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In this paper, we introduce α**-closed sets in bitopological spaces. Properties of these sets
are investigated and  seven new bitopological spaces namely, (i,j)- Tα**, (i,j)-
αgTα**,(i,j)- gsTα**, (i,j) –gTα**, (i,j)- gspTα**,(i,j)- gpTα**,(i,j)- gprTα** are
introduced.
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INTRODUCTION
A triple (X, , ) where X is a non-empty set and and
are topologies in X is called a bitopological space and Kelly[7]
initiated the study of such spaces. Levine [10] introduced the
class of generalized closed sets, a super class of closed sets in
1970. In 1985,Fukutake[3] introduced the concepts of g-closed
sets in bitopological spaces. Veerakumar[18] introduced and
studied the concepts of g*-closed sets and g*-continuity in
topological spaces. Sheik John and Sundaram[15] introduced
and studied the concepts of g*-closed sets in bitopological
spaces in 2002.Pauline Mary Helen, et.al[14] introduced g**-
closed sets in topological spaces in 2012.In this paper we
introduce the concepts of (i,j)-α**-closed sets, (i,j)- Tα**
spaces, (i,j)- αgTα** spaces,(i,j)- gsTα** spaces, (i,j) - gTα**
spaces, (i,j)- gspTα** spaces,(i,j)- gpTα** spaces,(i,j)-
gprTα** spaces in bitopological spaces and investigate some
of their properties.

Preliminaries

Definition

A subset A of a topological space (X, ) is said to be

1. a pre-open set[11] if A⊆int(cl(A)) and a pre-closed
set if cl(int(A)) ⊆A

2. a semi-open set [9] if A⊆ cl(int(A)) and a semi-closed
set if int(cl(A)) ⊆A

3. a regular open set[11] if A=int(cl(A))
4. a generalized closed set[10] (briefly g-closed) if cl(A)⊆ U whenever A ⊆ U and U is open in (X, ).
5. an α-open set [12] if A ⊆int(cl(int(A))) and an α-

closed set if cl(int(cl(A))) ⊆ A
6. a semi-preopen set[1] if A ⊆ cl(int(cl(A))) and a semi

– preclosed set if int(cl(int(A))) ⊆ A.
7. an α*-closed set [19] if cl(A) ⊆ U whenever A ⊆ U

and U is α-open in (X, ).

If A is a subset of X with topology ,then the closure of A is
denoted by -cl(A) or cl(A),the interior of A is denoted by -

int(A) or int(A) and the complement of A in X is denoted by
Ac.
For a subset A of(X, , ), -cl(A)(resp. -int(A)) denotes
the closure (resp.interior)of A with respect to the topology .

Definition

A subset A of a topological space (X, , ) is called

1. (i,j) –g-closed[3] if -cl(A) ⊆ U whenever A⊆ U and U
is open in .

2. (i,j) –rg-closed [13] if -cl(A) ⊆ U whenever A⊆ U and
U is regular open in .

3. (i,j) –gpr-closed [5] if -pcl(A) ⊆ U whenever A⊆ U and
U is regular open in .

4. (i,j) –ωg-closed [4] if -cl( –int(A)) ⊆ U whenever A⊆
U and U is open in .

5. (i,j) –ω-closed [6] if -cl(A) ⊆ U whenever A ⊆U and U
is semi open in .

6. (i,j)-gs-closed[17] if -scl(A) ⊆ U whenever A⊆ U and
U is open in .

7. (i,j)-gsp-closed[2] if -spcl(A) ⊆ U whenever A⊆ U and
U is open in .

8. (i,j)-αg-closed[17] if -αcl(A) ⊆ U whenever A⊆ U and
U is open in .

9. (i,j)- gα-closed[8]if -αcl(A) ⊆ U whenever A⊆ U and U
is -open in .

10. (i,j) – g*-closed [15]if -cl(A) ⊆ U whenever A ⊆U and
U is g-open in .

11. (i,j) – *-closed[20] if -cl(A) ⊆ U whenever A ⊆U and
U is -open in .

Definition

A bitopological space (X, , ) is called

1. an (i,j)- / space[3] if every (i,j)-g-closed set is -
closed.

2. an (i,j)- space [17] if every (i,j)-gs-closed set is -
closed.
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3. an (i,j)- space [17] if every (i,j)-gs-closed set is
(i,j)-g-closed.

4. an (i,j)- space [3] if every (i,j)-αg-closed set is
(i,j)-g-closed.

5. an (i,j)- space [17] if every (i,j)-αg-closed set is
–closed.

(i, j) - ** closed sets

Definition
A subset A of a topological space (X, , ) is said to be an (i,
j)- ** closed set if - cl(A) ⊆ U whenever A⊆U and U is
α* open in .

We denote the family of all (i, j)- ** closed sets in(X, , )
by α**C( i, j).
Remark

By setting = in definition (3.1), an (i, j)- ** closed set
is ** closed set.

Proposition

Every – closed subset of (X, , )  is (i, j) - ** closed.
The converse of the above proposition is not true as shown in
the following example.

Example

Let X = {a, b, c}, = {φ, {c}, {a, c}, X}, = {φ, {a}, X}.
The set A = {b} is (1, 2) - ** closed but not - closed.

Proposition

If A is (i, j) - ** closed and - * open, then A is -
closed.

Corollary

If A is (i, j) - ** closed and - * open, then A is -
closed.

Corollary

If A is (i, j) - ** closed and - * open, then A is - *
closed.

Theorem

Every (i, j) - ** closed set is (i, j) – g closed.
The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {c}, {a, b}, X}, = {φ, {a},
X}.The set A = {a, c} is (1, 2) - g closed but not (1, 2) - **
closed.

Theorem

Every (i, j) - ** closed set is (i, j) – rg closed.
The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {a}, X}, = {φ, {a}, {a, b}, X}.
The set A = {a} is (1, 2) - rg closed but not (1, 2) - ** closed.

Theorem

Every (i, j) - ** closed set is (i, j) – gpr closed.

The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {c}, {a, b}, X}, = {φ, {a}, X}.
The set A = {b} is (1, 2) - gpr closed but not (1, 2) - **
closed.

Theorem

Every (i, j) - ** closed set is (i, j) – ωg closed.
The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {c}, {a, b}, X}, = {φ, {a}, X}.
The set A = {a} is (1, 2) - ωg closed but not (1, 2) - **
closed.

Theorem

Every (i, j) - ** closed set is (i, j) – gs closed.
The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {c}, {a, b}, X}, = {φ, {a}, X}.
The set A = {b} is (1, 2) - gs closed but not (1, 2) - ** closed.

Theorem

Every (i, j) - ** closed set is (i, j) – gp closed.
The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {c}, {a, b}, X}, = {φ, {a}, X}.
The set A = {b} is (1, 2) - gp closed but not (1, 2) - **
closed.

Theorem

Every (i, j) - ** closed set is (i, j) – αg closed.
The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {c}, {a, b}, X}, = {φ, {a}, X}.
The set A = {a, c} is (1, 2) - αg closed but not (1, 2) - **
closed.

Theorem

Every (i, j) - ** closed set is (i, j) – gsp closed.
The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {c}, {a, c}, X}, = {φ, {a}, X}.
The set A = {c} is (1, 2) - gsp closed but not (1, 2) - **
closed.

Remark

(i, j) - ** closedness is independent of (i, j) – gα closedness.

Example
Let X = {a, b, c}, = {φ, {a}, X}, = {φ, {a}, {a, b}, X}.
The set A = {a, b} is (1, 2) – α** closed but not (1, 2) - g
closed.
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Example

Let X = {a, b, c}, = {φ,{a, b}, X}, = {φ, {a}, X}. The set
A = {b} is (1, 2) - gα closed but not (1, 2) - ** closed.

Remark

(i, j) - ** closedness is independent of (i, j) – ω closedness.

Example

Let X = {a, b, c}, = {φ, {a}, {b}, {a, b}, X}, = {φ, {a},
{a, b}, X}. The set A = {a, c} is (1, 2) - ** closed but not (1,
2) - ω closed.

Example

Let X = {a, b, c}, = {φ, {c}, {a, b}, X}, = {φ, {a}, X}.
The set A = {a, c} is (1, 2) - ω closed but not (1, 2) - **
closed.

Theorem

If A,B Є α**C(i, j), then (AUB) Є α**C(i, j)

Remark

The intersection of two (i, j) - ** closed sets need not be (i, j)
- ** closed.

Example

Let X = {a, b, c}, = {φ, {a}, X}, = {φ, {a}, {a, b}, X}.
Let A = {a, b} and B = {a, c}. The sets A and B are (1, 2) -

** closed but A∩B = {a} is not (1, 2) - ** closed.

Remark

α**C(1, 2) is generally not equal to α**C(2, 1)

Example

Let X = {a, b, c}, = {φ, {c}, {a, c}, X}, = {φ, {a}, X}.
The set A = {c} ∉ **C(1, 2) but A = {c} Є **C(2, 1).
Therefore, **C(2, 1) ≠ **C(1, 2).

Theorem

If A is (i, j) - ** closed, then – cl(A)\ A contains no non-
empty – α* - closed set.

The converse of the above theorem is not true as shown in
the following example

Example

Let X = {a, b, c}, = {φ, {b}, {c}, {b, c}, {a, c}, X}, =
{φ, {a}, {b, c}, X}. The set A = {b} is not (1, 2) - ** closed.

– cl(A)\ A = {b, c}\{b} = {c} which is not - α – closed.
Therefore, – cl(A)\ A contains no non-empty - α – closed
set and A = {b} is not (1, 2) – α** closed.

Theorem

If A is (i, j) - ** closed in (X, , ), then A is – closed if
and only if – cl(A)\ A is – α* - closed.

Theorem

If A is an (i, j) - ** closed set of (X, , ) such that A ⊆ B⊆ – cl(A), then B is also an (i, j) - ** closed set of (X, ,
)

Theorem
For each element ‘x’ of (X, , ), {x} is either –
α* - closed or X – {x} is (i, j) - ** closed

Theorem

Every (i, j) - * closed set is (i, j) - ** closed.
The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {a}, X}, = {φ, {a}, {a, b}, X}.
The set A = {b} is (1, 2) - ** closed but not (1, 2) - g*
closed.

Remark

(i, j) - ** closedness is independent of (i, j) - * closedness.

Example

Let X = {a, b, c}, = {φ, {a}, X}, = {φ, {a}, {a, b}, X}.
The set A = {b} is (1, 2) - ** closed but not (1, 2) - *
closed.

Example

Let X = {a, b, c}, = {φ, {c}, {a, b}, X}, = {φ, {a}, X}.
The set A = {a, c} is (1, 2) – α* closed but not (1, 2) - **
closed.

The following figure gives the results we have proved.

Applications of ( i , j ) - ** closed sets

As applications of ( i, j ) - ** closed sets, we introduce seven
new bitopological spaces, namely, (i, j) - ** space, (i, j) -

** space, (i, j) - ** space, (i, j) - ** space,

(i, j) - ** space, (i, j) - ** space and (i, j) -

** space.

We introduce the following definitions.

Definition

A bitopological space (X, , ) is said to be an (i, j) - **
space, if every (i, j) - ** closed set is – closed.

Definition

A bitopological space (X, , ) is said to be an (i, j) -

** space, if every(i, j) – αg closed set is  (i, j) - **
closed.
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Definition

A bitopological space (X, , ) is said to be an (i, j) -

** space, if every(i, j) – gs closed set is  (i, j) - **
closed.

Definition

A bitopological space (X, , ) is said to be an (i, j) -

** space, if every(i, j) – g closed set is  (i, j) - **
closed.

Definition

A bitopological space (X, , ) is said to be an (i, j) -

** space, if every(i, j) –gsp closed set is  (i, j) - **
closed.

Definition

A bitopological space (X, , ) is said to be an (i, j) -

** space, if every(i, j) – gp closed set is  (i, j) - **
closed.

Definition

A bitopological space (X, , ) is said to be an (i, j) -

** space, if every(i, j) – gpr closed set is  (i, j) - **
closed.

Theorem

Every (i, j) - / space is an (i, j) - ** space.
The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {c}, {a, b}, X}, = {φ, {a}, X}.
Here all the (1, 2) - ** closed sets are -closed. ∴ (X, , )
is an (1, 2) - ** space.   The set A = {a, c} is (1, 2) –g closed
but not - closed.  Hence (X, , )  is not a (1, 2)- /
space.

Theorem

Every (i, j) - space is an (i, j) - ** space.
The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {c}, {a, b}, X}, = {φ, {a}, X}.
Here all the (1, 2) - ** closed sets are -closed. ∴ (X, , )
is an (1, 2) - ** space.  The set A = {b} is (1, 2) –gs closed
but not - closed.  Hence (X, , )  is not a (1, 2)- space.

Theorem

A space which is both (i, j) - and (i, j) - / is an (i, j) -
** space.

Theorem

Every (i, j) - space is an (i, j) - ** space.
The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {c}, {a, b}, X}, = {φ, {a}, X}.
Here all the (1, 2) - ** closed sets are -closed. ∴ (X, , )

is an (1, 2) - ** space.  The set A = {b} is (1, 2) –αg closed
but not - closed.  Hence (X, , )  is not a (1, 2)-
space.

Theorem

Every (i, j) - space is an (i, j) - ** space.
The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {a}, X}, = {φ, {a}, {a, b}, X}.
Here every (1,2) – gs closed set is (1, 2) - ** closed. ∴ (X, ,

)  is a (1, 2) - ** space.  The set A = {b} is (1, 2) –gs
closed but not - closed.  Hence (X, , )  is not a (1, 2)-
space.

Theorem

Every (i, j) - space is an (i, j) - ** space.
The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {a}, X}, = {φ, {a}, {a, b}, X}.
Here every (1,2) – αg closed set is (1, 2) - ** closed. ∴ (X,

, )  is a (1, 2) - ** space.  The set A = {b} is (1, 2) –
αg closed but not - closed. Hence (X, , )  is not a (1, 2)-

space.

Theorem

Every (i, j) - / space is an (i, j) - ** space.

The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {a}, X}, = {φ, {a}, {a, b}, X}.
Here every (1, 2) – g closed set is (1, 2) - ** closed. ∴ (X, ,

)  is a (1, 2) - ** space.  The set A = {b} is (1, 2) – g
closed but not - closed.  Hence (X, , )  is not a (1, 2)-/ space.

Theorem

A space is both (i, j) - ** space and (i, j) - ** space if
and only if it is an (i, j) - / space.

Theorem

A space (X, , ) which is both (i, j) - ** space and (i,
j) - ** space is an (i, j) - space.

Theorem

A space (X, , ) which is both (i, j) - ** space and (i,

j) - ** space is an (i, j) - space.

Theorem

Every (i, j) - ** space is an (i, j) - ** space.
The converse of the above theorem is not true as shown in the
following example.
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Example

Let X = {a, b, c}, = {φ, {c}, {a, c}, X}, = {φ, {a}, X}.
Here every (1, 2) – g closed set is (1, 2) - ** closed. ∴ (X, ,

)  is a (1, 2) - ** space.  The set A = {c} is (1, 2) – αg
closed but not (1, 2) - ** closed.  Hence (X, , )  is not a
(1, 2)- ** space.
Theorem

Every (i, j) - ** space is an (i, j) - ** space.
The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {c}, {a, c}, X}, = {φ, {a}, X}.
Here every (1, 2) – g closed set is (1, 2) - ** closed. ∴ (X, ,

)  is a (1, 2) - ** space.  The set A = {c} is (1, 2) – gs
closed but not (1, 2) - ** closed.  Hence (X, , )  is not a
(1, 2)- ** space.

Theorem

Every (i, j) - ** space is an (i, j) - ** space.
The converse of the above theorem is not true as shown in the

following example.

Example

Let X = {a, b, c}, = {φ, {c}, {a, c}, X}, = {φ, {a}, X}.
Here every (1, 2) – g closed set is (1, 2) - ** closed. ∴ (X, ,

)  is a (1, 2) - ** space.  The set A = {c} is (1, 2) – gp
closed but not (1, 2) - ** closed.  Hence (X, , )  is not a
(1, 2)- ** space.

Theorem

Every (i, j) - ** space is an (i, j) - ** space.
The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {c}, {a, c}, X}, = {φ, {a}, X}.
Here every (1, 2) – g closed set is (1, 2) - ** closed. ∴ (X, ,

)  is a (1, 2) - ** space.  The set A = {c} is (1, 2) – gsp
closed but not (1, 2) - ** closed.  Hence (X, , )  is not a
(1, 2)- ** space.

Theorem

Every (i, j) - ** space is an (i, j) - ** space.
The converse of the above theorem is not true as shown in the
following example.

Example

Let X = {a, b, c}, = {φ, {c}, {a, c}, X}, = {φ, {a}, X}.
Here every (1, 2) – g closed set is (1, 2) - ** closed. ∴ (X, ,

)  is a (1, 2) - ** space.  The set A = {a} is (1, 2) – gpr
closed but not (1, 2) - ** closed.  Hence (X, , )  is not a
(1, 2)- ** space.

Theorem

A space which is both (i, j) - and (i, j) - / is an (i, j) -

** space.

Theorem

A space which is both (i, j) - and (i, j) - / is an (i, j) -
** space.

Theorem

Every (i, j) - ** space is an (i, j) - space.
Theorem

A space is both (i, j) - space and (i, j) - ** space if

and only if it is an (i, j) - ** space.

Theorem

Every (i, j) - ** space is an (i, j) - space.

Theorem

A space is both (i, j) - space and (i, j) - ** space

if and only if it is an (i, j) - ** space.

The following figure gives the results we have proved.
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