ESTIMATION OF STARCH CONTENT IN THE TREATED PERISPERM OF EURYALE FEROX SALISB. (MAKHANA) DUE TO POLYNOMIAL REGRESSION FIT EQUATION

Praween N., Singh A.K and J. Aparajita

Volume 6 issue 9

THE PUBLICATION OF INTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH (IJRSR)
http://www.recentscientific.com
E-mail: recentscientific@gmail.com
ESTIMATION OF STARCH CONTENT IN THE TREATED PERISPERM OF EURYALE FEROX SALISB. (MAKHANA) DUE TO POLYNOMIAL REGRESSION FIT EQUATION

Praween N*, Singh A.K and J. Aparajita

Department of Botany University Department of Botany , T.M. B.U., Bhagalpur - 812007, India

ARTICLE INFO

Article History:
Received 15th June, 2015
Received in revised form 21st July, 2015
Accepted 06th August, 2015
Published online 21st September, 2015

Key words:
Makhana, Kinetin, perisperm, protein

ABSTRACT

Euryale ferox Salisb. (fox nut / makhana / gorgon plant) belonging to water lily family viz, Nymphaeaceae, is one of the important cash crops of North Bihar, particularly in the districts of Darbhanga, Madhubani, Saharsa, Purnea and Katihar. Polynomial Regression is a form of linear Regression in which the relationship between the independent Variable x and the dependent Variable Y is modelled as an nth degree polynomial. Polynomial regressions, also known as Polynomial least squares fittings. Starch was the highest content of Euryale ferox, its structure and characteristics were critical in processing. Edible perisperm of makhana costitutes 80% starch . Nath & Chakraborty (1985) reported 77% starch in the perisperm. Starch content in the kernel of over – mature fruits (236 DAS,day after sowing)) in comparison to 1/3rd mature (176 DAS) ones is about 0.96 : 1: 1-fold respectively under conditions of 0.0001% , 0.001%, & 0.01% kinetin after 1min and the ratio is about 1: 1.26: 1.46-fold in 5min treatment, the higher concentration of treatment, the higher amount of starch content is produced.

INTRODUCTION

The main edible portion of Makhana is its white perisperm inside the seed which is consumed mainly in its popped form either as snacks or as desserts (Payas). Euryale ferox (Makhana) is the foremost aquatic macrophyte grown as cash crop in the non – calcareous Kosi- Kamala belt (Jha, 2002). Starch was the highest content of Euryale ferox its structures and characteristics were critical in the processing. Some characteristics of Euryale ferox starch were compared with potato starch and corn starch, including physical and chemical properties, molecular structure and rheological properties of starch. Euryale ferox starch contained of 11.79% of water, 0.04% of fat, 0.07% ashes. E.ferox have comparatively lower nutrient values but presence of high ascorbic acids in perisperm (101 mg / 100g fresh wt), phenols (0.28per 100g fresh wt endosperm) and phytosterol (0.16 per 100 g fresh wt, of perisperm) may be responsible for its medicinal properties. Makhana is best grown in age – old perennial water bodies with a rich mucky bottom providing nutrients to the plants. Growth of plants is not proper in freshly excavated ponds or water area because they lack the highly nutritious mucky bottom (Thakur, 1978). Fish farmers of the banper subcaste are skilled in harvesting Makha seeds from the pond bottom (Jha, 2002). Read (1946) reported biochemical composition of E.ferox containing carbohydrate (75.7%), Protein (9.9%), fat (0.3%), and ash (0.6%). According to Phung (2002), protein of Arthospira (=Spirulina), a non – conventional aquatic source of nutrition, contains isoleucine (3.5-4.1%), leucine (5.4- 5.8%), lysine (2.9- 4.0%), methionine (3.5-4.1%), phenylalanine (2.8- 4.0%), threonine (3.2- 4.2%), tryptophan (0.91- 1.1%) and valine (4.0- 6.0%). The seeds are mosty used as stomachic, for articular pains and micturition and for seminal loss (Roi, 1950). Because of its less fat contents it is ideal for invalids. Also, these are used as tonic for seminal organs (Crevost et al., 1920), as well as remedy for diseases of the spleen and gonorrhea. Jha (1987) reported that net protein utilization (NPU 49.3), true digestibility (TD 89.6) and apparent digestibility (AD 69.1) of makhana were comparable to the values of most cereals. The above value were lower when compared to soyabean, egg and human and cow milk (Jha, 1991).

MATERIAL AND METHODS

The fruit samples were collected at eight different stages of their maturation and development. The first collection of fruit samples of Makhana (Euryale ferox Salish.) was done at immature stage (i.e 152 DAS) in the year 2011. Subsequent fruit samplings were made at regular interval of 12 days i.e at 1/4th mature stage (164 DAS), 1/3rd mature stage (176 DAS), ½ mature stage (188 DAS), 2/3rd mature stage (200 DAS), ¾th mature stage (212 DAS), fully mature stage (224 DAS) and finally at the over- mature stage (236 DAS) stage . The

*Corresponding author: Praween N
Department of Botany University Department of Botany , T.M. B.U., Bhagalpur - 812007, India
fruits were treated with three different concentrations i.e 0.0001%, 0.001% and 0.01% of kinetin at the six stages of fruit maturation and development. Thereafter, chemical treatment was made at beginning from 1/3rd mature (176 DAS) to over mature stage (236 DAS).

Table / Figure No.2E: Polynomial Regression Fit on the basis of the Equation \(Y = a + bX + cX^2 + dX^3 \)

<table>
<thead>
<tr>
<th>DAS(X)</th>
<th>Perisperm of Euryale ferox Salisb. Starch (Mean), μg/mg tissue</th>
<th>Kinetic Treatment for 1 Minute</th>
<th>0.0001% (Y2)</th>
<th>0.001% (Y3)</th>
<th>0.01% (Y4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>152</td>
<td>686.30</td>
<td>Control (Y1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>451.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>220.28</td>
<td></td>
<td>600.27</td>
<td>349.90</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>251.20</td>
<td></td>
<td>249.95</td>
<td>625.90</td>
<td>436.60</td>
</tr>
<tr>
<td>200</td>
<td>200.85</td>
<td></td>
<td>276.27</td>
<td>654.20</td>
<td>461.72</td>
</tr>
<tr>
<td>212</td>
<td>297.82</td>
<td></td>
<td>304.18</td>
<td>975.31</td>
<td>437.83</td>
</tr>
<tr>
<td>224</td>
<td>325.90</td>
<td></td>
<td>324.83</td>
<td>741.92</td>
<td>454.95</td>
</tr>
<tr>
<td>236</td>
<td>325.90</td>
<td></td>
<td>465.75</td>
<td>703.55</td>
<td></td>
</tr>
</tbody>
</table>

\(Y = a + bX + cX^2 + dX^3 \)

\[a = 30510.20281 \quad b = -24584.14298 \quad c = 93462.63428 \quad d = -74347.83927 \]

Residuals Plots of DAS(X) with Residuals Y1, Y2, Y3 & Y4

DAS (Days After sowing)

Table / Figure No.2F: Polynomial Regression Fit on the basis of the Equation \(Y = a + bX + cX^2 + dX^3 \)

<table>
<thead>
<tr>
<th>DAS(X)</th>
<th>Perisperm of Euryale ferox Salisb. Starch (Mean), μg/mg tissue</th>
<th>Kinetic Treatment for 5 Minute</th>
<th>0.0001% (Y2)</th>
<th>0.001% (Y3)</th>
<th>0.01% (Y4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>152</td>
<td>686.30</td>
<td>Control (Y1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>451.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>220.28</td>
<td></td>
<td>600.27</td>
<td>349.90</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>251.20</td>
<td></td>
<td>249.95</td>
<td>625.90</td>
<td>436.60</td>
</tr>
<tr>
<td>200</td>
<td>200.85</td>
<td></td>
<td>276.27</td>
<td>654.20</td>
<td>461.72</td>
</tr>
<tr>
<td>212</td>
<td>297.82</td>
<td></td>
<td>304.18</td>
<td>975.31</td>
<td>437.83</td>
</tr>
<tr>
<td>224</td>
<td>325.90</td>
<td></td>
<td>324.83</td>
<td>741.92</td>
<td>454.95</td>
</tr>
<tr>
<td>236</td>
<td>325.90</td>
<td></td>
<td>465.75</td>
<td>703.55</td>
<td></td>
</tr>
</tbody>
</table>

\(Y = a + bX + cX^2 + dX^3 \)

\[a = 30510.20281 \quad b = -7406.30484 \quad c = 3257.48168 \quad d = 7018.98303 \]

Residuals Plots of DAS(X) with Residuals Y1, Y2, Y3 & Y4

DAS (Days After sowing)
For the purpose of chemical treatment the fruits while intact on the plants were dipped for one minute and five minute separately in each of the solutions of three different concentrations i.e. 0.0001%, 0.001% and 0.01% of Kinetin. All such treated fruits were properly tagged mentioning the concentration of treated hormone with date of chemical treatment and the fruits were picked after 12 days of chemical application. However, no chemical treatment was made in the fruits at immature (152 DAS) and 1/4th mature (164 DAS).

Estimation of Starch - The estimation of starch content was made with the help of Anthrone method (Mc Cready et al., 1950). In a centrifuge tube 0.5 ml (100mg / ml GDW) tissue homogenate was taken and then 1 ml each of 10% ZnSO₄ and 0.5N NaOH was added and mixed. The mixture was subjected to centrifugation at 3000rpm for 20 minutes. The aliquot was collected in another tube (for being used in the estimation of total sugar) whereas the precipitate was left overnight in an inverted position to dry. Next day, 2ml of 72% perchloric acid was added to the fully dried precipitate in order to dissolve starch. Then 0.5 ml starch solution was taken in another test tube and the volume was made 2 ml by addition of G.D.W. Thereafter, 8ml anthrone reagent in 80% sulphuric acid was added to the above suspension and mixed. The tube was then heated for 7 mints at 90°C in water bath and then on it was cooled in running tap water. The colour intensity was read at 625nm against the reagent blank. The amount of starch in the tissue was determined with the help of standard curve of starch by using the conversion factor of 0.9 (Snell & Snell, 1953)

RESULT AND CONCLUSION

The biochemical investigations in perisperm (seed) of Makhana (Euryale ferox Salisb.) both the treated fruits and control ones were made for the metabolites like starch. The experimental value of starch under conditions of both control and chemical treatment as well as the predicted / theoretical values on the basis of Polynomial Regression Fit Equation Y= a+ bX+ Cx²+ dX³ in the perisperm during fruit development due to the effect of Kinetin treatment (0.0001%, 0.001%, 0.01%) for 1min and 5 min have been presented in Tables / Figures 2E and 2F respectively.

Perisperm : Effect of 1min kinetin treatment - In the perisperm of 0.0001% kinetin treated fruits for 1min the starch content was low at 1/3rd mature stage (176 DAS) which increased suddenly at ½ mature stage (188 DAS) and thereafter it increased 1.21-fold in over - mature fruits (236).

In the perisperm of 0.001% kinetin treated fruits for 5min the starch content was at 1/3rd mature stage (176 DAS) which increased suddenly at ½ mature stage (188 DAS) and thereafter it increased 1.3 0-fold in over - mature fruits (236).

In the perisperm of 0.01% kinetin treated fruits for 5min the starch content was low at 1/3rd mature stage (176 DAS) which increased 1.3 0-fold in over - mature fruits (236).

In the perisperm of 0.01% kinetin treated fruits for 1min the starch content declined considerably 1.11- fold at 1/3rd mature (176 DAS) and thereafter it increased considerably in the continuous manner upto 1.38-fold in over - mature fruits (236 DAS).

Tables / Figures 2E and 2F representing Polynomial Regression Fit Equation of Protein content of Euryale ferox Salisb.

DISCUSSION

There is an increase in starch content at over – mature (236 DAS) stage as compared to 1/3rd mature stage (176 DAS) in 0.01% kinetin treated fruits (Perisperm) after 1 min and 5 min which is about 20%. However, there is an increase in starch content at over – mature stage (236 DAS) as compared to 1/3rd mature stage in 0.01% kinetin treated perisperm after 1min and 5 min. The changes in starch content in the kernel both in control fruits as well as in 0.0001%, 0.001% & 0.01% Kinetin treated fruits exhibit significant variation during course of fruit maturation. Starch accumulation is a general feature of developing seeds (Kramer & Kozlowski 1979, Singh & Jambunathan 1984). Amylose content of most reserve starches as in maize (Baba et al., 1981), Pea (costers & Bill aderis 1982) and barley (Young et al., 1986), increases with increasing age of the tissue examined.

References

Praween N et al., Estimation of Starch Content in the Treated Perisperm of Euryale Ferox Salisb. (Makhana) Due To Polynomial Regression Fit Equation

How to cite this article:
