

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 6, Issue, 2, pp.2703-2709, February, 2015 International Journal of Recent Scientific Research

## **RESEARCH ARTICLE**

# BOTANICAL EXTRACTS OF *TINOSPORA CRISPA* (MENISPERMACEAE) AND *PSIDIUM GUAJAVA* (MYRTACEAE) AGAINST IMPORTANT AGRICULTURAL POLYPHAGOUS FIELD PEST ARMYWORM, *SPODOPTERA LITURA* (FAB.) (LEPIDOPTERA:NOCTUIDAE)

Elanchezhiyan. K, Gokulakrishnan. J, Deepa. J and Balu Selvakumar

Department of Zoology, Poompuhar College (Autonomous), Poompuhar, Melaiyur- 609107, Tamilnadu, India

#### **ARTICLE INFO**

#### ABSTRACT

Article History: Received 5<sup>th</sup>, January, 2015 Received in revised form 12<sup>th</sup>, January, 2015 Accepted 6<sup>th</sup>, February, 2015 Published online 28<sup>th</sup>, February, 2015

Key words:

*Tinospora crispa, Psidium guajava, Spodoptera litura,* Antifeedant activity, Larvicidal activity, Ovicidal activity The development of integrated pest control programs in controlling the economically important pest, Spodoptera litura (Fab.) has gained increased attention in many parts of the world. The objective of the present study was to evaluate Antifeedant, larvicidal and ovicidal activities of benzene, diethyl ether, ethyl acetate and methanol leaf extract of Tinospora crispa and Psidium guajava against Spodoptera litura (Fab.) (Lepidoptera : Noctuidae), Antifeedant activities of the selected plant extract were studied using leaf disc no-choice method as described by Isman et al. (1990), with slight modifications. Five replicates were maintained for each concentration and the progressive consumption of leaf area by the larvae after 24h was recorded in control and treated discs using leaf area. Twenty five early fourth instar larvae of S. litura was exposed to various concentrations and was assayed in the laboratory by using the protocol of Abbott's formula (1925); the 24h  $LC_{50}$  values of the Tinospora crispa and Psidium guajava leaf extracts were determined by probit analysis. The ovicidal activity was determined against S. litura to various concentrations were tested under laboratory conditions and the hatch rates were assessed 120 h post treatment. The antifeedant activity of Tinospora crispa and Psidium guajava tested against S. litura fourth instar larvae was determined during a 24 hours test period. All extracts are showed moderate antifeedant activitiy; however, very least antifeedant activity was noted in benzene and significant antifeedant activity was observed in methanol extract. Methanol extract of Tinospora crispa and Psidium guajava showed 100% and 98.38% feeding deterrency against the fourth instar larvae of S. litura at 500ppmconcentration. The LC 50 value of benzene, diethyl ether, ethyl acetate and methanol leaf extracts of Tinospora crispa were 92.64, 96.25, 94.67 and 84.94ppm, respectively and Psidium guajava shows the LC<sub>50</sub> values of 144.95, 164.22, 135.64 and 121.86 ppm, respectively. The chi-square values are significant at p = 0.05level. Among five solvent extracts, the methanol extract was responsible for strong lethal activity observed against selected pest species. Among two plant solvents tested, Tinospora crispa extracts were found to be most significant ovicidal activity 100% egg mortality (zero hatchability) observed at 160ppm and 200 ppm for Psidium guajava. From the results it can be concluded the crude extract of Tinospora crispa and Psidium guajava were an excellent potential for controlling agricultural pest Spodoptera litura.

**Copyright** © **2015** Elanchezhiyan. K, Gokulakrishnan. J, Deepa. J and Balu Selvakumar. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

## **INTRODUCTION**

Spodoptera litura (Fab.) is highly polyphagous pest of economically important crops throughout tropical and subtropical Asia. In India, it feeds on 180 species of cultivated crops and few wild plants, which includes various economically important crops such as cotton, groundnut, chilly, tobacco, caster, bendy and pulses etc. (Niranjankumar and Regupathy, 2001; Elumalai *et al*, 2007; Krishnappa *et al*, 2010a). It is a strong flier and disperses long distances annually during the summer months. It is one of the most economically important insect pests of 51 counties including India, Japan,

China, and other countries of Southeast Asia. Management of this pest using synthetic chemicals has failed due to the development of resistance against many insecticides (Raman *et al*, 2007; Kodandaram and Dhingra, 2007; Mushtaq Ahmad *et al*, 2007; Ranga Roa *et al*, 2008). The development of integrated pest control programs in controlling the economically important pest, *Spodoptera litura* has gained increased attention in many parts of the world (Elumalai *et al*, 2010b; Krishnappa *et al*, 2010b; Anandan *et al*, 2010). *S. litura* is highly polyphagous pest, and this is reflected in the wide taxonomic range of wild and cultivated plants acceptable for

\*Corresponding author: Elanchezhiyan. K

Department of Zoology, Poompuhar College (Autonomous), Poompuhar, Melaiyur, Tamilnadu, India

oviposition by adults and feeding by larvae. This notorious pest initially feeds on vegetative parts and subsequently on immature pods and ultimately causes severe loss of production. However, many chemicals available for treatment of insect pest are also toxic to natural enemies and gradually the pest will develop resistance to it (Elumalai et al, 2010c).Gokulakrishnan et al, 2012a, and Baskaran et al, 2012a, reported that crude plant extracts have insecticidal activity against S. litura larvae. Recent studies are suggested that plant extracts can be used for the Integrated Pest Management. Plant and insects have coevolved over millions of year, plant have accumulated specific secondary metabolites to counteract insect damage (Kannivan, 2002). Insecticides of plant origin have been exploited from time immemorial in many Asian and African countries for the management of insect pests of crop plants and stored products. Especially, in India and china, experiences documented on the walls of tombs explicit the pesticidal value of many such plants (Karl Maramorsch, 1991; Krishnappa et al, 2011a). Though insecticides of plant origin exerted coherent management over insect pests for centuries, invention of synthetic organic insecticides in the latter half of twentieth century suddenly replaced botanicals from insect management scenario.

Chemical pesticides play a significant role in increasing agricultural production by controlling the insect pests. However, the chronic effects of chemical pesticides on living organism and the environment prompt us to restrict the use of many pesticides (Elumalai et al, 2010a; Krishnappa et al, 2011b; Anandan et al, 2011; Isman et al, 1990; Katyal and Satake, 1996). Moreover, synthetic Insecticides led to numerous problems unforeseen at the time of their introduction: acute and chronic poisoning of applicators, form workers, consumer, fish, birds and other domestic and wildlife animals etc. (Wattanachari and Tintanon, 1999; National Research council, 2000; Rohani et al, 2001). The threats posed by chemical pesticides demand an urgent search for an environmentally safer alternative method of crop protection. Also the injudicious use of synthetic pesticides can lead to secondary out breaks of pests that are normally under natural control. There have also been cases of pests becoming tolerant to insecticides, resulting in the use of double and triple application rates (Elumalai et al, 2010b; Gokulakrishnan et al, 2012b). In addition, problems such as health hazards, undesirable side effects and environmental pollution are caused by the continuous use of synthetic chemical pesticides. The broad spectrum action of many synthetic pesticides may also cause adverse environmental effects by harming beneficial organism such as natural enemies and pollinators. These hazards associated with the use of synthetic insecticides have renewed interest in the application of botanical pesticides for crop protection (Nas, 2004). Attention is being paid to tap plant sources, which have evolved astonishingly diverse array of chemical constituents. The use of locally available plants in the control of pests is an ancient technology in many parts of the world (Roy et al, 2005). Mean while, the concept of pest management was radically revised towards advocating suppression of pest populations below levels capable of causing economic injury rather than total eradication. Therefore, reliance on synthetic insecticides alone was left behind and many alternative strategies were introduced in the pest

management. Among them, botanicals offer ample scope because of their considerable effect on target pests and relative safety to non target organisms. However, large scale utilization of botanicals in pest management is obstructed by nonavailability of formulations. From a scientific angle, it is not difficult to explain why plants should represent themselves as valuable sources of such phytochemicals. Having been subjected to constant attack by phytophagous insects, plants developed in defense, a wide array of phyto-chemicals which at higher quantities ensure continuity of plant species by preventing herbivore attack (Ramachandran and Subramanian, 1993). Most of the botanical pesticides are non selective poisons that target a broad range of pests (Leatemia and Isman, 2004; Gokulakrishnan et al, 2012b; Baskaran et al, 2012b, c, d). The present work is an attempt to investigate the antifeedant, larvicidal and ovicdal activity of Tinospora crispa and Psidium guajava plants extract against larvae and eggs of Spodoptera litura Fabricius (Lepidoptera: Noctuidae).

## **MATERIALS AND METHODS**

#### Plant material

The selected plants leaves were collected during growing season month of January-2014 from the Poompuhar Village, Sirkali Taluk, Nagapattinm District, Tamilnadu, India. Bulk samples were air-dried in the shade and after drying. These were ground to fine powder. At the time of collection, two pressed voucher herbarium specimens were prepared and identified with the help of Plant Taxonomist, Department of Botany, Poompuhar College, whenever possible, flowering or fruiting specimens were collected to facilitate taxonomic identification.

## Extraction method

The dried leaves (100g) were powdered mechanically using commercial electrical stainless steel blender and extracted sequentially with benzene, diethyl ether, ethyl acetate and methanol (500 ml, Ranchem), in a Soxhlet apparatus separately until exhaustion. The extract was concentrated under reduced pressure of 22–26 mm Hg at 45°C by 'Rotavapour' and the residue obtained was stored at 4°C in an amber vial. Then the vials were named and covered with silver foil and transported to the laboratory. Until use those vials were kept in cool and dark place at  $4^{\circ}$ C.

## Rearing of test organism

Armyworm, *Spodoptera litura* Fab. (Noctuidae: Lepidoptera) collected from nearby fields formed the initial source for continuous, disease free culture. The insect culture was maintained on castor (*Ricinus communis*) leaves under standard conditions of temperature  $(27\pm2^{\circ}C)$  and relative humidity  $(70\pm5\%)$  throughout the period of study.

#### Antifeedant activity

Antifeedant activities of the selected plants extract were studied using leaf disc no-choice method as described by Isman *et al.*, 1990 with slight modifications. Fresh castor leaf discs (for *S. litura*) of 3cm diameter were used for the experiments. Selected plant extracts prepared different concentrations *viz.*, 100500ppm were treated individually on the fresh leaf discs. One treatment with acetone alone was used as positive control and one treatment without solvent was considered as negative control (0 ppm). In each Petri discs (1.5 cm x 9cm) wet filler paper was placed to avoid early drying of the leaf disc single fourth instar larva of *S.litura* was introduced individually. Five replicates were maintained for each concentration and the progressive consumption of leaf area by the larvae after 24h was recorded in control and treated discs using leaf area.

#### Larvicidal assay

For the evaluation of larvicidal activity, the selected plants extract tested is based on the wide range and narrow range tests, it was tested at 60-300ppm and they were tested against the freshly moulted (0-6 hrs) fourth instar larvae of selected lepidopteran agricultural field pest. Petioles of the leaves were tied with wet cotton plug to avoid early drying and placed in plastic trough (29cm x 8cm) 20 pre starved (4h) fourth instar larvae of test organisms were introduced individually and covered with muslin cloth. Five replicates were maintained and the number of larvae dead after 24h was recorded and the percentage of larval mortality was calculated using Abbott's formula (1925). All moribund pest larvae were considered as dead.

#### Ovicidal assay

For ovicidal activity, scales from the egg masses of *S. litura* were carefully removed using fine camel brush. 500 eggs from three selected lepidopterans were separated into five lots each having 100 eggs and dipped in 40-240ppm concentrations of plant different solvent extracts. Controls as mentioned above. Number of eggs hatched in control and treatments were recorded and the percentage of ovicidal activity was calculated using Abbott's formula (1925). For each experiment, five replicates and the hatch rate was assessed 120 h post treatment.

#### Determination of lethal concentrations

Lethal concentration (LC<sub>50</sub>) represents the concentration of the test material that caused 50% mortality of the test (target and non-target) organisms within the specified period of exposure, and it was determined by exposing various developmental stages of the mosquitoes to different concentrations of the extract. Based on the mortality of the test organisms recorded in these bioassays, LC<sub>50</sub> and LC<sub>90</sub>was calculated along with their fiducial limits at 95% confidence level by probit analysis using SPSS software package 12.0 (Statistical Package of Social Sciences) software. Results with p<0.05 were considered to be statistically significant.

## RESULTS

Results of the present study reflected spectrum of activity of selected plants extracts against the lepidopteran pest *Spodoptera litura* larvae and eggs. The toxicity of different extracts of *Tinospora crispa* and *Psidium guajava* were tested against *Spodoptera litura*. The antifeedant activity of *Tinospora crispa* and *Psidium guajava* tested against *S. litura* fourth instar larvae was determined during a 24 hours test period. All extracts are showed moderate antifeedant activity; however, very least antifeedant activity was noted in benzene and significant antifeedant activity was observed in methanol extract. Methanol extract of *Tinospora crispa* and *Psidium* 

guajava showed 100% and 98.38% feeding deterrency against the fourth instar larvae of S. litura at 500ppmconcentration (table 1). The LC 50 value of benzene, diethyl ether, ethyl acetate and methanol leaf extracts of Tinospora crispa were 92.64, 96.25, 94.67 and 84.94ppm, respectively and Psidium guajava shows the LC50 values of 144.95, 164.22, 135.64 and 121.86ppm, respectively. The chi-square values are significant at p = 0.05 level. Among five solvent extracts, the methanol extract was responsible for strong lethal activity observed against selected pest species (table 2). Among two plant solvents tested, Tinospora crispa extracts were found to be most significant ovicidal activity 100% egg mortality (zero hatchability) observed at 160ppm and 200 ppm for Psidium guajava (table 3). These results suggest that selected plants extracts have the potential to be used as an ideal eco-friendly approach for the control of important agricultural pest Spodoptera litura.

## DISCUSSION

In our results showed that, the selected medicinal plants extracts tested against fourth instar larvae and 0-6 hour's old eggs of Spodoptera litura. Larvicidal activity mainly depends on the presence of toxic materials present in plants extracts. Also the mortality may be due to reduction in the total protein content which is a major component for the metamorphosis of the larval instars, this was clear that the dead larvae showed the symptoms of improper metamorphosis from one instar to another instar. This result is also coinciding with the findings of Krishnayya and Rao (1995), who had reported that the application of Plumbagin greatly reduced the protein concentration of *H. armigera*. Earlier, Elumalai et al, (2010a) reported that the plant essential oils are currently studied more and more because of the possibility of their use in plant protection. Biological activities of 10 essential oils were studied using fourth instar larvae of armyworm, S. litura. During preliminary screening, the extracts were tested at 1,000 ppm concentration. All Essential oil are showed moderate larvicidal effects; however, the highest larval mortality was found in the essential oil of Zingiber officinales, Citrus limonum, Acorus calamus, Rosmarinus officinalis, Ocimum basilicum, Cuminum cyminum and Coriandrum sativum with LC<sub>50</sub> values were 15, 34.55, 36.13, 38.2, 57.55, 63.99 and 65.07 ppm respectively. Jayasankar et al, (2002) reported that mentha oil showed minimum ovicidal activity at 0.25% concentration  $18.33 \pm 3.15$  and maximum ovicidal activity at highest concentration tested (2.0% -  $28.99 \pm 7.11$ ). Ovicidal activity recorded from 0.50 and 1.0% were less significant (23.25  $\pm$ 4.66 and 24.74  $\pm$  5.47 respectively). Neem oil showed maximum ovicidal activity at 2.0% concentration. Krishnappa et al, (2010a) they have been reported that Tagetes patula volatile oil contained 10 compounds and they were tested against the fourth instar larvae of S. litura for their antifeedant activity by leaf disc bioassay. Among the compounds tested Terpinolene was the most effective feeding deterrent agent against Spodoptera litura in the laboratory condition. Pavela, (2005) reported that twenty essential oils applied by fumigation were highly toxic to the third instar of S. littoralis larvae. Two essential oils Nepeta cataria and Thuja occidentalis were highly toxic with  $LC_{50}$  10.0 ml/m<sup>3</sup> (5.5 and 6.5 mL/m3, respectively). Five essential oils Salvia sclarea, Thymus mastichina, Origanum majorana, Pogostemon cablin and

*Mentha pulegium* were toxic with  $LC_{50}$  between 10.1 and 20.0 ml/m<sup>3</sup> (11.9, 19.3, 19.6, 14.8 and 11.5 ml/m<sup>3</sup>, respectively). Duraipandiyan *et al*, (2011) they have been reported that larvicidal activities of rhein isolated from *Cassia fistula* flower against lepidopteron pests *S. litura* and *H. armigera* and the  $LC_{50}$  values was 606.50 ppm for *H. armigera* and 1192.55 ppm for *S. litura*. The survived larvae produced malformed adults.

concentration. Krishnappa *et al*, (2010b) reported that The *Clausena dentate* leaves essential oil against armyworm, *S. litura* it produce significant larvicidal activity, with 24 hrs  $LC_{50}$  111.54 ppm and  $LC_{90}$  205.38 ppm, respectively. The major chemical compositions larvicidal activities were also tested.  $LC_{50}$  and  $LC_{90}$  values of sabinene 21.42 ppm and 40.39 ppm, respectively.

Table 1 Antifeedant activity of Tinospora crispa and Psidium guajava extracts against the larvae of Spodoptera litura

| G.1              | Concentrations tested (ppm), Antifeedant activity % |                         |                         |                         |                         |  |  |  |  |
|------------------|-----------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|--|--|--|
| Solvent tested-  | 100                                                 | 200                     | 300                     | 400                     | 500                     |  |  |  |  |
| Tinospora crispa |                                                     |                         |                         |                         |                         |  |  |  |  |
| Benzene          | 15.22±1.35 <sup>b</sup>                             | 26.27±1.73 <sup>b</sup> | 43.38±2.67 <sup>b</sup> | 74.22±2.46 <sup>b</sup> | 88.78±3.81 <sup>b</sup> |  |  |  |  |
| Diethyl ether    | 21.82±1.47°                                         | 34.66±1.95°             | 56.62±3.59°             | 76.22±3.68°             | 91.57±4.74°             |  |  |  |  |
| Ethyl acetate    | $24.34\pm2.79^{d}$                                  | $38.55 \pm 2.27^{d}$    | $62.93 \pm 3.70^{d}$    | 79.53±2.53 <sup>d</sup> | $94.60 \pm 4.55^{d}$    |  |  |  |  |
| Methanol         | 28.44±2.22 <sup>e</sup>                             | 42.47±2.55 <sup>e</sup> | 76.45±2.73°             | 83.00±3.76 <sup>e</sup> | 100.00±0.00e            |  |  |  |  |
| Control          | 2.26±1.30 <sup>a</sup>                              | $2.26 \pm 1.30^{a}$     | $2.26 \pm 1.30^{a}$     | $2.26 \pm 1.30^{a}$     | 2.26±1.30 <sup>a</sup>  |  |  |  |  |
| Psidium guaiava  |                                                     |                         |                         |                         |                         |  |  |  |  |
| Benzene          | 13.25±1.14 <sup>b</sup>                             | 26.37±1.22 <sup>b</sup> | 40.26±2.77 <sup>b</sup> | 68.67±3.76 <sup>b</sup> | 90.26±3.29 <sup>b</sup> |  |  |  |  |
| Diethyl ether    | 15.87±1.76 <sup>c</sup>                             | 28.48±1.24°             | 42.30±3.68°             | 70.54±2.67°             | 93.40±3.25°             |  |  |  |  |
| Ethyl acetate    | $18.55 \pm 2.34^{d}$                                | $31.00\pm2.26^{d}$      | $52.34 \pm 2.29^{d}$    | $75.55 \pm 3.00^{d}$    | $96.74 \pm 4.44^{d}$    |  |  |  |  |
| Methanol         | 21.33±2.37 <sup>e</sup>                             | 34.06±2.34 <sup>e</sup> | 57.56±3.40 <sup>e</sup> | 81.64±3.14 <sup>e</sup> | 98.38±4.87 <sup>e</sup> |  |  |  |  |
| Control          | $2.84{\pm}1.52^{a}$                                 | $2.84{\pm}1.52^{a}$     | $2.84{\pm}1.52^{a}$     | $2.84{\pm}1.52^{a}$     | $2.84{\pm}1.52^{a}$     |  |  |  |  |

Values represent mean  $\pm$  S.D. of five replications. Different alphabets in the column are statistically significant at p<0.05. (MANOVA; LSD -Tukey's Test). Control groups were fed with tender host leaf disc with no phytochemicals.

Table 2 Larvicidal activity of Tinospora crispa and Psidium guajava leaf extracts against Spodoptera litura

| Solvent tested   | LC <sub>50</sub> (mg/L) | 95%Confidence Limits(mg/L) |                 | LC <sub>90</sub> | Sland  | Chi sanona* |  |  |
|------------------|-------------------------|----------------------------|-----------------|------------------|--------|-------------|--|--|
|                  |                         | LCL                        | UCL             | (mg/L)           | Slope  | Cm-square*  |  |  |
| Tinospora crispa |                         |                            |                 |                  |        |             |  |  |
| Benzene          | 92.64                   | 75.23                      | 106.29          | 166.48           | 3.1064 | 10.460      |  |  |
| Diethyl ether    | 96.25                   | 79.15                      | 112.67          | 174.46           | 3.2546 | 12.304      |  |  |
| Ethyl acetate    | 94.67                   | 75.66                      | 108.64          | 168.93           | 4.0321 | 12.921      |  |  |
| Methanol         | 84.94                   | 68.14                      | 95.57           | 135.46           | 4.2063 | 13.916      |  |  |
|                  |                         |                            | Psidium guajava |                  |        |             |  |  |
| Benzene          | 144.95                  | 92.57                      | 163.94          | 245.32           | 3.6024 | 10.619      |  |  |
| Diethyl ether    | 164.22                  | 98.51                      | 167.26          | 259.53           | 5.0438 | 15.537      |  |  |
| Ethyl acetate    | 135.64                  | 95.13                      | 154.37          | 248.61           | 4.7506 | 14.310      |  |  |
| Methanol         | 121.86                  | 82.34                      | 134.46          | 237.92           | 3.5109 | 11.124      |  |  |

Each value mean  $\pm$  S.D represents mean of five values. Statistically significantly different at P < 0.05. LC<sub>50</sub>; LC<sub>90</sub>; LCL-Lower confidence limit; UCL-Upper confidence limit; Slope; Chi-square.

|                     | Percentage of egg hatch ability |                  |                |                  |                  |     |     |  |  |
|---------------------|---------------------------------|------------------|----------------|------------------|------------------|-----|-----|--|--|
| Name of the solvent | Concentration (ppm)             |                  |                |                  |                  |     |     |  |  |
| -                   | Control                         | 40               | 80             | 120              | 160              | 200 | 240 |  |  |
|                     |                                 |                  | Tinospora cris | ра               |                  |     |     |  |  |
| Benzene             | 100±0.0                         | 67.56±3.47       | 37.12±3.94     | 21.34±2.52       | $18.76 \pm 2.42$ | NH  | NH  |  |  |
| Diethyl ether       | 100±0.0                         | 62.85±4.26       | 34.25±3.15     | 19.66±2.45       | 21.34±3.52       | NH  | NH  |  |  |
| Ethyl acetate       | 100±0.0                         | 59.66±3.98       | 28.81±2.64     | $17.20 \pm 2.91$ | 21.34±3.52       | NH  | NH  |  |  |
| Methanol            | 100±0.0                         | 45.97±3.64       | 20.66±2.31     | $12.82 \pm 2.49$ | NH               | NH  | NH  |  |  |
|                     |                                 |                  | Psidium guajav | va               |                  |     |     |  |  |
| Benzene             | 100±0.0                         | 81.43±4.37       | 73.51±4.64     | 46.66±3.55       | 27.18±1.6        | NH  | NH  |  |  |
| Diethyl ether       | 100±0.0                         | 79.62±4.64       | 67.94±3.51     | 40.51±3.64       | 22.46±1.3        | NH  | NH  |  |  |
| Ethyl acetate       | 100±0.0                         | 68.14±3.76       | 48.30±3.40     | 31.27±2.61       | 19.65±1.5        | NH  | NH  |  |  |
| Methanol            | $100\pm0.0$                     | $51.42 \pm 3.61$ | 32.86±3.19     | $24.65 \pm 2.94$ | $16.45 \pm 2.73$ | NH  | NH  |  |  |

Each value  $mean \pm S.D$  represents the mean of six values.

Eggs in control groups were sprayed with no phytochemicals.

NH - No hatchability (100% mortality)

Anandan *et al*, (2010) they have been reported that crude extracts of *H. suaveolens* and *M. corchorifolia* against *S. litura*, four fractions obtained from *H. suaveolens*, fraction III was found to inhibit the feeding ratio of the *S. litura* and it is apparent from the table. While in *M. corchorifolia* only three fractions have been obtained, among them fraction II was found to induced more feeding deterrent activity at 2000 ppm

This was closely followed by biofloratriene LC<sub>50</sub> 23.31 ppm and LC<sub>90</sub> 43.62 ppm. Isman *et al*, (2001) have been reported that three of the essential oils were highly toxic to the cutworm *S. litura*: oils of *Satureia hortensis*, *Thymus serpyllum* and *Origanum creticum*. Oil of *Mentha arvensis* was the only other oil producing at least 50% mortality. An attempt has been made to evaluate the role of medicinal plants essential oils for their larvicidal bioassay against *S. litura*. The results reported in this study open the possibility for further investigations of the efficacy of larvicidal properties of natural product oils.

Baskar et al, (2009) who observed pupicidal activity in different crude extract of Atalantia monophylla against H. armigera. Malarvannan et al, (2008) observed that Argemone Mexicana extracts reduced adult emergence and increased pupal mortality of S. litura. Baskar et al, (2011) they have been reported that bioefficacy of leaf and root extracts of Aristolochia tagala against S. litura Effects on feeding, larvicidal and pupicidal activities and larval-pupal duration were studied. The extracts might inhibit the quantum of neurosecretory protein produced in the Corpus cardiacum. The reduction in the body protein content of treated insects might have been due to inhibition of further synthesis or protein degradation due to the stress. Ayyangar and Rao, (1990) have showed that the azadiractin injected into the final instar larvae of S. litura (µg/g of body weight) significantly reduced the protein content and had no effect on the electrophoretic pattern of haemolymph proteins and esterase. Reduction in the body protein content of S. litura was reported when the insects were treated with juvenoids like methoprene (Sundaramurthy et al, 1978; Kranthi, 1991), extracts of Argemone mexicane, Nerium odorum (1-5%) (Tirupati, 2003) and 25 aza- cholesterol (Suryakala, 1998). An attempt has been made to evaluate the role of medicinal plants extracts for their larvicidal and ovicidal bioassay against Spodoptera litura. The results reported in this study open the possibility for further investigations of the efficacy of larvicidal and ovicidal properties of natural phytopesticides.

# CONCLUSION

*Tinospora crispa* and *Psidium guajava* offers promise as potential bio control agent against *Spodoptera litura* particularly in its markedly antifeedant, larvicidal and ovicidal effect. The selected extracts could be used in laboratory as well as agricultural fields for the control of lepidopteran pests. However, further studies on the identification of the active principals involved and their mode of action and field trials are needed to recommend *Tinospora crispa* and *Psidium guajava* as an insecticidal product used to combat and protect from pests in a pest Control Program.

## Acknowledgements

Authors are gratefully acknowledged to Professor and Head, Department of Zoology, Poompuhar College (Autonomous) and All Higher Authorities for their support and laboratory facilities provided.

## References

- Abbott WS. A method for computing the effectiveness of an insecticide. *Journal of Economic Entomology*, 18, 1925, 265–267.
- Anandan A, Krishnappa K, Govindarajan M, Elumalai K. Antifeedant activity of some plant extracts against the fourth instar larvae of *Spodpotera litura* (hub.). *International Journal of Recent Scientific Research*, 2, 2011, 01-03.
- Anandan A, Krishnappa K, Mathivanan T, Elumalai K,Govindarajan M. Bioefficacy of *Hyptis suaveolens* and *Melochia chorcorifolia* against the armyworm,

Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). International Journal of Current Research, 4, 2010, 117-121.

- Ayyangar GSG, Rao PJ. Changes in haemolymph constituents of *Spodoptera litura* Fab. under the influence of azadirachtin. *Industrial journal of entomology*, 52 (1), 1990, 69-83.
- Baskar K, Kingsley S, Vendan SE, Paulraj MG, Duraipandiyan V, Ignacimuthu S. Antifeedant Larvicidal and pupicidal activities of *Atalantia monphylla* (L.) Correa against *Helicoverpa armigera* (Hubner) Lepidoptera:Noctuidae). *Chemosphere*, 75, 2009, 345–349.
- Baskar K, Sasikumar S, Muthu C, Kingsley S, Ignacimuthu S. Bioefficacy of *Aristolochia tagala* Cham. Against *Spodoptera litura* Fab. (Lepidoptera:Noctuidae). *Saudi journal of biological sciences*, 18, 2011, 23–27.
- Baskaran J, Arshid Gani, Elumalai K, Krishnappa K. Oviposition deterrent activity of plants essential oils against armyworm, *Spodoptera litura* (Fab.) (Lepidoptera: Noctuidae). *International Journal of Current Advanced Research*, 12 (10), 2012a, 53-57.
- Baskaran J, Arshid Gani, Elumalai K, Krishnappa K. Selected plants essential oils against ovicidal activity of Armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). International Journal of Current Advanced Research, 1 (1), 2012b, 18-21.
- Baskaran J, Arshid Gani, Krishnappa K, Elumalai K. Antifeedant activity of certain plants essential oils against armyworm, *Spodoptera litura* (Fab.) (Lepidoptera: Noctuidae). *International Journal of Agricultural Sciences*, 1 (11), 2012c, 39-42.
- Baskaran J, Arshid Gani, Krishnappa K, Elumalai K. Larvicidal activity of selected plants essential oils against Tobacco cutworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). International Journal of Agricultural Sciences, 1(1), 2012d, 13-17.
- Duraipandiyan V, Ignacimuthu S, Gabriel Paulraj M. Antifeedant and larvicidal activities of Rhein isolated from the flowers of *Cassia fistula L. Saudi journal of biological sciences*, 18, 2011, 129–133.
- Elumalai K, Krishnappa K, Anandan A, Govindarajan M, Mathivanan T. Larvicidal and ovicidal efficacy of ten medicinal plant essential oil against lepidopteran pest *Spodoptera litura* (Lepidoptera: Noctuidae). *International Journal of Recent Scientific Research*, 1, 2010a, 001-007.
- Elumalai K, Krishnappa K, Anandan A, Govindarajan M, Mathivanan T. Larvicidal and ovicidal activity of seven essential oil against lepidopteran pest *Spodoptera litura* (Lepidoptera: Noctuidae). *International Journal of Recent Scientific Research*, 1, 2010b, 0021-0027.
- Elumalai K, Krishnappa K, Anandan A, Govindarajan M, Mathivanan T. Certain essential oil against the field pest army worm, *spodoptera litura* (Lepidoptera:Noctuidae). *International Journal of Recent Scientific Research*, 2, 2010c, 056-062.
- Elumalai K, Prabhahar C, Veeraiyan G. Efficacy of *Hyptis* suaveolens (Lamiaceae) and Melochia Chorcorifolia (Sterculiaceae) fractions against Pericalia ricini (Lepidoptera: Noctuidae). Journal of current research, 9(2),2007, 735 – 742.
- Gokulakrishnan J, Krishnappa K, Elumalai K. Certain plant essential oils against antifeedant activity of *Spodoptera*

*litura* (Fab.), *Helicoverpa armigera* (Hub.) and *Achaea janata* (Linn.).(Lepidoptera : Noctuidae). *International Journal of Current Life Sciences*, 2 (1), 2012a, 5–11.

- Gokulakrishnan J, Krishnappa K, Elumalai K. Effect of plant oil formulation against armyworm, *Spodoptera litura* (Fab.), cotton bollworm, *Helicoverpa armigera* (Hub.) and fruit borer, *Earias vitella* (Fab.) (Lepidoptera : Noctuidae). *International Journal of Current Life Sciences*, 2 (1), 2012b,1–4.
- Isman B, Wan J, Passreiter M. Insecticidal activity of essential oils to the tobacco cutworm, *Spodoptera litura*. Fitoterapia. 72, 2001, 65-68.
- Isman MB, Koul O, Lucyzynski A, Kaminski J. Insecticidal and antifeedant bioactivities of neem oils and their relationship to Azadirachtin content. *Journal of agricultural and food chemistry*, 38,1990,1407–1411.
- Jeyasankar K, Elumalai K, Jayakumar M, Raja N, Ignacimuthu S. Evaluation of Solvent Extracts of *Hyptis suaveolens* (Lamiaceae) and *Melochia chorcorifolia* (Sterculiaceae) for use in the Control of Armyworm, *Spodoptera litura* Fab. (Lepidoptera: Noctuidae). *Journal of economic entomology*, 9, 2002, 74–79.
- Kannaiyan S. Insect pest management Strategies: Current trends and future prospects. In: Strategies in Integrated Pest Management (Eds. Ignacimuthu S, Alok Sen.). *Phoenix publishing house PVT Ltd. New Delhi*, 2002.
- Karl Maramorch. Recent advances in medicinal, Aromatic and spice crops, vol. I, pp 23-29, Ray Chandhuri (Ed.) Today's and Tommorow's printers and publishers, New Delhi, 1991.
- Katyal T, Satake M. Environmental pollution. In Kumar R. (Ed.), Introduction to environmental pollution, pp. 1–16. New Delhi, India: Anmol Publications, 1996.
- Kodandaram MH, Dhingra S. Variation in the toxicity of organophosphate insecticides to the field populations of *Spodoptera litura* (Fab.). *Industrial journal of Plant Protect*, 35(1), 2007 53-56.
- Kranthi KR. Effect of hormones on the azadirachtin induced changes in *Spodoptera litura* Fab. Ph.D. Thesis, *Industrial Agricultural Research in India, New Delhi*.1991.
- Krishnappa K, Anandan A, Mathivanan T, Elumalai K, Govindarajan M. Antifeedant activity of volatile oil of *Tagetes patula* against armyworm, *Spodoptera litura* (Fab.) (Lepidoptera: Noctuidae). *International Journal of Current Research*, 4, 2010a,109 -112.
- Krishnappa K, Elumalai K, Anandan A, Govindarajan M, Mathivanan T. Chemical composition and larvicidal and ovicidal activity of essential oil from *Clausena dentata* against armyworm, *Spodoptera litura* (Fab.) (Lepidoptera: Noctuidae). *International Journal of Recent Scientific Research*, 8, 2010b,188-203.
- Krishnappa K, Lakshmanan S, Elumalai K, Jayakumar S. Insecticidal action of certain essential oils against *Callosobruchus maculatus* (Coleoptpera : Bruchidae). *International Journal Current Agricultural Sciences*, 1(1), 2011a,10-14.
- Krishnappa K, Lakshmanan S, Elumalai K, Jayakumar S. Laboratory evaluation of four medicinal plant essential oils as protestants against the cowpea weevil

*Callosobruchus maculatus* (coleoptera : bruchidae). *International Journal Current Agricultural Sciences* 1(1), 2011b, 5-9.

- Krishnayya PV, Rao PJ. Plumbagin effects on *Helicoverpa* armigera (Hubner) (Lepidoptera: Noctuidae) final instar haemolymph protein, -amino acid and fat body protein content. *Industrial journal of Experimental Biology*,33, 1995, 217-221.
- Leatemia JA, Isman MB. Insecticidal activity of crude seed extracts of Annona spp. *Lanium domesticum* and *Sandoricum koetjape* against lepidopteran larvae. *Phytoparasitica*, 32, 2004, 30–37.
- Malarvannan S, Giridharan S, Sekar S, Prabavathy VR, Sudha N. Bioefficacy of crude and fraction of *Argemone mexicana* against Tobacco Caterpillar, *Spodoptera litura* Fab Noctuidae: Lepidoptera. *Journal of Biopesticides*, 22,2008, 55–62.
- Mushtaq Ahmad, Iqbal M, Munir Ahmad. Occurence of insecticide resistance in field populations of *Spodoptera litura* (lepidoptera: Notuidae) in Pakistan. *Crop Protections*, 26 (6), 2007, 809-817.
- Nas MN. In vitro studies on some natural beverages as botanical pesticides against *Erwinia amylovora* and *Curobacterium flaccumfaciensis* subsp. Poin. Tur. J. Agri, 28, 2004, 57–61.
- National Research Council. The Future Role of Pesticides in US Agriculture. Washington, DC: *National and Academic journal of Agricultural Sciences*, 1(1), 2000, 10-14.
- Niranjankumar BV, Regupathy A. Status of insecticide resistance in tobacco caterpillar *Spodoptera litura* (Fabricius) in Tamil Nadu. *Pesticides Research Journal*, 13, 2001, 86-89.
- Pavela R. Insecticidal activity of some essential oils against larvae of *Spodoptera littoralis*. *Fitoterapia*, 76, 2005, 691–696.
- Ramachandran K, Subramaniam B. Potential toxic angiosperms of Asia. pp 17-53. In: Tu AT (Ed.) Toxin related diseases. Poisons originating from plants, Animals and spoilages, oxford and IBH publishing Co. Pvt. Ltd., New Delhi, 1993.
- Raman GV, Srinivasa Rao M, Venkateswarlu B, Srimannarayana G. Field evaluation of custered apple extracts in groundnut crop against *Spodoptera litura* (Fabr.). *Industrial journal of Plant Protections*, 35(1), 2007, 4-77.
- Ranga Rao G, Rabindra RJ, Nandagopal V, Ramesvar Rao. Ground nut entomology. New Delhi: Satish serial publishing house. *Spodoptera litura* (Fab.). 6, 2008, 65-99.
- Rohani A, Chu WL, Saadiyah L, Lee HL, Phang SM. Insecticide resistance status of *Aedes albopietus* and *Aedes aegypti* collected from urban and rural in major towns of Malaysia. *Tropical Biomedicine*, 18 (1), 2001, 29-39.
- Roy B, Amin R, Uddin MN, Islam ATMS, Islam MJ, Halder BC. Leaf extracts of shiyalmutra (Blumea lacera Dc.) as botanical pesticides against lesser grain borer and rice weevil. *International journal of Biological Sciences*, 5, 2005, 201-204.

Sudaramurthy VT, Mushtaq AN, Ahmed MN. Effect of altosid on the blood protein of catterpillar of *Spodoptera litura* Fab. (Lepitoptera : Noctuidae). *Current Science*, 47, 1978, 170-171.

- Suryakala S. Protein Metabolism in the haemolymph and fat body of *Spodoptera litura* Fab. *Industria journal of entomology*, 60(1),1998,95-99.
- Tripathi AK. Phytochemicals in insect-pest management. In: Srivastava RP, editor. Biopesticides and Bioagents in Integrated Pest Management of Agricultural Crops. International Book Publishing Co, Lucknow, India, 2003, 220–67.
- Wattanachai P, Tintanon B. Resistance of *Aedes aegypti* to chemical compounds in aerosol insecticide products in different areas of Bangkok, Thailand. *Communicable Diseases Journal*, 25, 1999,188-191.

### How to cite this article:

Elanchezhiyan. K *et al.* Botanical extracts of tinospora crispa (menispermaceae) and psidium guajava (myrtaceae) against important agricultural polyphagous field pest armyworm, spodoptera litura (fab.) (lepidoptera:noctuidae) *International Journal of Recent Scientific Research Vol. 6, Issue, 2, pp.2703-2709, February, 2015* 

\*\*\*\*\*\*