RESEARCH ARTICLE

OCCURRENCE AND HOSTS FOR A DESTRUCTIVE THRIPS TABACI LIND.
(THYSANOPTERA : THRIPIDAE)

Sathe T. V and Pranoti Mithari
Department of Zoology, Shivaji University, Kolhapur 416 004, India

ARTICLE INFO

Article History:
Received 2nd, March, 2015
Received in revised form 10th, March, 2015
Accepted 4th, April, 2015
Published online 28th, April, 2015

Key words:
Thrips tabaci, Host crop plants, destruction.

Copyright © Sathe T. V and Pranoti Mithari et al, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Adult thrips are small, cylindrical or cigar shaped insects measuring about 1 to 2 mm in body length. They are with two pairs of fringed wings. Their larvae are similar to their adults in appearance but without wings and smaller in size.

According to Kumar et al. (2013) there are more than 8000 species of thrips in the world. Thrips scrape their mouth parts over tender surface of crop plants and suck the cell sap resulting white and brownish speaks or stricks on leaves, flowers and fruits of the crops. They affect the growth and yield of the crops adversely. Therefore, crop diversity of Thrip tabaci L. have been studied. Review of literature indicates that Thrips have been studied by several workers namely, Rahman (1952), Anthakrishnan (1969), Ananthkrishnan & Sen (1980), Mound & Kibby (1998), Eaon & Burfield (2006), Kumar et al. (2012),etc with respect to diversity, crop range, occurrence and damage.

MATERIALS AND METHODS

Occurrence and damage of thrips have been studied by visiting field crops from Western Maharashtra specially Kolhapur, Sangli and Satara at 15 days interval during morning hours (8.00 a.m. to 9.00 a.m.) by spot observations. The thrips were mostly found in flowers and tender parts of the crops like leaves, developing shoots and fruits.

Silvering or bousing was the most common symptom of the damage by thrips, twisting and curling of crop plants have been accounted periodically.

For occurrence, thrips have been collected by beating flowers / 1 ft twig with finger and collecting thrips dropped on white paper used for collection. Various crop plants have been considered for collection and noting host crop plants and their damage.

RESULTS

Results recorded in table-1 and figs. 1 to 9 indicated that on onion and garlic incidence of thrips was started from November and steadily increased during the hot months while, on bottle gourd, cabbage and cauliflower incidence was noticed during the monsoon months but with relatively low population.

Incidence of thrips was also noticed on potato during the monsoon dry months and thereafter in rabbi season in summer. T. tabaci was also noted in summer months on cucumber and also on cabbage and cauliflower especially in May.

On castor T. tabaci was seen in monsoon months and also in summer months. It has also been noted on cotton and tobacco
during the monsoon months till September. *T. tabaci* was predated by an anthocord bug and a mite *Camposid* sp. *T. tabaci* was also found feeding on fungi causing powdery mildew on cotton and mulberry.

<table>
<thead>
<tr>
<th>Crops</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>Septem-ber</th>
<th>Octo-ber</th>
<th>Novem-ber</th>
<th>Decem-ber</th>
<th>January</th>
<th>Febru-ary</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. cepa</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>A. fistulosam</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>O. o.capitata</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>O. o.batrytis</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td>L. esculentum</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>L. vulgaris</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Occurrence of *T. tabaci* on various crop plants in Kolhapur region

DISCUSSION

According to Ananthakrishnan (1969) thrips were very susceptible to environmental change and thrive under specific or microclimatic situations including temperature and humidity. They occurred on the tender succulent parts of plants, under the bark of dead and dying twigs or among decaying leaves of grass, feeding on fungal spores. Some thrips were able to produce galls on crop plants. Most of thrips were phytophagous but several predatory thrips have also been reported (Bailey, 1939). Based on the habitat, thrips were grouped into following types by Watson (1923):

- Anthophilous - flower feeding, phyllophilous - leaf inhibiting, poephilous - grass inhibiting, phataeophilous - bark inhibiting and cecidogenous gall inhibiting. Monophagy corresponding to strict host plant specificity was comparatively rare and met with some species of thrips such as *Helionothrips kadalphilus* on banana. All cecidogenous species (except few) are strictly monophagous. Oligophagy was more commonly reported in thrips as *Microcephalothrips abdominalis* was restricted to the family compositae. While, polyphagy have been reported in several species of thrips; *Caliothrips indicus*, *Scirtothrips dorsalis* and *Taeniophris distalis* have very wide host range in different families of plants. Similarly, *T. tabaci* was also polyphagous as noted by Anandthakrishnan (1969). In the present work *T. tabaci* was found attacking about 10 host plants from Western Maharashtra (Kolhapur).

Localized temperature, humidity, light, wind speed, vegetation and host species diversity influenced the occurrence of thrips on crop plants (Cederholm, 1963). According to him there was considerable change in the numbers caught at different time of the day. In the present study, thrips have been collected during the morning hours (8.00 to 9.00 am). Samples of *Anaphothrips sundanensis* collected at an interval of two every hours between 8.00 a.m. and 9.00 a.m. on *Panicum maximum* Jacq. indicated reduced number of catches than in the subsequent samples taken after this time. A considerable varieties in abundance of *A. sundanensis* on *P. maximum* have been reported by Anandthakrishnan & Jagadish (1968).

Prior to the introduction of *Scirtothrips dorsalis* into the New World, the host range of this pest included more than 100 plant taxa among 40 families (Mound & Palmer, 2012). In India, *S. dorsalis* was very serious pest of chili (Butani & Verma, 1976). In the present study 10 host plants have been reported from Kolhapur region. *T. tabaci* was found migrating from onion garlic and bottle ground from dry months to cabbage, cauliflower and castor in monsoon months. Natural enemies in the form of parasitoids and predators played a very crucial role in pest management (Sathe & Bhoje, 2000; Sathe 2014, 2015) as ecofriendly control. Similarly, present pest, *T. tabaci* was found attacked by a predator Anthorid bug. The present work will be helpful for understanding the ecology of the pest and diversity of crops attacked and further designing appropriate control measures.

Acknowledgements

Authors are thankful to Shivaji University, Kolhapur for providing facilities.

References

Kumar, V; Seal D.R., Kakkar, G; McKenzie, C.L., Osborne, L.S. (2012) New tropical fruit hosts of Scirtothrips dorsalis (Thysanoptera : Thripidae) and its relative abundance on them in South Florida. *Florida Entomologist*, 95(1), 205-207.

How to cite this article: Sathe T. V and Pranoti Mithari., Occurrence and Hosts for a Destructive Thrips Tabaci Lind. (Thysanoptera : Thripidae) *International Journal of Recent Scientific Research Vol. 6, Issue, 4, pp.2670-2672, April, 2015*
