.808	11.951	0.000*

 Table 11 T-Test for Hip Internal Rotation (Right) (unit - degree)

			-		
		Mean	Sdt. Deviation	t – value	Significance
Pair 1	Pre- Test	29.80	2.505	16.927	0.000*
rall 1	6 th week	35.75	2.712	10.927	0.000
Pair 2	6 th week	35.75	2.712	15.942	0.000*
Pall 2	12 th week	41.90	2.882	13.942	
Pair 3	Pre- Test	29.80	2.505	35.640	0.000*
Pall 3	12 th week	41.90	2.882		

 Table 12 T-Test for Hip Internal Rotation (Left) (unit - degree)

		Mean	Sdt. Deviation	t - value	Significance
Pair 1	Pre- Test	28.25	2.173	9.367	0.000*
Pair I	6 th week	33.75	2.245	9.307	0.000**
D · O	6 th week	33.75	2.245	12 202	0.000*
Pair 2	12 th week	40.65	2.498	13.202	
р : о	Pre- Test	28.25	2.173	11.404	0.000*
Pair 3	12th week	40.65	2.498	11.484	0.000*

		Mean	Sdt. Deviation	t – value	Significance
Pair 1	Pre- Test	39.00	2.991	15.919	0.000*
	6 th week	45.10	3.597		
Pair 2	6 th week	45.10	3.597	12.992	0.000*
	12 th week	57.55	3.252		
Pair 3	Pre- Test	39.00	2.991	25.136	0.000*
	12 th week	57.55	3.252		

 Table 13 T-Test for Hip External Rotation (Right) (unit - degree)

 Table 14 T-Test for Hip External Rotation (Left) (unit - degree)

			-		
		Mean	Sdt. Deviation	t - value Significance	
Pair 1	Pre- Test	37.40	2.664	9.488	0.000*
Pair I	6 th week	44.20	2.668		
Pair 2	6 th week	44.20	2.668	10.634	0.000*
Pair 2	12 th h week	54.65	3.407		
Pair 3	Pre- Test	37.40	2.664	27.479	0.000*
Pair 3	12 th week	54.65	3.407		

DISCUSSION

Exercise therapy that consists of individually designed programs, including stretching or strengthening, and is delivered with supervision may improve pain and function in chronic nonspecific low back pain. Strategies should be used to encourage adherence (Hayden JA *et al.*, 2005). In our study the hip flexion of both sides were shown statistically highly significant (p<0.001) between pre and post test value (tables 3 and 4). Passive stretching exercises are often prescribed by clinicians and coaches for individuals with the goal of improving flexibility. The beneficial effects of passive stretching on improving hip flexion range of motion and the associated ability to perform a straight leg raise have been well documented (Tanigawa MC *et al.*, 1972).

Kottke and associates reported the ROM data of 10 patients of varying ages and pathologies with improved hip extension ROM, presumably due to receiving treatments of sustained passive stretching of 20 minutes' duration.

The hip extension of both sides were shown statistically highly significant (p<0.001) between pre and post test value (tables 5 and 6). In this study hip abduction of both sides were shown statistically highly significant (p<0.001) between pre and post test value (tables 7 and 8). The hip adduction of both sides were shown statistically highly significant (p<0.001) between pre and post test value (tables 9 and 10).

This shows that the rehabilitation program which we used was effective in low back pain management. Bilateral hip internal rotation shows statistically highly significant (p<0.001) between pre and post test value (tables 11 and 12). Our study results state that bilateral hip external rotation shows statistically highly significant (p<0.001) between pre and post test value (tables 13 and 14).

There is conflicting evidence on the effectiveness of exercise therapy compared to inactive treatments for chronic low back pain. Exercise therapy was more effective than usual care by the general practitioner and equally as effective as conventional physiotherapy for chronic low back pain and may be helpful for chronic low back pain patients to increase return to normal daily activities and work

CONCLUSION

Thus this study concludes that Brent Brotzman Rehabilitation protocol is very effective in improving hip range of motion in professional fast bowlers with low back pain.

References

- Clark M. Body armor for the body line. The Australian Standards 1996 (February):22-23.
- Elliott B, Foster D, John D. The biomechanics of side on and front on fast bowling in cricket. In: Draper J, ed. Third report on the National Sports Research Program.CPN Publications Pty Ltd, 2002:9-11.
- Gal, J.M., Herzog, W., Kawchuk, G.N., Conway, P.J. and Zhang, Y. 1994.Biomechanical studies of spinal manipulative therapy (SMT): quantifying the Movements of vertebral bodies during SMT. *Journal of the Canadian Chiropractic Association*; 38: 11-24.
- Gatterman, M.I. 2003. Chiropractic Management of Spine Related Disorders. Baltimore: Lippincott Williams & Wilkins.
- Herzog, W., Nigg, B.M. and Read, L.J. 1988.Quantifying the effects of spinal manipulations on gait using patients with low back pain. *Journal of Manipulative and Physiological Therapeutics*; 11(3):151-157.
- Kottke FJ, Pauley DL, Ptak RA. The rationale for prolonged stretching for correction of connective tissure. Arch Phys Med Rehabil.1966; 47:345-352.
- Stockhill, Bartlett. A temporal and kinematic comparison of junior and senior international cricket bowlers. ISB 1993:1290-1291.
- Tanigawa MC. Comparison of the hold-relax procedure and passive mobilization on increasing muscle length. PhysTher. 1972; 52: 725-735
- Watson D, Engstrom C, Wallace R, Kippers V. A combined morphometric and radiological assessment of the lumbar spine of elite fast bowlers from the Queensland Cricket Association: Radiological aspects. Australian conference of science and medicine in sport. Hotel Grand Chancellor, Hobart, 2005.
- Hayden JA1, van Tulder MW, Malmivaara A, Koes BW, Exercise therapy for treatment of non-specific low back pain, Cochrane Database Syst Rev. 2005 Jul 20;(3)

How to cite this article:

R Vijay Selvan N *et al.*2015, Brent Brotzman Protocol For Improving Hip Range of Motion In Professional Fast Bowlers With Low Back Pain. *Int J Recent Sci Res.* 6(10), pp. 6560-6562.
