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INTRODUCTION

Preliminaries

Let H(U) denote the class of analytic functions in the open unit disk U = {z: z € C and |z| < 1} and let H[a, n] denote the subclass
of H(U) of the form f(2) = a + a,2z" + an12™** + ---where a € C and n € Nwith Hy = H[0,1] end H, = H[1,1].lf f, g are
members of H(U) we say that a function f is subordinate to a function g or g is said to be superordinate to f if there exists a
Schwarz function w(z) which is analytic in U, with w(0) = 0,|w(z)| < 1 for all (z € U), such that f(z) = g(w(z)). In such a
case we write f < g. Further, if the function g is univalent in U then we have the following equivalent,(see [3,9]).

f(z) < g(z) ifand only if £(0) = g(0) and f(U) < g(U).
Let A(p) denote the class of all analytic functions of the form
F(z) =2° + Z a 2, (z€U, peN={123..}. (1.1)
k=p+1

For function g € & (p) given by g(z) = z” + ¥;_,., by 2%, (p € N), the Hadmard product (or convolution) of f and g is defined
by

FrD@D =2+ ) abs* =g+ N@.

k=p+1
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For function f, g € A(p), we defined the lincar operatorFy: A(p) —» A(p) (A=0,m € N, = N U {0}) by :Ff_p(f *g)(z) =
(f *9)(2),

q ‘
EL(F * 9)(2) = Fyp(F * 9)(2) = (1 = D(f * 9)(2) +§((f NG
p+ Ak —p)

k=p+1

=zP + aby, 2",

and
Fip(f * 9)(2) = Fap[Fap(f * 9)(2)],
therefore, it can be easily seen that

Fio(f * 9)(2) = Fp (Bl 1 (f * 9)(2)

— P4 Z (%k_p))m acbez® (1> 0). 12)

k=p+1

From (1.2) we can easily deduce that

Az ’

(F 0 = 90) = G+ 9)() ~ 0 = DE(f +9)(@), (4> 0, (13)

The operator Fy,(f * g) was introduced and studied by Selvargj and Selvakumaran [14], Aouf and Mostefa [2] and for = 1, was
introduced by Acuf and Mostafa[1].

Remark

(@korag),

oo @B €C=CQ\0},(=12..9),(=12..5),
g<s+1,q,s €Ny in (1.2), the operator Fﬁ,(f * g) reduces to the Dziok-Srivastava operator Hp g (@) which
generalized many other Cperator (see [6]).

Takingm = 0 and b, =

3. Takingm = 0 and b, = % (A>0;p€N;lLn €N,)in(1.2), theoperator Fy’, (f * g) reducesto Catas
operator Iy (1, ) which generalizes many other operators (see [4]).
4. The method of differential subordinations (also known as the admissible functions method) was introduced by Miller and

Mocanu [7,8] and developed in [9.10].

5. Let Q and A be any séts in € and let p be an analytic function in the unit diskUU with p(0) = a and let ¢ (r,s, t; z): C* x
U — C. The heart of this theory deals with generglizations of the following implication :

6. W(p(2),zp'(2), 2*p"(2); z), (z € U)} € 2 = p(U) < A. In[10] the authorsintroduce the dual problem of the
differential subordination which they call differential superordination.

7. Qc@p),2p'(2),2%p"(2): 2), (z € U)} = Ac p(V).

8. Definition 1.1 [9] Let3) : €3 X U — C and let h be univalent in U. If p isanalytic in U and satisfies the (second — order)
differential subordination,

9. {W(p(2),2p'(2), z*p"(2); z),(z € U)} < h(z), then p is caled asolution of differential subordination. The univalent
function q is called a dominant, if p < g for all p satisfying (iii).

10. A dominant § that satisfies § < g for all dominants q of (iii) is said to be the best dominant of (iii).

11.  Definition 1.2 [10] Lety : €3 x U - C and let h be analyticin U. If p and y(p(2),zp'(z),z*p"(2); z) are univalent in
U and satisfy the (second — order) differential superordination.

12.  h(z) <y (p(2),2p'(2),z*p"(2); z), then pis caled a solution of the differential superordination. An analytic function q
is called a subordinant of the solutions of the differential superordination,, or more simply asubordinate if ¢ < p for ell
p satistying (iv). A univalent subordinantg that satisfies g < § for al subordinantsq of (iv) is said to be the best
subordinant. (Note that the best subordinant is unique up to a rotation of U). For Q a set in C, with i and p asgivenin
Definition 1.2, suppose (iv) is replaced by

13.  Qc{Y@2),2p'(2),2°p"(2); 2), (z € U)}.

To prove our results, we need the following definitions and Lemmas.

Definition 1.3 [9] Denote by @ the set of all functions g that are analytic and injective on U\ E (q), where
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E(q) = {f € QU : lzi_{rgq(z) = :c},
and are such that ¢'(€) # 0 for § € QU\E(q). Further let the subclass of @ for which g(0) = a be denoted by Q(a), Q(0) = Q, and
() = Q..

Definition 1.4 [9] Let Q be aset in C; g € Q and n be appositive integer. The class of admissible functions¥,,[Q, ] consists of
those functions: C* x U — C that satisfy the admissimbilty condition:

Y(r,s, t;z) € Q,
whenever r = q(§),s = kéq'(§),

¢ q"(s‘)}
q'® )

wherez € U, & € dU\E(q) and k > n. We write W, [Q, q] = Y[Q, q].

t
Re{§+ 1}2 kRe[1+

In particular, when g(z) = Mﬁ—ig, with M > 0 and |a] < M, then q(U) = Uy, = {w:|w| < M},q(0) = a,E(g) =@ andg € Q. In
this case, we set W, [Q, M, a] = ¥[Q, q] = ¥,|Q, q], and in the special case when the set @ = Uy, the cless is simply denoted by
LIJ]’I[MJG-]'

Definition 1.5[10] Let Q be aset in €, q(z) € H[a,n] with q'(z) # 0. The class of admissible functions ¥'[Q, g] consist of this
functions ¥ : €2 x U — C that satisfy the admissibility condition:

Y(r,s, t; &) €1,

whenever r = q(z),s =

Re{£+ 1}5%&3{1 +~Z§,(—$)}.

whenz € U,& € @U and b = n > 1. In particular, we write W, [©, q] = ¥[Q, q].
Lemma 1.1 [9] Let ¢ € ¥,[Q, q] with q(0) = a. If the analytic function g(z) = a + a,z™ + a,,,2"*"+..., satisfies

Y(g(2),29'(2),2*g"(2); z) € 0,
Then

9(2) <q(2), (z€U).

Lemma 1.2 [10] Let ¢ € ¥,,[2, q] with q(0) = a, g € Q(a) and (g (2),29'(2),2%g"(2); z) is univalent in U, then
0 c {Y(9(2),29'(2),2°g'(2);2), (z € U)},

implies

q(z) < g(2)

In fact, the study of the class of admissible functions was revived recently by Mustafa and Darus [11] and Cho [5]. A similar
problem for analytic functions was studied by many others for example see [10,12,13]

The object of the present paper, we give some results for differential subordination and superordination for multivalent function
involving the linearoperator F;, (f = g)(2).

Differential suboridination results associated with linear operator

Difintion 2.1 Let Q beasetin C, g € Q, N H[0, p]. The class of admissible functions ¥,,[Q, q] consists of those functions ¢ : €3 x
U — C that satisfy the admissibility condition:

pu,v,w;z,8) ¢ Q
3828 |Page
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whenever
kea©+ BB
u=q()v= B
a
And

p?w + 2p2(1 — Dv — 3p2(1 - H)u £q°(§)
Re{ 700 — Al — Du }2kRe{1+ 6 },

wherez € U, ¢ € dU\E(g),A > 0and k = p.

Theorem 2.1 Let ¢ € ¥,[Q, q). If f € A(p) satisfies
¢ (I (f + 9) @, Fy™ (f * 9)(2), Fiy 2 (f « 9)(2)) € Q,
where A > 0,m € N, ={0,1,2...},z € U.

Then
FL(f = 9)(2) < q(2),(z € V).

Proof. By using (1.2) and (1.3), we get the equivalent relation

Fm * ' p(l_"l)Fm "
FR(E o g)(2) = 2(FR(f+ 9)@) + B2 B (f + 9)(2)

s

Assum that

G(z) = F,(f » 9)(2).
Then

26'(2) +L1;’D 6(2)
Fint(f = 9)(2) = P .

A

Further computation show that

A

72G'(2) + (1 # ——2’”(1&_ a-1

zG'(z)+EL/-1——G()

F 2 9)(2) =

2

Sk

Define the transformation from €* to € by

= _ 201 _ 102
Rl Clmt 3 Y e+ 1+ 220y PAZD
. 7 7

Bl
=

?u|'cj

L.~ S

Let

] pz

s+ p(
Y(r,s,t;z) =0(u,v,w;z) =¢| r,
AZ

4
A

The proof shall make use of Lemma 1.1 using equations (2.3), (2.4) and (2.5), we obtain

¥(6(2),26(2),2°6"(2); z) = p(FI,(f * 9)(2) , iy (f * 9)(2) , F*(f * 9)(2),2)(2.8)

Therefore, by making use (2.1), we get

(G (2),2G'(2),2z°G"(2); z) € Q.

___Il_ A) r t+(1+ 2p(lﬂ— A)}s + pz(lﬂ; A r) -

2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.9)
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The proof is completed if it can be show, that the admissibility condition for ¢ € W,,[Q, q] is equivaent to the admissibility for i as

given in Definition 1.4. Note that

t p*w +2p?(1 — Dr — 3p*(1 - D)?u

-+1= ,
Apy —pA(1 = Du

(2.10)

and hence i € ¥,,[Q. q]. By Lemma 1.1,
G(z) < q(2),
or

EL(f *9)(2) < q(2).

We consider the specia situation when Q # C is a simply connected domain. In this case 2 = h(U), where h is a conformal
mapping of U onto Q and the class is written as W, [, g]. The following resultsis an immediate consequence of Theorem 2.1.

Theorem 2.2 Let ¢ € ¥Py,]h, q]. If f € A(p) satisfies

(F(f * 9)(2) i (f * 9)(2)  Fi 2 (f * 9)(2) ;2) < h(2) (2.11)
whered >0, me Ny,z€e U.
Then

Fip(f x9)(2) < q(2), (z€U).
The next result is an extension of Theorem 2.2 to the case where the behavior of g () on dU is unknown.

Corollary 2.1 Let Q € C, g be univalent in U and q(0) =0. Let ¢p € ¥,[12,q,] for some p € (0,1), where q,(z) = q(pz). If
f € A(p) and satisfies

d(F(f * 9)(2), Ff;,”(f « 9)(2) ,Fih(f * 9)(2) ;2) € Q,

where A > 0,m € Nyand z € U.

Then

Fp(f *9)(2) < q(2),(z € V).

Proof From Theorem 2.1 yields F37,(f * g)(2) < q(pz).The result now deduced from ¢,(2) < q(2).

Theorem 2.3 Let h and g be univalent in U, with ¢(0) = 0 and setg,, (z) = q(pz) and h,(z) = h(pz). Let ¢ : € x U - C satisfy
one of the following conditions:

l. ¢ €eW¥,[hq,]. torsomep € (0,1).
2. There exists py € (0,1) suchthat ¢p € W, [hy, q,], forall p € (py, 1). If f € A(p) and satisfies (2.11), then
Fip(f * 9)(2) < q(2).

Proof Case (1) : By using Theorem 2.1, we obtain Ff;,(f * g)(2) < q,(2), since q,(z) < q(z), we deduce

i (f = 9)(2) < q(2).

Case(2): Let G(2) = Fﬂ,(f * g)(z) and G,(2) = G(pz).

Theng (G, (2) , 26 ,(2) ,22G,(2); pz) = $(G(pz),2G (pz),2°G (pz); pz) € hy(U). By using Theorem 2.1 and the comment
associated with ¢(G(2) ,2G'(z) ,2%G"(2); w(z)) € Q,where w is any mapping U in to U , with w(z) = pz, we obtain G,(2) =
q,(z) for p € (po,1). By letting p - 17, we get G(2) < q(2).

Therefore,

5 (f * 9)(2) < q(2).

The next result gives the best dominant of the differential subordination (2.11).

Theorem 2.4 Let h be univalentin U and let ¢p : C* x U — C. Suppose that the differential equation
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$(q(2),2 9 (2),2°q"(2); 2) = h(2) (2.12)
has a solution g with q(0) = 0 and satisfy one of the following conditions:

1 q € Qy and ¢ € ¥,,|h, q].
Z. q isunivalentinU and p € W, h, qp], for some p € (0,1).
3 q is univalent in U and there existe p, € (0,1) suchthat ¢ € ¥, hy, qp], for all p € (pg,1). If f € A (p)satisfies (2.11),
then
Fip(f * 9)(2) < q(2),
and q is the best dominant.

Proof.By using Theorem 2.2 and Theorem 2.3, we deduce that g is a dominant of (2.11). Since g satisfies (2.12), it isaso asolution
of (2.11) and therefore g will be dominated by al dominants of (2.11). Hence, q is the best dominant of (2.11).

In the particular case q(z) = Mz, M > 0, and in view of the Definition 1.4, the class of admissible function ¥, [€2, q] denoted by
W, [Q, M] is described below.

Definition 2.4 Let Q be asetin €, M > 0. The class of admissible functions W, [Q, M] consists of those functions ¢ : C* x U - C
that satisfy the admissibility condition:

d) Meil‘?’

P ; z | &4,

p)
where 1> 0,0 € R,R(Le!®) > d(d — 1)M foralreal 8,d =1,z € U.

==y 2 = 2 y

d+p(1l— ‘l) Meiﬂ L+ [(1 + zp(lﬂ A))d+P (]AZ "D ]Mexﬂ
p2
2z

Corollary 2.2 Let ¢ € V,[Q,q]. If f € A(p) satisfies
S(FIL(f = 9)@)  FIL (f * )(@)  FI > (f  9)(2) 5 7) €,
where A >0, m € Ny,z € Uand M > 0. Then

|Fﬂ3(f *g)(2)| < M,(z € U).

Proof By using Theorem 2.1 gives

F%L(f x9)(2) < q(z) = Mz
L (f * 9)(2) < q(2) = Mw(2).

Hence

|32 (f * 9)(2)| < M, where [w(2)] < 1.

In the special case 2 = q(U) = {w: |w| < 1} the class ¥,[12, M] issSimply denote by W,,[M].
Corollary 2.3 Let ¢ € ¥,,[Q, q). If f € A(p) satisfies

|CFiy(f * )@, Fip (f * 9)(@), Fi 2 (f * 9)(2) 5 2)| < M,

where A >0,m€ Ny,z€ Uand M > 0. Then

|Fn(f+9)@)| <M, (z€U).

Differential superordination results associated with linear operator

DIFINITION 3.1 Let Q beasetinC;q € Q, n H[0,p], zq (z) # 0.The class of admissible function ¥’,,[Q, q] consists of those
function ¢ : €3 x U — C that satisfy the admissibility condition:

plu,v,w; O« Q
whenever
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1292 + 20 ’chz)
u= Q(Z)»V . p
A
and

2w 4+ 2p%(1 — v —3p%(1 - 1)? 1 !
o (P Wt Zp (1= Av—3p¥ )ug_Requ‘(Z),
Apv — pA(1 — Du k q'(z)
where z € U,& € dU\E(q),A > 0and k = p.

Theorem 3.1 Letp € ¥,[Q, q]. If f € A(p).Fj,(f * 9)(z) € Hy and
¢ (FIn(f + 9@ FI (f + 9)(2)  FIS(f + 9)())

Isunivalent in U, then

Qc ¢ (FL(f + )@ Fy'(f » 9)(2) IS (f  9)(2)) (31)

where A > 0,m € N,z € U, implies
q(2) < F,(f * 9)(2), (z € U).

Proof From (2.8) and (3.1), we have
Q Y(G(2),26'(2),2°G (2); z,8),(z V).

From (2.6), we see that the admissibility condition for ¢ € W',[Q, q] is equivalent to the admissibility condition for i as given in
Definition 1.5. Hence and by Lemma 1.2 we get q(z) < G(2).

q(2) < Fip(f * 9)(2),(z € U).
If Q# C is a simply connected domain, then Q = h(U) for some conformed mapping h(z) of U onto Q. In this case the class
W [h(U),q] is written as W', [h,q]. Proceeding similarly as in the previous section, the following result is an immediate

consequence of Theorem 3.1.

Theorem 3.2 Let h(z) is analytic on U and ¢ € W', [h, q]. If f € A (p), F{,(f * g)(2) € Hy and
(0] (Fﬂ;(f *9)(2) , F (f » g)(2) , FipP2 (f g)(z)) is univalent in U, then

h(z) < & (EI(f = 9)(2) Fis™ (f * 9)(2)  EI52(f * 9)(2)), (32)
where 1 > 0,m € Ny, z € U, implies

4(2) < E1S(f * 9)(2), (z € U).

Proof From (3.2), we get

h(z) = Q  (Fip(f *9)(2) , Fip ' (f * 9)(2) , Fip 2 (f * 9)(2)),

and also by T hcorcm 3.1, we gct
q(2) < F5,(f * 9)(2),(z € ).

Theorems 3.1 and 3.2, can only be used to obtain subordinations of differential superordination of the form (3.1) or (3.2). The
following Theorem proof the existence of the best subordinate of (3.2) for certain ¢.

Combining Theorem 2.2 and 3.2, we obtain the following sandwich type Theorem.

Corollary 3.1 Let h,(z) and g, (2) be analytic functions in U, h,(z) be univalent function in U, q,(z) € H, with ¢,(0) = ¢,(0) =
Oand ¢ € ¥y [ha, q2] N W'ylhy, 1] . If f € A), Fi,(f * 9)(2), € H[0,p] n Hy and

(FAP(f * 9)(2), Fi (f * 9) (@), F 2 (f * g)(2), ), is univelent in U, then
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hi(2) < ¢(Fi(f * 9) (@), Fip (f * 9)(2), 52 (f * 9)(2),) < hy(2) (33)
when A > 0,m € Ny, z € U, implies that

0:1(2) < Fi,(f * 9)(2), < q2(2), (z € V).
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