ABSTRACT

Alleurodicus dispersus (Hemiptera : Aleurodidae) is polyphagous pest of many agricultural, horticultural, floricultural and nonagricultural plants. The Whitefly suck the cell sap from leaves and tender parts of the plants and affect the growth adversely. It also create sooty moulds on leaves which affect photosynthesis, growth and yield of the crops. *Cotton Gossypium hirsutum* L. Brinjal Solanum melongena L., Okra Abelmoschus esculentus L., mulberry *Morus alba* L. and Guava *Psidium guajava* have been attacked throughout the year. Custard apple *Annona reticulate*, Mango *Mangifera indica* L., Sunflower *Helianthus annuus* L., Cowpea *Vigna unguiculata* L., Tomato *Solanum lycopersicum* L., China Rose *Hibiscus rosasinensis* L. and several grasses have also been attacked by *A. dispersus* in Kolhapur region, India. Occurrence and damage by whitefly to different plants have been discussed in the paper.

INTRODUCTION

Spiral white fly *Alleurodicus dispersus* (Russel) (Hemiptera : Aleyrodidae) is small sized, 1-2 mm in body length with white bodies and two pairs of white wings. It has a characteristic spiral pattern of oviposition on the underside of leaves (Russel, 1965). There are at least 75 species of white flies (Mannion, 2010). Both nymphs and adults suck the cell sap of the crop plants from tender parts, especially leaves and affect the growth and yield of the crops. It is believed that *A. dispersus* has been recently, in 1994 introduced in India from other countries and spreading throughout the country on various agricultural and non-agricultural plants including weeds and grasses and became serious threat to several horticultural, floricultural and agricultural crop plants in India. Therefore, its host plants have been studied in Kolhapur region. In past, spiral white fly *A. dispersus* has been attempted by Costa (1969), Cherry (1980), Martin & Lucas (1984), Martin (1987, 1990), Neuenschwander (1994), Palaniswami *et al.* (1995), Sathe (1999), Both *et al.* (2000), Banjo (1998, 2010), Banjo & Latunde Data, (1999), Banjo *et al.* (2003), Sathe & Margaj (2001), Sathe (1998, 2014) etc.

MATERIALS AND METHODS

Survey of *A. dispersus* was made on various crops at morning hours between 8.00 a.m. to 9.00 a.m. by visiting various agro-ecosystems of crops at 15 days interval. The number of whiteflies per leaf was counted in case of guava, china rose, custard apple, tomato and other crop plants. The nature of damage and their association with the crops was taken into account by spot observations. Observations were taken during the years 2013-14 on various crops. The collected insects were identified by consulting literature cited in the references.

RESULTS

Results recorded in table-1 and figs 1 to 8 indicated that *A. dispersus* was found throughout the year on the crops *guava* (*Psidium guajava* L.), *china rose* (*Hibiscus rosasinensis* L.), *rose* (*Rosa 'Santana' *), brinjal (*Solanum melangena* L.) and *Terminalia catappa*. However, its incidence was decreased on *guava* & *Termindea* in Feb and March. While increased on Brinjal and *China rose*. Probably the pest migration was due to the dropping of leaves in February. The incidence of white fly was also cotton (*Gossippum hirsutum* L.) noted on cowpea (*Vigna unguiculata* L.), Mulberry (*Morus alba* L.) and certain weeds during the monsoon months.

[Fig. 1 Occurrence of *A. dispersus* on different crop plant]
Table 1 Occurrence of *A. dispersus* on various crops in Kolhapur

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Guava</td>
<td>21</td>
<td>18</td>
<td>12</td>
<td>10</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>15</td>
<td>3.5</td>
<td>14</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>2.</td>
<td>Brinjal</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>3.</td>
<td>China rose</td>
<td>10</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>4.</td>
<td>Custard apple</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>Rose</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>Mango</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>Citrus</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>Terminalia catapa</td>
<td>18</td>
<td>13</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>21</td>
<td>32</td>
<td>30</td>
<td>9</td>
<td>16</td>
<td>37</td>
<td>30</td>
</tr>
</tbody>
</table>

Fig 2. *A. dispersus* on *Psidium guajava* L.

Fig 3. *A. dispersus* on *Rosa* sp.

Fig 4. *A. dispersus* on *Hibiscus rosasinensis* L.

Fig 5. *A. dispersus* on *Terminalia catapa* L.

Fig 6. *A. dispersus* on *Gossypium hirsutum* L.

Fig 7. *A. dispersus* on *Morus alba* L.

Fig 8. *A. dispersus* on *Solanum melongena* L.

Fig 9. *A. dispersus* on *Annona reticulate* L.
DISCUSSION

The developmental biology of A. dispersus has been investigated by Banjo (2010) in Nigeria. He found a cumulative developmental period of 23-41 days. The mean numbers of egg develop to adult was 138.1 per thousand eggs. The spread of the insect have been found to be connected to human traffics. The oviposition and feeding occurred simultaneously and occurred more on their abaxial surface of host larvae. Rainfall and temperature played a prominent role on the abundance and seasonal fluctuation of the insects and infacts, regulating their population. A. dispersus was found on arable as well as ornamental plants but, rarely on gymnnae.

A. dispersus has been spread westward across the pacific and Southeast Asia (Waterhouse & Norris, 1989). Waterhouse and Norris (1989) further mentioned that the pest has been reported in Brazil, Ecuador, Peru, Phillipines, Fiji, Maldives, Mariana Island and Canary Islands etc. This insect was occurred in West Africa much earlier than 1992 as was reported, but was confused with the Cassava mealybug (Asiwe et al., 2002). According to Banjo et al., (2003) the host range of A. dispersus is increasing day by day as it spread to other part of the world (Banjo, et al., 2003).

A. dispersus was the vector of plant pathogens for transmitting diseases such as cotton leaf curl, tobacco leaf curl and cassava mosaic (Costa, 1969). A. dispersus has been recorded on more than 27 plant families, 38 genera with 100 species including citrus and ornamentals (Russel, 1965, Cherry, 1980) in Nigeria. However, Akinlosotu et al., (1993) had reported that Anacardium occidentale, Annona sp., Cocos nucifera and Psidium guajava were among most preferable host plants. Banjo & Latunde-Dada (1999) assessed preference in eight plant species using egg count fortnight method. P. guajava has the highest egg count followed by Terminalia catappa, Acalypsha sp. and Ficus exasperate. The plants such as Manihot esculenta, Musa sp., Bauhinia monandra and Sida acuta showed less egg count. A. dispersus has been shifted to low lying weed like S. acuta during weanter season from where they reinfested the taller and cultivated plants when favourable conditions occurred. They concluded that A. dispersus has not really reached a pest status in Nigeria but, regarded as only a miner pest of Cassava (Banjo, 1998). From India, Palaniswami et al. (1995) also studied A. dispersus on Cassava plant as major and destructive pest. In the present study, 12 host plants have been reported for A. dispersus and the work will be helpful for designing ecological and cultural control of the pest.

Acknowledgements

Authors are thankful to Shivaji University, Kolhapur for providing facilities.

References

Asiwe JAN, Dixon AGO, Jackal LEN, Nukene N.E. (2002). Investigation on the spread of the spiraling white fly (A. dispersus) and field evaluation of elite cassava population for genetic resistance. AJRRC, 5(1), 12-17.

Martin, J.H. (1990). The white fly pest species Aleurodicus dispersus and its rapid extension of range across the pacific and South East Asia. MAPPS Newsletter, 14, 36.

Sathe, T.V. (1999) Whitefly, Aleurodicus dispersus, a new pest of guava, Psidium guajava in Kolhapur,
Sathe, T.V and Gangate Ujjwala. S. Host plants for a whitefly aleurodicus dispersus from kolhapur region, india

How to cite this article:
