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In the measurement of bio signals associated with the heart rate, artifacts in the electrocardiogram (ECG)
recordings deteriorate the data, yielding ECG artifacts; missing (incomplete) RR interval tachogram. The
linear parameters of heart rate variability (HRV) are very sensitive to these missing RR intervals. In this
study, the feat of nonlinear measures of HRV is investigated for missing RR interval data, using simulated
missing data in real RR interval tachograms. For the simulation, randomly selected data (0–100 RR
intervals) were removed from real RR data obtained from the MIT-BIH normal sinus rhythm database. all,
703 tachograms of 1000 RR interval data length were used for this analysis in Approximate entropy
(ApEn), sample entropy (SampEn), Poincaré plot indices (SD1 and SD2) and Detrended fluctuation analysis
(DFA) were calculated as the nonlinear parameters, and the relative errors between the original and the
incomplete tachograms for these parameters were computed. The results of the simulation revealed that
nonlinear parameters are more suitable measures than linear parameters of HRV in presence of missing RR
interval data.Key words:

HRV, Approximate entropy,
Sample entropy, Detrended
fluctuation analysis, Poincaré
plot
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INTRODUCTION

The heart rate variability (HRV) is an extended tool to analyze
the mechanisms controlling the cardiovascular system. It may
be analyzed in either the time, frequency and by using
nonlinear approach. The time-domain approach is simple and
widely used for clinical applications. Time-domain HRV
parameters are easy to calculate and can be computed directly
by numerical approach based on tachograms of the RR-interval
(Task Force of the ESC and the NASPE 1996; Singh and Singh
2012; Berntson and Bigger et al., 1997). Since calculations are
performed directly in the beat domain, re-sampling is not
necessary to derive the time-domain parameters. However,
HRV spectral parameters, total frequency (TF), very low
frequency (VLF), low frequency (LF) and high frequency
(HF), are obtained by the sum of the power in the relevant
frequency range in the spectrum; this is estimated from data
that are regularly re-sampled in the time domain (Singh and
Vinod et al., 2004; Singh and Bharti 2015). Biological systems
such as the cardiovascular system are comprised of multiple
subsystems that exhibit both highly nonlinear deterministic, as
well as, stochastic characteristics, and subject to hierarchical
regulations (Singh and Singh 2012; Hoyer, Schmidt, Bauer,

Zwiener, Kohler, Luthke and Eiselt 1997; Singh and Singh
2011; Veicsteinas and Castiglioni 2006; Singh and Singh
2013). As a result, time series generated by biological systems
are often highly nonlinear, non-stationary, random and
complex. Therefore, standard linear measures of HRV are not
able to detect subtle, but important changes in the heart rate
time series. Since the linear parameters of HRV do not provide
adequate information on the complexity that lies inside beat-to-
beat variability, the application of nonlinear techniques is
appropriate. Poincaré plot (Brennan, Palaniswami and Kamen
2001; Kamen, Krum and Tonkin 1996), approximate entropy
(ApEn) (Pincus 1991; Singh et al., 2012; Pincus and
Goldberger 1994), sample entropy (SampEn) (Lake, Richman,
Griffin and Moorman 2002) and detrended fluctuation analysis
(DFA) (Peng, Havlin, Hausdorf, Mietus, Stanley and
Goldberger 1994; Goldberger, Amaral, Hausdorff, Ivanov,
Peng and 2001) are the recently developed nonlinear
techniques to quantify the nonlinearity of time series data like
heart rate intervals.

In the measurement of biosignals associated with the heart rate,
artifacts in the electrocardiogram (ECG) recordings deteriorate
the RR interval tachogram, yielding incomplete data. For
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example, ECGs obtained under surgical conditions contain
electrical artifacts due to the effects of the electro surgical unit
(ESU) and motion artifacts during exercise influence ECGs.
These artifacts complicate the detection of feature points and
yield incomplete RR-interval tachograms (Kim, Lim, Kim and
Park 2007; Kim, Lim, Kim and Park 2009). Kim et al. (Kim,
Lim, Kim and Park 2007; Kim, Lim, Kim and Park 2009)
evaluated the effect of missing RR intervals on linear (time and
frequency) domain HRV parameters. They found that missing
RR interval affect significantly both time and frequency
domain HRV parameters.

In this study, the effects of consecutive missing RR interval
data on nonlinear HRV analysis are investigated by simulating
missing data in RR interval tachograms recorded from healthy
subjects.

Data

In this study, 18 long-term RR tachograms belonging to the
MIT-BIH normal sinus rhythm database
(http://www.physionet.org/physiobank/database/nsrdb) were
used. The RR tachograms were extracted from annotations in
the database in which the sampling rate for recording was 128
Hz. These data were recorded over 24 h from subjects who did
not exhibit any significant arrhythmias; these subjects included
5 men (age: 26–45 years) and 13 women (age: 20–50 years). In
all, 703 RR-interval data sets of data length N=1000 were
collected for HRV analysis; they included only normal beats
(Task Force of the ESC and the NASPE 1996). In each data
set, consecutive RR-interval data were randomly selected for
removal, and the data length removed was increased from 0 to
100 RR intervals in an increment of 5. Therefore, the number
of data sets used in these simulations was 14 060 (=703 data
sets × 20 missing data). Two random selections of RR-intervals
were made to analyze the average effects of the missing data.
In each case, the nonlinear HRV parameters were calculated;
the evaluated nonlinear HRV parameters in this study are the
Poincaré plot indices (SD1 and SD2), ApEn, SampEn and DFA.
A total of 28.12 × 103 calculations were performed using
MATLAB for each nonlinear parameter. The HRV measures
the spontaneous variability between successive beats, as they
are revealed by the presence of an R wave in the ECG surface
signal. It has been shown that HRV signal changes can be
related to the activity of several physiological control
mechanisms of different nature. Their interaction produces
changes in the beat rate assuring the control activity reacts
efficiently to various incoming stimuli.

Nonlinear Analysis OF HRV

The development of the nonlinear dynamical system analysis
has led to the introduction of a large amount of signal analysis
techniques aimed at the extraction of nonlinear parameters
from experimental time series. The original objective was the
evaluation of the generating system characteristics in order to
better understand its nature. In many cases however the
generation system is unknown and the output signal is the only
information we can have about the system itself. This is
precisely the case of the human life support systems among
which the heart plays a dominant role. It has been shown that

HRV signal changes can be related to the activity of several
physiological control mechanisms of different nature. Their
interaction produces changes in the beat rate assuring the
control activity reacts efficiently to various incoming stimuli,
results in the nonlinear deterministic structure in HRV time
series signal.

Poincaré plot

Poincaré plot is a visual tool in which each RR interval is
plotted as a function of previous RR interval. Analysis of RR
intervals with the use of standard deviations, histograms and
spectral techniques provide an assessment of overall variability
but obscures instantaneous beat-to-beat changes However,
Poincaré plot provides summary information as well as detailed
beat-to-beat information on the behavior of heart. Beat-to-beat
variation can be easily displayed for visual assessment by
graphing of each RR interval against the subsequent RR
interval. The problem regarding Poincaré plot use has been lack
of obvious quantitative measures that characterize the salient
features of Poincaré plots. To characterize the shape of the plot
mathematically, most researchers have adopted the technique of
fitting an ellipse to the plot, as shown in Figure 1. A set of axis
oriented with the line of identity is defined (Brennan,
Palaniswami and Kamen 2001). The axes of the Poincaré plot
are related to the new set of axis by a rotation of 4 
radian as shown in equation (i).

In the reference system of the new axis, the dispersion of the
points around the X1-axis is measured by the standard
deviation denoted by SD1. This quantity measures the width of
the Poincaré cloud and, therefore, indicates the level of short-
term HRV (Brennan, Palaniswami and Kamen 2001). The
length of the cloud along the line of identity measures the long-
term HRV and is measured by SD2, which is the standard
deviation around the X2-axis (Kamen, Krum and Tonkin 1996;
Brennan, Palaniswami and Kamen 2001). These measures are
related to the standard HRV measures by equation (ii).
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Figure 1 A Poincaré plot for ellipse fitting technique with coordinate
system X1 and X2 established at 4 radian to normal axis. The

standard deviation of distance of points from each axis
determines width (SD1) and length (SD2) of ellipse.
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example, ECGs obtained under surgical conditions contain
electrical artifacts due to the effects of the electro surgical unit
(ESU) and motion artifacts during exercise influence ECGs.
These artifacts complicate the detection of feature points and
yield incomplete RR-interval tachograms (Kim, Lim, Kim and
Park 2007; Kim, Lim, Kim and Park 2009). Kim et al. (Kim,
Lim, Kim and Park 2007; Kim, Lim, Kim and Park 2009)
evaluated the effect of missing RR intervals on linear (time and
frequency) domain HRV parameters. They found that missing
RR interval affect significantly both time and frequency
domain HRV parameters.

In this study, the effects of consecutive missing RR interval
data on nonlinear HRV analysis are investigated by simulating
missing data in RR interval tachograms recorded from healthy
subjects.

Data

In this study, 18 long-term RR tachograms belonging to the
MIT-BIH normal sinus rhythm database
(http://www.physionet.org/physiobank/database/nsrdb) were
used. The RR tachograms were extracted from annotations in
the database in which the sampling rate for recording was 128
Hz. These data were recorded over 24 h from subjects who did
not exhibit any significant arrhythmias; these subjects included
5 men (age: 26–45 years) and 13 women (age: 20–50 years). In
all, 703 RR-interval data sets of data length N=1000 were
collected for HRV analysis; they included only normal beats
(Task Force of the ESC and the NASPE 1996). In each data
set, consecutive RR-interval data were randomly selected for
removal, and the data length removed was increased from 0 to
100 RR intervals in an increment of 5. Therefore, the number
of data sets used in these simulations was 14 060 (=703 data
sets × 20 missing data). Two random selections of RR-intervals
were made to analyze the average effects of the missing data.
In each case, the nonlinear HRV parameters were calculated;
the evaluated nonlinear HRV parameters in this study are the
Poincaré plot indices (SD1 and SD2), ApEn, SampEn and DFA.
A total of 28.12 × 103 calculations were performed using
MATLAB for each nonlinear parameter. The HRV measures
the spontaneous variability between successive beats, as they
are revealed by the presence of an R wave in the ECG surface
signal. It has been shown that HRV signal changes can be
related to the activity of several physiological control
mechanisms of different nature. Their interaction produces
changes in the beat rate assuring the control activity reacts
efficiently to various incoming stimuli.

Nonlinear Analysis OF HRV

The development of the nonlinear dynamical system analysis
has led to the introduction of a large amount of signal analysis
techniques aimed at the extraction of nonlinear parameters
from experimental time series. The original objective was the
evaluation of the generating system characteristics in order to
better understand its nature. In many cases however the
generation system is unknown and the output signal is the only
information we can have about the system itself. This is
precisely the case of the human life support systems among
which the heart plays a dominant role. It has been shown that

HRV signal changes can be related to the activity of several
physiological control mechanisms of different nature. Their
interaction produces changes in the beat rate assuring the
control activity reacts efficiently to various incoming stimuli,
results in the nonlinear deterministic structure in HRV time
series signal.

Poincaré plot

Poincaré plot is a visual tool in which each RR interval is
plotted as a function of previous RR interval. Analysis of RR
intervals with the use of standard deviations, histograms and
spectral techniques provide an assessment of overall variability
but obscures instantaneous beat-to-beat changes However,
Poincaré plot provides summary information as well as detailed
beat-to-beat information on the behavior of heart. Beat-to-beat
variation can be easily displayed for visual assessment by
graphing of each RR interval against the subsequent RR
interval. The problem regarding Poincaré plot use has been lack
of obvious quantitative measures that characterize the salient
features of Poincaré plots. To characterize the shape of the plot
mathematically, most researchers have adopted the technique of
fitting an ellipse to the plot, as shown in Figure 1. A set of axis
oriented with the line of identity is defined (Brennan,
Palaniswami and Kamen 2001). The axes of the Poincaré plot
are related to the new set of axis by a rotation of 4 
radian as shown in equation (i).

In the reference system of the new axis, the dispersion of the
points around the X1-axis is measured by the standard
deviation denoted by SD1. This quantity measures the width of
the Poincaré cloud and, therefore, indicates the level of short-
term HRV (Brennan, Palaniswami and Kamen 2001). The
length of the cloud along the line of identity measures the long-
term HRV and is measured by SD2, which is the standard
deviation around the X2-axis (Kamen, Krum and Tonkin 1996;
Brennan, Palaniswami and Kamen 2001). These measures are
related to the standard HRV measures by equation (ii).
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Figure 1 A Poincaré plot for ellipse fitting technique with coordinate
system X1 and X2 established at 4 radian to normal axis. The

standard deviation of distance of points from each axis
determines width (SD1) and length (SD2) of ellipse.
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example, ECGs obtained under surgical conditions contain
electrical artifacts due to the effects of the electro surgical unit
(ESU) and motion artifacts during exercise influence ECGs.
These artifacts complicate the detection of feature points and
yield incomplete RR-interval tachograms (Kim, Lim, Kim and
Park 2007; Kim, Lim, Kim and Park 2009). Kim et al. (Kim,
Lim, Kim and Park 2007; Kim, Lim, Kim and Park 2009)
evaluated the effect of missing RR intervals on linear (time and
frequency) domain HRV parameters. They found that missing
RR interval affect significantly both time and frequency
domain HRV parameters.

In this study, the effects of consecutive missing RR interval
data on nonlinear HRV analysis are investigated by simulating
missing data in RR interval tachograms recorded from healthy
subjects.

Data

In this study, 18 long-term RR tachograms belonging to the
MIT-BIH normal sinus rhythm database
(http://www.physionet.org/physiobank/database/nsrdb) were
used. The RR tachograms were extracted from annotations in
the database in which the sampling rate for recording was 128
Hz. These data were recorded over 24 h from subjects who did
not exhibit any significant arrhythmias; these subjects included
5 men (age: 26–45 years) and 13 women (age: 20–50 years). In
all, 703 RR-interval data sets of data length N=1000 were
collected for HRV analysis; they included only normal beats
(Task Force of the ESC and the NASPE 1996). In each data
set, consecutive RR-interval data were randomly selected for
removal, and the data length removed was increased from 0 to
100 RR intervals in an increment of 5. Therefore, the number
of data sets used in these simulations was 14 060 (=703 data
sets × 20 missing data). Two random selections of RR-intervals
were made to analyze the average effects of the missing data.
In each case, the nonlinear HRV parameters were calculated;
the evaluated nonlinear HRV parameters in this study are the
Poincaré plot indices (SD1 and SD2), ApEn, SampEn and DFA.
A total of 28.12 × 103 calculations were performed using
MATLAB for each nonlinear parameter. The HRV measures
the spontaneous variability between successive beats, as they
are revealed by the presence of an R wave in the ECG surface
signal. It has been shown that HRV signal changes can be
related to the activity of several physiological control
mechanisms of different nature. Their interaction produces
changes in the beat rate assuring the control activity reacts
efficiently to various incoming stimuli.

Nonlinear Analysis OF HRV

The development of the nonlinear dynamical system analysis
has led to the introduction of a large amount of signal analysis
techniques aimed at the extraction of nonlinear parameters
from experimental time series. The original objective was the
evaluation of the generating system characteristics in order to
better understand its nature. In many cases however the
generation system is unknown and the output signal is the only
information we can have about the system itself. This is
precisely the case of the human life support systems among
which the heart plays a dominant role. It has been shown that

HRV signal changes can be related to the activity of several
physiological control mechanisms of different nature. Their
interaction produces changes in the beat rate assuring the
control activity reacts efficiently to various incoming stimuli,
results in the nonlinear deterministic structure in HRV time
series signal.

Poincaré plot

Poincaré plot is a visual tool in which each RR interval is
plotted as a function of previous RR interval. Analysis of RR
intervals with the use of standard deviations, histograms and
spectral techniques provide an assessment of overall variability
but obscures instantaneous beat-to-beat changes However,
Poincaré plot provides summary information as well as detailed
beat-to-beat information on the behavior of heart. Beat-to-beat
variation can be easily displayed for visual assessment by
graphing of each RR interval against the subsequent RR
interval. The problem regarding Poincaré plot use has been lack
of obvious quantitative measures that characterize the salient
features of Poincaré plots. To characterize the shape of the plot
mathematically, most researchers have adopted the technique of
fitting an ellipse to the plot, as shown in Figure 1. A set of axis
oriented with the line of identity is defined (Brennan,
Palaniswami and Kamen 2001). The axes of the Poincaré plot
are related to the new set of axis by a rotation of 4 
radian as shown in equation (i).

In the reference system of the new axis, the dispersion of the
points around the X1-axis is measured by the standard
deviation denoted by SD1. This quantity measures the width of
the Poincaré cloud and, therefore, indicates the level of short-
term HRV (Brennan, Palaniswami and Kamen 2001). The
length of the cloud along the line of identity measures the long-
term HRV and is measured by SD2, which is the standard
deviation around the X2-axis (Kamen, Krum and Tonkin 1996;
Brennan, Palaniswami and Kamen 2001). These measures are
related to the standard HRV measures by equation (ii).
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Figure 1 A Poincaré plot for ellipse fitting technique with coordinate
system X1 and X2 established at 4 radian to normal axis. The
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determines width (SD1) and length (SD2) of ellipse.
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Where Var(x1) denotes the variance of x1 sequence and SDSD
denotes the standard deviation of successive differences of RR
interval series. Thus, the SD1 measure of Poincaré width is
equivalent to the standard deviation of the successive difference
of intervals, except that it is scaled by 21 . Further we can
relate SD1 to the auto covariance function by equation (iii).

   102
1 RRRR

SD 
…(iii)
where  0RR and  1RR are the autocovariance functions.

Also      22
0 SDRRRRnRRERR  i.e., variance of RR intervals.

Similarly,
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With a similar argument, it may be shown that the length of the
Poincaré cloud is related to the autocovariance function by
equation (iv)
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SD  ...(iv)

By adding (iii) and (iv) together, we get

22
2

2
1 2 SDRRSDSD  ...(v)

where SDRR denotes the standard deviation of RR interval
series. Finally

222
2 2

1
2 SDSDSDRRSD  ...(vi)

Thus equation (vi) represents SD2 in terms of existing indices
of HRV. Fitting an ellipse to the Poincaré plot does not
generate indices that are independent of the standard time
domain HRV indices.

Approximate Entropy

Approximate entropy (ApEn) is a statistical index to quantify
the complexity of a signal. It has been widely adopted by many
researchers especially in the field of heart rate variability. The
popularity of approximate entropy stems from its capability to
provide quantitative information about the complexity of the
experimental data that are short in data length (Pincus 1991;
Pincus and Goldberger 1994). ApEn measures the
(logarithmic) likelihood that runs of patterns that are close for
m observations remain close on next incremental comparison.
Greater likelihood of remaining close, i.e., high regularity,
produces smaller ApEn values (Pincus 1991; Pincus and
Goldberger 1994). While implementing ApEn, calculation
requires a priori specification of two unknown parameters: m ,
the embedding dimension and r , a threshold, which is in effect
a noise filter. Pincus (1991), who developed the ApEn method,
suggested that r should be 0.1 to 0.25 times, the standard
deviation of the data, and that m be 1 or 2 for data lengths N
ranging from 100 to 5,000 data points. Given a signal

(1), (2),... ( )u u u N , where, N is the total number of data points.

Fix m , a positive integer and r , a positive real number. For
our study we have choose r equal to 20% of standard

deviation and 2m  . ApEn algorithm can be summarized as
follows.
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5. Increase the dimension to 1m  and repeat steps 1 to 4
6. Calculate ApEn value for a finite data length of N :
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A high degree of regularity means that sequences, which are
similar for m points, are likely to be similar for the next m+1
points, while this is unlikely to occur for irregular time series.
Thus low values of ApEn reflect high regularity.

Sample entropy

The Sample entropy (SampEn) is a modification of ApEn. The
differences with respect to ApEn are: (i) self-matches are not
counted (ii) only the first N m vectors of length m are
considered (Singh et al., 2012; Lake, Richman, Griffin and
Moorman 2002). SampEn algorithm can be summarized as fol
lows.

1. Form m vectors (1)X to ( 1)X N m  defined by
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6. SampEn for a finite data length of N can be estimated
as
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Similarly to ApEn, we estimated SampEn with r equal to 20%
of standard deviation and 2m  .

Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) is a technique to quantify
the fractal scaling properties of RR interval time series.  The
concept of a fractal is most often associated with irregular
geometric objects that display self-similarity. Fractal forms are
composed of subunits (and sub-sub-units, etc.) that resembles
or show correlation with the structure of the overall object.
Similarly, times series extracted from physical or biological
systems contain hidden long-range correlation that can provide
interesting and useful information on the structure and
evolution of the dynamical system. To test whether heartbeat
time series exhibit fractal behavior and to determine their
correlation properties, we can apply the DFA algorithm. DFA
developed by Peng et al. (1994) is a simple and efficient
scaling method commonly used for detecting long-range
correlations. This technique is a modification of root-mean-
square analysis of random walks applied to nonstationary
signals (Pena, Echeverrıa, Garcıa, and Gonzalez-Camarena
2009; Rodriguez, Echeverria and Alvarez-Ramirez 2007). The
root-mean-square fluctuation of an integrated and detrended
time series is measured at different observation windows and
plotted against the size of the observation window on a log–log
scale. First, the RR interval series (of total length k) is
integrated using the equation:

1
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Where y(k) is the kth value of the integrated series, RR(i) is the
ith inter beat interval, and the RRav is the average inter beat
interval over the entire series. Then, the integrated time series
is divided into windows of equal length, n. In each window of
length n, a least-squares line is fitted to the RR interval data
(representing the trend in that window). The y coordinate of the
straight line segments are denoted by yn(k). Next, we detrended
the integrated time series, yn(k), in each window. The root-
mean-square fluctuation of this integrated and detrended series
is calculated using the equation:
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The procedure is repeated for different boxes size or time
scales. Finally, the relationship on a double-log graph between
fluctuations F(n) and time scales n can be approximately
evaluated by a linear model F(n)~nα that provides the scaling
exponent α. White Gaussian noise (totally random signal)
results in a exponent value of 0.5, and a Brownian noise signal
with spectrum rapidly decreasing power in the higher
frequencies results in an value of 1.5 (Alvarez-Ramirez,
Rodriguez and Echeverria 2005; Huikuri, Makikallio, Peng,

Goldberger, Hintze and Moller 2000). The α can be viewed as
an indicator of the ‘‘roughness’’ of the original time series: the
larger the value of the α the smoother the time series. The
fractal scaling (α) for the normal subjects (healthy young) is
closer to 1, and this value falls in different ranges for various
types of cardiac abnormalities. This slope is very low for very
highly varying signals like pre-ventricular contraction (PVC),
left bundle branch block (LBBB), atrial fibrillation (AF) and

Figure 2 Effect of missing RR interval of healthy subjects on HRV
parameters Poincaré plot indices

(a, b), approximate entropy (c), sample
Entropy (d) and DFA (e)
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ventricular fibrillation (VF). But for rhythmically varying
signals like sick sinus syndrome (SSS), complete heart block
(CHB) and Ischemic/dilated cardiomyopathy this value is
slightly higher (comparable to 1) (Acharya, Kannathal, Sing,
Ping and Chua 2004).

STATISTICAL METHODS

The nonlinear HRV parameters of complete RR interval series
were compared to the HRV parameters of RR interval series
with missing data, In addition independent samples t test was
used to analyze the percentage differences in nonlinear
parameters with missing RR intervals. A value of P<0.05 was
considered statistically significant.

RESULTS AND DISCUSSION

The effects of the missing RR interval data on the nonlinear
HRV parameters were evaluated based on the relative errors
(REs) compared with the parameters calculated from the
original, complete RR interval data. When {X1, X2, . . . Xn} (n
= 2 in this study) is obtained for a nonlinear HRV parameter of
the data set with a missing duration, and Xorigin is the
corresponding parameter value of that without any missing
data, the relative errors REk are computed as |Xorigin − Xk|/Xorigin

× 100 (%), where k = 1, 2. For each HRV parameter and
missing duration, 1406 error values were derived and used for
the statistical calculations. Figure 2 shows the statistical results
for the mean REs in each nonlinear HRV parameter with an
increase in the missing data duration. All the nonlinear
parameters are found to be robust to missing RR intervals.
Mean REs are (<0.5 for SD1, <0.3 for SD2, <0.4 for ApEn,
SampEn and <0.3 for DFA) even in the presence of 100
missing RR intervals. Pattern of relative error of ApEn and
SampEn are almost similar.

CONCLUSION

As compared to time domain (RE: mean <3%; SDSD and
SDNN >10%; pNN50 >50%) and frequency domain HRV
parameters (RE: VLF 0.04% for FFT; 0.12% for mFFT; 0.11%
for Welch; 100.4% for Yule-Walker;  12.3 X 103% for Burg;
99.9% for Lomb, LF 7.2% for FFT; 28.8% for mFFT; 58.8%
for Welch; 2.2 X 103% for Yule-Walker; 120.8% for Burg;
2.9% for Lomb, HF 36.3% for FFT; 41.0% for mFFT; 28.8%
for Welch; 458.7% for Yule-Walker; 31.9% for Burg; 6.3% for

Lomb) (Kim, Lim, Kim and Park 2007; Kim, Lim, Kim and
Park 2009), non-linear parameters are found to be very robust
to missing RR interval data. Maximum RE for nonlinear
parameters remains (<0.5% for SD1; 0.3% for SD2, <0.4 for
ApEn and SampEn; <0.3% for DFA) even in the presence of
100 missing RR intervals.  Therefore, in case of missing RR
interval data, nonlinear measures of HRV are more suitable
parameters than time and frequency domain measures.
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