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Magnetorheological (MR) fluids are the fluids that respond to an applied magnetic field with a vivid 
change in rheological behavior. An MR fluid is a free-flowing liquid in the absence of magnetic 
field, but under a strong magnetic field its viscosity can be increased by more than two orders of 
magnitude in a very short time (milliseconds) and it exhibits solid-like characteristics. The strength 
of an MR fluid can be described by shear yield stress. Moreover, the change in viscosity is 
continuous and reversible, i.e. after removing the magnetic field the MR fluid can revert to a free 
flowing liquid. 
This paper describe two quasi-static models, a parallel-plate model and an axisymmetric model, based 
on the Navier-Stokes equation are developed for MR damper behavior. The Herschel-Bulkley visco-
plasticity model is employed to describe the MR fluid field dependent characteristics and shear 
thinning/thickening effects. Simple equations based on these damper models are given which can be 
used in the initial design phase. Effects of geometry on MR damper performance, controllable force 
and dynamic range, are also discussed. Also, describe the complete design and some practical design 
considerations for developing and testing small capacity prototype MR fluid linear vibration damper. 
In design process we come across geometry design to choose an appropriate gap size`g’ and active 
pole length`L’ such that the design requirements of dynamic range and controllable force are 
achieved. Tasks in the design of a magnetic circuit are to determine necessary amp-turns (NI) for the 
magnetic circuit. 
 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
 

 
 
 

 
 
 
 

 
 
 
 
 

  
 
 

 

INTRODUCTION 
 

Magnetorheological (MR) fluids are the suspensions of micron 
sized, magnetisable particles (iron, iron oxide, iron nitride, iron 
carbide, carbonyl iron, chromium dioxide, low-carbon steel, 
silicon steel, nickel, cobalt, and combinations thereof [1]) in an 
appropriate carrier liquid (non-magnetisable) such as mineral 
oil, synthetic oil, water or ethylene glycol. The carrier liquid 
serves as a dispersed medium and ensures the homogeneity of 
particles in the fluid. A typical MR fluid consists of 20-40 
percent by volume of relatively pure, 3-10 micron diameter 
iron particles, suspended in a carrier liquid [2]. They are field 
responsive in nature and the Magnetorheological response of 
these fluids lies in the fact that the polarization is induced in the 
suspended particles by the application of an external magnetic 
field. This allows the fluid to transform from freely flowing 
liquid state to solid-like state within milliseconds, because the 
magnetically dispersed particles attract each other to form 
fibril/chain-like structures along the direction of magnetic field. 
The chain-like structures resist the motion of the fluid and 
increase its viscous characteristics. Such behavior of MR fluid 

is analogous to Bingham plastics (non-Newtonian fluids) 
capable of developing a yield stress [3]. Fig.1 shows the 
synthesized MR fluid (Carrier fluid- Silicone Oil and 
Magnetisable particles-Carbonyl Iron of around 8 microns) for 
40% by volume concentration of iron particles inclusive of 
additives [4]. 
 

 
 

Fig 1 MR Fluid (Courtesy, MJCET) 
 

 A Favorable arrangement consists of particle chains aligned in 
the direction of the applied field and this, in turn, gives rise to a 
strong resistance to applied strains (Fig.2). 
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         Without magnetic field                              With magnetic field 
 

Fig 2 Activation of MR fluid (Courtesy, Lord Corporation, USA) 
 

The yield stress developed within the MR fluid is a function of 
the applied magnetic field. However, once this yield stress is 
exceeded, the behavior of the MR fluid deviates from that of a 
Bingham plastic. This is attributable to the breakdown of the 
chains of particles under the forces of the fluid flow, and results 
in a shear-stress/shear-rate characteristic that is highly non-
linear. When used in a damping device, the result is a damper 
whose force/velocity characteristic is non-linear, but can be 
changed by the way the magnetic field is applied [5]. 
 

Having great potential for engineering applications due to their 
variable rheological behavior, MR fluids find applications in 
dampers, brakes, shock absorbers, suspensions, clutches and 
engine mounts.  
 

MR Fluid Flow in an Annular Duct 
 

The pressure gradient along the flow is resisted by the fluid 
shear stress which is governed by the Navier- Stokes equation  
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where  ru x = flow velocity;  rxr = shear stress; r = 

radial coordinate; x = longitudinal coordinate;  = fluid 

density; and 



x

p
pressure gradient. 

To analyze the quasi-static motion of the fluid inside the 
damper, the fluid inertial can be neglected [6]. In this case, Eq. 
(1) can be reduced to 
 

 
 

dx

dp

r

r
r

dr

d xr
xr 




                                                  
(2) 

 

Note that for oscillatory or unsteady flow, the fluid inertia must 
be taken into account. The solution of Eq. (2) is 
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Where 1D = a constant which can be evaluated with boundary 
conditions. 
 

A typical shear stress diagram, along with velocity profile, for 
MR fluid flow through the annular gap is shown in Fig.3. In 
regions I and II, the shear stress has exceeded the yield stress 
and fluids flow. In region C, because the shears stress is less 
than the yield stress, there is no shear flow; this is often referred 
to as the plug flow region. 
 
 

Modeling Based on the Herschel-Bulkley Model 
 

To account for the fluid shear thinning or thickening effect, the 
Herschel-Bulkley visco-plasticity model is employed. In region 

I, the shear strain rate .0


drdux  Therefore, the shear 

stress given by  
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Fig 3 Stress and velocity profiles of MR fluids through an annular duct. 

 

This is substituted into Eq. (3) and integrated once with respect 
to .r  One obtains  
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by imposing the boundary condition that the flow velocity at 

1Rr   is        .)( 1 px vRu   

In region II, the shear strain rate .0


drdux Thus, the 

shear stress is given by  
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Similarly proceeding in region II with the boundary condition 

  02 Rux at r = 2R  gives 
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Note that the flow velocity is constant in the plug flow region 
because the shear stress is less than the yield stress. Thus, the 
flow velocities at the boundaries of the plug flow region satisfy

 1rux  =  2rux . Combining Eqs. (5) and (8) yields  
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Also the shear stresses rx  satisfy  )()( 101 rrrx    and

)()( 22 rr orx   , therefore 1D  can be determined by using 

Eq. (3) as 
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The expression for the volume flow rate Q given by 
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Because the shear strain rate drrdux /)(  is zero in the plug 

flow region 21 rrr  , Eq. (10) can also be written as   

dr
dr

rdu
rdr

dr

rdu
rvRAvQ x

R

r

x

r

R

pPp

)()( 2

2

1

1

222

1   

  

(11) 

Where PA Cross section area of the piston head, and pv = 

piston head velocity. Substitution of Eqs. (5) and (7) into Eq. 
(11) results in  
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Fig. 4 shows the free body diagram of MR fluids through an 
annular duct. The equation of motion of fluid materials 

enclosed by 1rr   and 2rr   is  
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which yields  

 
Fig 4 Free body diagram of MR fluids through an annular duct 
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In summary, the resulting equations that can be solved 

numerically to determine ,, 21 rr   and the pressure gradient  

dx

dp
 between the two ends of the cylinder using the Herschel-

Bulkley model are given by 
 

 

 
To solve the resulting algebraic equations numerically, a 
method based on the constrained nonlinear least-squares 
algorithm is utilized in conjunction with the cubic polynomial 
interpolation and extrapolation method. The integrals in Eqs. 
(15) and (16) are evaluated using the adaptive recursive 
Newton-Cotes approach. 
 

From Eq. (17) the thickness of the plug flow region can be 
obtained by 
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which varies with the fluid yield stress 0 . Note that the flow 

can only be established when 1212 RRrr  , which 

implies that the plug flow needs to be within the gap otherwise, 
there is no flow. 
The damper force is then computed as  
 

ppAF 
                                                                           

(20) 
 

where  ;)( dxxdpLPPP L   and L effective 

pole length.  The velocity profile can be determined from Eqs. 
(5) and (7) as follows: 
 

 
 

Further, the shear stress diagram can be obtained from Eq. (3) 

Note that when the yield stress 0 =0, there is no plug flow 

region which implies that 21 rr  . Therefore, Eqs. (17) and 

(18) are no longer valid due to the singularity. However, in this 

case, the velocity achieves its maximum at  1rr   where the 

shear stress is zero. By using Eq. (3), the following equations 
can be employed to obtain pressure gradient where yield stress 
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Note that the solution of the MR flow in an annular duct does 

not reduce to that of the pipe flow as 01 r . This is because 

the annular duct model has a boundary condition at 1r ; 

however, there is no boundary condition at r = 0 for the pipe 
flow. 
 

Modeling based on the Bingham model 
 

The Herschel-Bulkley model reduces to the Bingham model 
when the MR fluid parameter m =1. Using Eqs. (15) − (17), the 
resulting equations for the Bingham model are  
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and the velocity profile is given by  
 

 

 

In the absence of magnetic field, the yield stress 00  . The 

pressure gradient can be obtained directly from  
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In general, the yield stress  0  in the axisymmetric model will 

be a function of r. But when ,112 RRR  variation of the 

yield stress in the gap can be ignored, and Eqs. (28)− (30) can 
be further simplified substantially as follows: 
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Note that in this case, the thickness of the plug flow can be 

calculated by using Eq. (19)
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Which is a constant, and only depends on the yield stress and 
pressure gradient of the flow. 
 

MR Damper Design 
 

The design process consists of two stages i.e. Geometry design 
and Magnetic circuit design which are explained in the 
following sections. 
 

MR Damper Geometry Design 
 

Most devices that use MR fluids can be classified as having 
either fixed poles (pressure driven flow mode) or relatively 
moveable poles (direct-shear mode). Diagrams of these two 
basic operational modes are shown in Fig.5. 
 

A third mode of operation known as squeeze-film mode has 
also been used in low motion, high force applications. 
 

The MR fluid damper devices operate in pressure driven flow 
mode (PDF). During motion of the MR damper piston, fluids 
flow in the annular gap between the piston and the cylinder 
housing. For quasi-static analysis of MR fluid dampers, assume 
that: 1) MR dampers move at a constant velocity; 2) MR fluid 
flow is fully developed; 3) a  simple   Bingham   plasticity 
model   may  be employed to describe the MR fluid behavior. 
 

 
 

Fig 5 Basic operational modes for controllable fluid devices 
 

Conform the Bingham plasticity model the flow is governed by 
(Bingham’s equations): 
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(in the absence of magnetic field 
 ). 

 

In Eq. (1), H is the magnetic field, 
  is the fluid shear rate,

is the plastic viscosity (i.e. viscosity at H=0), and G is the 
complex material modulus. 
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Fig.3 provides a typical shear stress diagram and velocity 
profile of the Bingham plastic shear flow in the annular gap. In 
regions I and II, the shear stress has exceeded the yield stress; 
therefore, the fluid flows. In region C, the shear stress is lower 
than the yield stress, so no shear flow occurs; this is often 
referred to as the plug flow region. 
 

In an analogous fashion to Eqs. (37), the pressure drop 
developed in a device based on pressure driven flow mode is 
commonly assumed to result from the sum of a viscous 

component P and a field dependent induced yield stress 

component P . This pressure may be approximated by: 

g
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Where L, g and w are the length, gap and width of the flow 
channel between the fixed poles, Q is the volumetric flow rate, 

  is the fluid viscosity with no applied field and y  is the 

yield stress developed in response to an applied field. The 
parametric c has a value ranging from a minimum value of 2 

(for 1 ) to a maximum value of 3 (for 100 ). Where   

is control ratio or dynamic range (  P/P ). 

 

The volume of MR fluid exposed to the magnetic field and thus 
is responsible in providing the desired MR effect is named the 
minimum active volume V: 
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Where k=12/c² is a constant and V=L·w·g can be regarded as 
the necessary active fluid volume in order to achieve the 

desired control ratio   at a required controllable mechanical 

power level mW ( mW = Q · P ). 
 

By noting V=L·w·g, and mW = Q · P , Eq. (39) can be 

further manipulated to give:   2gw  Q
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This equation provides geometric constrains and the necessary 
aspect ratios for MR devices based on MR fluid properties, the 
desired control ratio or dynamic range, and the device flow (or 
speed). 
 

MR fluid devices are usually designed such that MR fluid can 
be, or nearly can be, magnetically saturated. It is under this 
condition that the fluid will generate its maximum yield stress

y . However, the value y that is used in the above equations 

should be chosen from the MR fluid specification sheets to 
reflect the anticipated operating condition. 
 

Based on the operational model for pressure driven flow, 
plotted in Fig.5, is possible to determine the effect of geometry 
on MR damper performance, controllable force and dynamic 
range D. 
 

As illustrated in Fig.6, the damper resisting force can be 

decomposed into a controllable force F  due to controllable 

yield stress y  and uncontrollable force .Fuc  The 

uncontrollable force includes a viscous force F  and a friction 

force .Ff  By definition, the dynamic range is the ratio between 

the total damper output force F and the uncontrollable force

ucF : 
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In Eq. (43) parameter c is bounded to the interval [2.07, 3.07]. 
   

The controllable force [Eq. (43)] can be rewritten: 
 

 
Fig 6 Force decomposition of MR dampers 
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which indicates that the controllable force range is inversely 
related to the gap size g. To maximize the effectiveness of MR 
damper, the controllable force should be as large as possible; 
therefore, a small gap size is required. However, a small gap 
size decreases the dynamic range. 
 

The expression of dynamic range D in Eq. (41) can be rewritten 
using Eqs. (42) and (43): 
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At Institute of solid mechanics, the quasi-static model 
developed previously has been useful for designing a new MR 
fluid damper for experimental study.  
 

The given data for prototype MR fluid damper are: 
 

 Controllable mechanical power level ;W200Wm   
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 Maximum piston speed max
pv 0.2 m/s; 

 Minimum piston speed 
min
pv   0.05 m/s; 

 Stroke    0.03 m; 

 Inside diameter of cylinder cyld 0.04 m; 

 Piston shaft diameter shd 0.01 m; 

 Maximum operating temperature   ;C70
 

 

The MR fluid used for prototype damper is MRF–132DG 
(Lord Corporation, USA Product). The properties of this MR 
fluid are presented in Fig.7: 
 

From Fig.7, one can obtain the following parameter values: 
 

 Shear rate: ;s1000 1   

 Maximum magnetic field: ;m/kA250H   

 Off-state plastic viscosity:  0.107Pa-s; 

 Yield stress: y  46.5kPa; 

 
 

Fig 7 Rheological properties of MRF–132DG 
 

The design of MR fluid dampers assumes two main stages: 1) 
Hydraulic circuit design, and 2) Magnetic circuit design. Both 
stages presume an iterative calculus. 
 

For the hydraulic circuit design the gap dimension g derives 
from condition of maximum dynamic range D. 
 

The calculus relations for parameters in Eq. (44) are: 
 

  
;

4

dg2d
A

2
sh

2

cyl

p


                                          (45) 

  ;gdw cyl                                                                  (46)   
 

;
gw4.0Q12

Q12
07.2c

y
2 


                        (47) 

 

;vAQ pp                                                                        (48) 
 

The rate of dynamic range D Vs gap dimension g is plotted in 
Fig.8 which gives g 0.001 m for D 40. 
 

With these values we have determined the dimensional and 
functional parameters of hydraulic circuit:     
                     

m1225.0w  , 
24

P m1005.1A  ,  
 

smQ /1025.5 35 , 137.2c  ,                                                                                             

 
 

Fig 8 Dynamic range D Vs. gap dimension g 
 

Pa1077.3P 6  , Pa1005.0P 6  , 

73 , ,m1049V 37
m

  

Pa1082.3P 6 , N4012APF P  , 

W198Wm  , N3959APF P   . 
 

MR Damper Magnetic Circuit Design 
                   

 
 

Fig 9 Typical Magnetic circuit 
  

For completeness, the description of the magnetic circuit 
design described in the Lord Corporation Engineering Note 
(1999b) is summarized in this section. The MR damper 
magnetic circuit typically uses low carbon steel , which has a 
high magnetic permeability and saturation, as a magnetic flux 
conduit to guide and focus magnetic flux into the fluid gap. 
Tasks in the design of a magnetic circuit are to determine 
necessary amp-turns (NI) for the magnetic circuit. An optimal 
design of the magnetic circuit requires to maximize magnetic 
field energy in the fluid gap while minimize the energy lost in 
steel flux conduit and regions of non-working areas. The total 
amount of steel in the magnetic circuit also needs to be 
minimized. However, sufficient cross-section of steel must be 
maintained such that the magnetic field intensity in the steel is 
very low. 
 
The typical design process for a magnetic circuit is as follows:  

1. Determine the magnetic induction fB  in the MR fluid 

to give desired yield stress y  (Fig.10 (a)). 

For y  46.5kPa, fB =0.85T.                                         
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2. Determine the magnetic field intensity fH  in the MR 

fluid (Fig.10 (b)). 
 

For fB =0.85T, fH =250kA/m. 

3. The total magnetic induction flux is given by Φ=

ff AB , where fA  is effective pole area including 

the fringe of magnetic flux. Because of the continuity 
of magnetic induction flux, the magnetic induction 

sB  in the steel is given by  
 

s

ff

s

s
A

AB

A
B





                                                         (49) 

 

fA =1.35×
310 

m², 
3

S 1019.1A  m² and sB =0.96T. 

4. Determine the magnetic field intensity sH  in the steel 

using Fig.10(c). 

For sB =0.96T, sH =0.46kA/m. 

5. By using Kirchoffs’s Law of magnetic circuits, the 
necessary number of amp-turns (NI) is  

 

NI=∑ LHgHLH sfii                                               (50) 

 

 
Fig 10 Basic Magnetic circuit design procedure (Engineering Note 1999b) 

 

Where L= length of steel path which is equal to cs LL 
(Fig.11). 
NI is calculated as 276 amp-turns. Taking I=2A, yields N=138. 

 
 

Fig 11 Magnetic Circuit of MR Damper 
 

Other effects should also be considered during the circuit 
design process, such as non-linear magnetic properties of MR 
fluid and steel; possible losses at junctions and boundaries; 
limits on voltage, current, and inductance; possible inclusion of 
permanent magnet for fail-safe operation; and eddy currents. 
 

The construction solution selected for proposed prototype MR 
fluid damper is presented in Fig.12, which is to be tested for its 
performance and compare with theoretical results. 
 

 
 

Fig 12 Prototype damper 
 

CONCLUSIONS 
 

In this work, a fundamental understanding of the dynamic 
behavior of Magnetorheological (MR) fluids has been 
developed through annular duct using Navier- Stokes equation 
based on the Herschel-Bulkley and Bingham models for Non-
Newtonian fluid flows. These models are useful for further 
designing the MR Fluid Damper for structural vibration 
mitigation. 
 

Commonly, the MRF damper piston does not remain in center 
during operation. This may be due to either manufacturer error 
or side loads due to inappropriate installation (which may result 
in non uniform temperature increases and local overheating, 
bearing malfunction and leakage, or scratching of the insulation 
and causing a short in the magnetic coil). 
 

To overcome this problem, two end collars made up of bronze 
are installed on either side of proposed MR fluid damper shown 
in Fig.12. Moreover, bronze is softer than steel and will not 
scratch the cylinder surface.  
 

References 
 

1. M. Kciuk, S. Kciuk and R. Turczyn, Magnetorheological 
characterization of   carbonyl iron based suspension, 
Journal of Achievements in Materials and 
Manufacturing Engineering, 2009: 33, pp.135-141. 

2. Shinichi KAMIYAMA, Kazuo KOIKE and Zhi-
ShanWANG, Rheological Characteristics of Magnetic 



Sailaja G., Flow Modeling and Design of Mr Fluid Damper for Vibration Suppression 
 

33938 | P a g e  

Fluids, JSME International Journal, 1987: 30 (263), 
pp.761-766. 

3. Yukio Tomita, Flows of Non-Newtonian Fluids, JSME 
International Journal, 1987: 30 (270), pp.1877-1884. 

4. N. Seetharamaiah AND G. Prasannakumar, 
Characterization Of Synthesized Magnetorheological 
(Mr) Fluids, Proceedings of The Second International 
Conference On Advances In Materials Processing And 
Characterisation, 2013: 2, PP.1027-1035. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Gheorghe GHITA, Marius GIUCLEA and Tudor 
Sireteanu, Modeling of Dynamic Behavior of 
Magnetorheological Fluid Damper by Genetic 
Algorithms Based Inverse Method, The 6th International 
Conference on Hydraulic Machinery and 
Hydrodynamics, Timisoara, Romania. 2004: pp.21-22. 

 

How to cite this article:  
 

Sailaja G.2019, Flow Modeling and Design of Mr Fluid Damper for Vibration Suppression. Int J Recent Sci Res. 10(07), pp. 
33931-33938. DOI: http://dx.doi.org/10.24327/ijrsr.2019.1007.3784 

******* 


