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The starting point of this research is a contradiction of the conventional Schrödinger equation with 
one of the fundamental Hamilton equations – a minus sign, essential for the energy conservation, is 
missing. The full agreement of the Schrödinger equation with the Hamilton equations is obtained 
only when the Hamiltonian in the time dependent phases of the two wave packets representing a 
quantum particle in the coordinate and momentum spaces is replaced by its Lagrangian. We consider 
the Universe as a distribution of ‘intrinsic’ matter, characterized by curvilinear time-space 
coordinates, curved in a system of other coordinates, by an ‘extrinsic’ matter, with a density as 
another matter coordinate. According to the general theory of relativity, any acceleration of an 
extrinsic matter differential element in an ‘extrinsic’ (non-gravitational) field is perpendicular to the 
velocity. This characteristic describes a matter propagation in planes perpendicular to the velocity. 
This dynamics can be described by two Fourier conjugated wave packets, with a condition of 
quantization asserting that the space integral of the matter density is equal to the rest mass in the 
coefficient of the time dependent phases of these wave packets, which, according to their group 
velocities, appears as a Lagrangian. In this framework, fundamental physical problems are 
reconsidered by using the general theory of relativity in Dirac’s formulation, for the description of 
the quantum dynamics. Although in this paper we develop an essentially relativistic theory, in the 
proper system of a quantum particle we consider only small velocities of its differential matter 
elements, otherwise this particle being shattered in space, as the notion of ‘particle’ has no more any 
sense. We show that the Schwarzschild solution with a singularity is only an approximate one, since 
the dynamics of a differential matter element is always joined to the dynamics of the other matter 
elements of a quantum particle, and of other quantum particles always present in the realistic cases. 
These matter elements perturb the gravitational field considered for the Schwarzschild solution, 
leading to a penetrability of the boundary of a black hole, from the outside for an absorption rate, 
and from the inside, for an evaporation rate. We consider black particles with phases including only 
relativistic Lagrangians depending on the rest masses, and ‘visible’ particles, including other 
interaction terms depending on ‘charges’. We obtain the Lorentz force and the Maxwell equations as 
properties of a field interacting with a quantum particle, relativistic quantum equations with spin 
interaction, the spin of the extrinsic matter of a quantum particle, and the spin of the intrinsic 
component of this particle, we call ‘graviton’. 
 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 
 

 
 
 

 
 

 
  
 

 
 

INTRODUCTION 
 

In the conventional quantum mechanics [1]-[3], a quantum 

particle with an energy E  is generally described by a 
Schrödinger equation 

       0i , , , ,E E Er t H p r r t E r t
t
  


 



    
 ,            (1)                                                                            

depending on a Hamiltonianequal to this energy, 

     0 ,H p r T p U r E  
   

,                                       (2)                                                                          

as a sum of the kinetic energy  T p


with the potential energy 

 U r


.The general solution of this equation is a wave packet 

of the form 

 
 

 
    i

3
03/2

1
, , d

2

pr T p U r t

E r t p t e p 


   
 

  


  


,        (3)                                                                      

with the group velocity according to the first Hamilton 
equation 
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  0d

d

H
r T p

t p p


 

 

 
  .                                                    (4) 

                                                                          

However, we notice that the Fourier conjugate wave packet in 
the momentum space, 
 

 
 

 
    i

3
0 3/2

1
, , d

2

pr T p U r t

Ep t r t e r 


    
 

  


  


,      (5)   

                                                                           

has a group velocity, 
 
 

 0d

d

H
p U r

t r r

 
 

 

 
  ,                                                 (6) 

                                                                            

contradictory to the second Hamilton equation 
 

 0d

d

H
p U r

t r r

 
   

 

 
  .                                           (7)                                                                                       

 

A minus sign is missing, as this minus is essential for the 
energy conservation, 
 

0 0d d d
0

d d d

H HE
r p

t r t p t

 
  

 

 
  .                                  (8) 

                                                                                                         

 
We conclude that for a correct description of the quantum 
dynamics, in the wave packets (3) and (5) the Hamiltonian 
must be replaced by the Lagrangian [4]-[6]:  
 

           0 0, ,H p r T p U r L r r T p U r    
        .           (9)                                                               

 

We obtain wave functions in full agreement with the Hamilton 
equations (4) and (7), 
 

 
 

 
    

 
 

 

 
 

 
    

 
 

  

0

0

i i
,

3 3
0 0 03/2 3/2

i i
,

3 3
0 0 03/2 3/2

1 1
, , d , d

2 2

1 1
, , d , d .

2 2

pr T p U r t pr L r r t

pr T p U r t pr L r r t

r t p t e p p t e p

p t r t e r r t e r

  
 

  
 

       

      

 

 

 

 

     
 

     
 

    

 

    

 

(10) 

 

These equations suggest a relativistic description of the 
quantum dynamics, by wave functions with time dependent 
phase elements of the form [5]-[6], 
 

 
2

2
0 0 02

d 1 d d
r

L r t M c t M c s
c

    

 .                  (11)                                                                               

Based on this equation, we reformulated the relativistic 

principle of the invariance of the time-space interval ds as a 
relativistic quantum principle of invariance of the time 
dependent phase of the wave function of a quantum particle 
[6]-[9]. From the dynamical equations as group velocities of 
the wave functions in the coordinate and the momentum 
spaces, we obtained the Maxwell equations, the spin 
interaction, and Dirac’s relativistic equations with rest mass, of 
a quantum particle in electromagnetic field. 
 

In this paper we consider the more general case of a Universe 
as a distribution of ‘intrinsic’ matter characterized by time-
space coordinates, and curved in a system of other coordinates 
by‘extrinsic’ matter distributions, with other coordinates, of 
mass and other possible charges. We believe that such a 

representation enables a better understanding of the open 
quantum physics [10]-[14], as a unitary dynamics of a matter-
field system which, in this way, takes the form of a continuous 
distribution of matter – some matter excitations, as the photons 
or the phonons, can be hardly understood as ‘quantum 
particles’ with coordinate probabilities described by ‘wave 
functions’. In section 2, according to the general theory of 
relativity [15], we find that any acceleration of a matter 
element in a non-gravitational field is perpendicular to the 
velocity. We consider a positively defined density of matter, 
proportional to the square of a function of distribution. Taking 
into account a Fourier series expansion of this function, called 
‘wave function’, we define the quantization condition as an 
equality of the total mass, as the space integral of the density, 
with the rest mass in the Lagrangian of the time dependent 
phase of this wave function. In section 3, we consider a 
quantum particle with an electric charge, interacting with an 
electromagnetic field described by a vector potential 
conjugated to the coordinates, and an electric potential 
conjugated to time. From the terms of the electromagnetic 
interaction in the time dependent phase of a quantum particle, 
we obtain the Lorentz force as a function of the electric and 
magnetic fields, defined as functions of the two 
electromagnetic potentials, and the Maxwell equations for these 
fields. In section 4, we consider the Lagrangian as a function of 
the momentum-velocity product and Hamiltonian, and obtain 
relativistic equations including the rest mass and the particle 
momentum and velocity. For an energy eigenvalue, we derive 
an online are equation with as pin interaction which, for a non-
relativistic velocity, takes the linear form of the conventional 
Schrödinger equation with the spin interaction. In section 5, we 
derive the Schwarzschild solution for the metric tensor in a 
constant central gravitational field, and show that, due to the 
variations of this field induced by the other matter elements of 
a quantum particle and of other particles always present in the 
realistic cases, the boundary of a black hole can be passed in 
the both directions. In section 6, we obtain dynamic equations 
for a quantum particle in a gravitational wave. For the time-
space component of the extrinsic matter of a quantum particle, 
called graviton, we obtain a proper rotation with a spin 2, as the 
density dynamics of the matter in the time-space coordinates of 
this particle includes a proper rotation with a half-integer spin 
for an anti-symmetric wave function (Fermion), or an integer 
spin for a symmetric wave function (Boson), according to the 
spin-statistics relation. In section 7, we give a summary. 
 

Quantum Particle as a Distribution of Matter 
 

In a time-space reference system S  with the coordinates  
 

     0 1 2 3 0, , , , ix x x ct x x x x ct x     ,        (12)                                                                                  

 

we consider a distribution of extrinsic matter with a positively 

defined density by a distribution function  ,ix t , 

 

   
2

, ,i ix t M x t  ,                                                 (13)                                                                           

 

with the normalization condition 

 
2

1 2 3, d d d 1ix t x x x  ,                                              (14)                                                                           

And the total mass M , 



Eliade Stefanescu., Theory of Relativity and Quantum Mechanicsas Complementary Parts of A Unitarytheory

   
2

1 2 3 1 2 3, d d d , d d di ix t x x x M x t x x x M   
        

In the case of the special relativity, of an inertial system

of another time-space reference system S   with parallel axes,
 

    0 1 2 3 0, , , ,x x x ct x x x x ct x             
                                                                          

moving with a constant velocityV  in the direction

(Fig. 1), 
 

 
Fig 1A system of coordinates , in a system of coordinates  with parallel axes, 

moving with a velocity  in the  - direction.
 

the coordinate transformation has a simpler form:
 

 
 

0 0 0 1

1 1 0 1

2 2

3 3

,

,

,

x x x x

x x x x

x x

x x

 

 





 

 

 




                                                              

(17)                                                                       
 

with the relativistic condition of the invariance of any time
space interval, 
 

2 2 2 2 2 2 2 22 0 1 2 3 2 0 1 2 3d d d d d d d d d ds x x x x s x x x x           
                                         

From these expressions, we obtain the coordinate 
transformation 
 

0 1 2 0 1 1
,0 ,0

1 1 0 1 2 1
,0 ,0

d 1 d d

d d 1 d

x x x x x

x x x x x

 
 

 
 

   


  

                             

 

with the determinant 1, and the reverse transformation
 

0 1 2 0 1 1
,0 ,0

1 1 0 1 2 1
,0 ,0

d 1 d d

d d 1 d .

x x x x x

x x x x x


 


 

   


   

                              

                                                                                                  
 

We notice that from the second expression (20) we 

physical valueV  as a function of the coefficients of 
transformation: 
 

1

11
,0

0 1 2
d 0 ,0

d

d 1x

xV x

c x x



 

 


.                                 

 
With the expression 
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1 2 3 1 2 3, d d d , d d dx t x x x M x t x x x M  .         (15) 

relativity, of an inertial system S , and 

with parallel axes, 

, , , , ix x x ct x x x x ct x             ,           (16) 

in the direction
1 1x x �  

 

system of coordinates , in a system of coordinates  with parallel axes, 
direction. 

the coordinate transformation has a simpler form: 

                                                              

                                                                        

with the relativistic condition of the invariance of any time-

2 2 2 2 2 2 2 22 0 1 2 3 2 0 1 2 3d d d d d d d d d ds x x x x s x x x x            .         (18)   

From these expressions, we obtain the coordinate 

                                 (19)         

transformation 

                       (20) 

                                                                                                   

We notice that from the second expression (20) we obtain the 

as a function of the coefficients of this 

.                                            (21)                                                                                  

2

2 1 2
,0

1
1

1

V

c x 

 


,                                                             

                                                                         

we obtain the transformation coefficient
 

1 2
,0 2

2

1
1

1

x
V

c

 



.                                                      

 

With this coefficient and the expression (21) for the other 
coefficient of the transformation (19),
coordinates of a distribution of matter (13),
Lorentz transformation 
 

1

2

2

2

1
1 2 2 3 3

2

2

d d
d

1

d d
d , d d , d d .

1

V
t x

ct
V

c

x V t
x x x x x

V

c





  


 

 

  



 

In the case of the general relativity, the

described by a time-space interval
 

2 2d d d d d / ds g x x x x s  
  

                                                                                                   

By dividing the square of this interval by itself, we obtain the 
fundamental relation of the relativistic dynamics of a 
differential matter element, 
 

1g x x 
   ,                                                                   

                                                                                                                                 

for its velocity in its proper time,
 

d

d

x
x

s


  .                                                                        

                                                                                                                             

Since any covariant derivative of the metric tensor is null [15],
 

: 0g   ,                                                                           
                                                                                                                             

from the covariant derivative of the fundamental relation (26) 
we obtain the relation  
 

: 0x x
    ,                                                                           

(29) 
                                                                                                                             

which means that any covariant derivative of the velocity is 
perpendicular to this velocity. On the other hand, we notice that 

any acceleration A
 induced by an external (non

field, arises as an additional term to the geodesic equation of 
the inertial-gravitational dynamics,
 

,x x x x A     
       .                                                  

 

In this way, we find that as in a gravitational field a differential 
matter element gets only an ordinary acceleration, the covariant 
acceleration being null, in an external field it gets also a 
covariant acceleration: 

33306 | P a g e  

                                                                                   

,                                                             (22) 

we obtain the transformation coefficient 

.                                                      (23)                                                                      

With this coefficient and the expression (21) for the other 
coefficient of the transformation (19), for the intrinsic 

ates of a distribution of matter (13), we obtain the 

1 2 2 3 3d , d d , d d .x x x x x   

          (24)                                                                            

In the case of the general relativity, the matter dynamics is 

space interval ds of the form 

2 2d d d d d / ds g x x x x s  
.                           (25) 

                                                                                                    

of this interval by itself, we obtain the 
fundamental relation of the relativistic dynamics of a 

                                                        (26) 
                                                                                                     

for its velocity in its proper time, 

                                                            (27) 

                                                                                                                                   

derivative of the metric tensor is null [15], 

                                                       (28) 
                                                                                                                                

from the covariant derivative of the fundamental relation (26) 

                                                                          

                                                                                                                                                 

which means that any covariant derivative of the velocity is 
perpendicular to this velocity. On the other hand, we notice that 

induced by an external (non-gravitational) 
field, arises as an additional term to the geodesic equation of 

gravitational dynamics, 

.                                                  (30)                             

in a gravitational field a differential 
matter element gets only an ordinary acceleration, the covariant 
acceleration being null, in an external field it gets also a 
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 , :A x x x x x      
         .                                        (31)   

                                                                     

From the scalar product of this expression with the velocity, 
and the general equation (29), we find that the acceleration 
induced by an external field is perpendicular to the velocity, 
 

:
0

0.A x x x x  
                                                            (32) 

 

This means that matter moves in planes perpendicular to the 
velocity, as in Fig. 2 of a particle in a central field. 
 

 
 

Fig 2 Matter distribution in a central field, accelerating this matter in planes 
perpendicular to the velocity. 

 

In this case, that distribution function  ,ix t  of the density 

(13), 
 

   
2

, ,i ix t M x t  ,                                                (33) 

 
with the normalization condition (14), can be considered as a 
Fourier series expansion in space, 
 

 
 

   0
i

,

1 2 33/2

1
, , d d d

2

j
jP x L x x t

i
jx t P t e P P P

 

 


 
  





,        (34)             

 

with a relativistic Lagrangian describing the dynamics of a 

particle with the rest mass 0M , 
 

  2
0 0,L x x M c g x x   

    ,                                  (35) 

                                                                                                      

and the momentum 
 

 0 ,
i i

L x x
P

c x

 







.                                                            (36) 

                                                                          

From the reverse Fourier transform in the conjugated 
momentum space 

 
 

   0
i

,
1 2 3

3/2

1
, , d d d ,

2

j
jP x L x x t

i
jP t x t e x x x

 

 


  
  






              (37)                                                      

we obtain the group velocity as a Lagrange equation  
 

 0

0

,d d

d d
i i i

L x x
P c P

t x x

 
 




.                                   (38)  

                                                                                              

We notice that the Fourier series expansions (34) and (37), with 
the normalization condition (14) and the Lagrangian (35), 
describe the dynamics of the whole distribution of matter (33) 
only if 
 

0M M ,                                                                            (39) 
                                                                                                                                             

we call quantization condition, while a distribution of extrinsic 
matter (33) satisfying this condition is called quantum 
particle.This means that a differential matter element of mass

dM cannot exist isolated in Universe, but only as part of a 
quantum particle,which consists in a distribution of matter (33) 
described by wave functions of the forms (34) and (37), with 
the quantization condition (39). 
 

Quantum Particle in Electromagnetic field 
 

In the previous section we mainly considered a black quantum 

particle characterized only by a rest mass 0M  interacting only 

with a gravitational field, as a time-space deformation, 

described by the metric tensor g . Here we consider a 

quantum particle with an electric charge e ,described by the 
wave functions  
 

 
 

   

 
 

 
 

i
, ,

3

3/2

i
, ,

3

3/2

1
, , d

2

1
, , d .

2

P r L r r t t

P r L r r t t

r t P t e P
h

P t r t e r
h

 


 


 
 

  
 









   


   


 

  

                (40)  

                                                                           

By this charge, the particle interacts with an electromagnetic 

field described by the vector potential  ,A r t
 

 conjugated to 

the spatial coordinates, which is in agreement with the 

Aharonov-Bohm effect [16], and the scalar potential  U r


 

conjugated to time, 
 

     
22

2
10, , d d , d dr

c
L r r t t M c t eA r t r eU r t   


     .        (41) 

                 

For a quantum particle much smaller than the field non-
uniformities, this expression can be linearized in the wave 
function phase,  
 

     
22

2
10, , M c ,r

c
L r r t eA r t r eU r   


      .           (42)   

                                                                    

For the canonical momentum 
 

      
2

2

0

1 mechanical electromagnetic
momentum momentum

, , , ,
r

c

M r
P L r r t eA r t p eA r t

r 


    




        
,           (43)                                            

composed of a mechanical momentum and an electromagnetic 
momentum, we obtain the Lagrange equation as the group 
velocity of the Fourier transform of the particle coordinate 
wave function (40), 

ix
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   d d
, , , ,

d d
P L r r t L r r t

t t rr

 
 



      .                (44)        

                                                                               

With the Lagrangian (42) and the momentum (43) of a 

quantum particle in a time independent electric potential  U r


, under the action of an electromagnetic radiation with the time 

dependent vector potential  ,A r t
 

,we obtain the Hamiltonian 

as a constant function we call the particle energy in electric 
potential, 
 

   

     

   

2 2
20

0 22

2
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, 1 ,
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, .
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eA r t r M c eA r t r eU r

cr

c

M c
eU r E r r

r

c

 

 
       
 
 

  



     

        


  


         (45)    

                           

At the same time, in (43) we distinguish the mechanical 
momentum 
 

 
2

2

0

1

,
r

c

M r
p P eA r t



  

  
,                                               (46) 

                                                                                                                   

as the first term of the Hamiltonian (45) takes the form of a 
function of this momentum, 
 

2 2 2 2
2 2 2 2 20 0
0 02 2

2 2
1 1

M c M r
M c p M c

r r

c c

   

 

 
  

.       

                                                                                              (47) 
 

With these expressions, we obtain the Hamiltonian (45) as a 

function of the mechanical momentum p


, or of the canonical 

momentum P


, and the coordinates r


, 
 

       
2

2 2 2 2 2
0 0, , ,H P r t c M c p eU r c M c P eA r t eU r        

      .    (48) 

 

At the same time, from (46) we obtain the mechanical force 
acting on a quantum particle with the wave functions (40) and 
the Lagrangian (42), 
 

     
d d d d

, , ,
d d d d

eF p P e A r t P e A r t e r A r t
t t t t t r

  
       

  

         
.       (49) 

      

From the group velocity of the second equation (40) with the 
Lagrangian (42), we obtain the first term of this force, 
 

     
d

, , ,
d

P L r r t e A r t r e U r
t r r r

  
      

         .          (50)     

                                                                  

We notice that from the vector formula  
 

     , , ,r A r t rA r t r A r t
r r r

                   

                 (51)       

the first term of the expression (50) gets a form including the 
last term of equation (49). In this way, with the electric and 
magnetic fields,  

     

   

, ,

, , ,

E r t U r A r t
r t

B r t A r t
r

 
  

 


 



   


  


                                         (52) 

                                                                               

the mechanical force (49) takes the form of Lorentz’s force: 
 

   , ,eF eE r t er B r t  
     .                                          (53)   

                                                                                                        

From equations (52), we obtain the Faraday-Maxwell law of 
the of the electromagnetic induction, as a curl of the electric 
field induced by a time variation of the magnetic field,  
 

   , ,E r t B r t
r t

 
  

 

  
 ,                                           (54) 

                                                                                                     

and the Gauss-Maxwell law of the null divergence of the 
magnetic field, 
 

 , 0B r t
r






 
 .                                                                 (55) 

                                                                                                                                  

With the gouge condition 
 

 , 0A r t
r






 
 ,                                                                 (56) 

                                                                                                     

we obtain the Gauss-Maxwell law of the divergence of the 
electric field  
 

   
2

2
,E r t U r

r r

 
 

 

  
  ,                                             (57) 

                                                                                                      

with the charge density as a source of this field, 
 

     
2

0 0 2
,r E r t U r

r r
  

 
  

 

  
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                                                                                               (58) 
 

For a uniform distribution of the electric charge,  
 

   0 , 0r E r t
r r r
 

   
     

 
   ,                              (59) 

                                                     

from the curl of the Faraday-Maxwell law (54) we obtain the 
Laplacian of the electric field induced by a time variation of the 
curl of magnetic field, 
 

   
2

2
, , 0E r t B r t

r t r

  
  

  

  
  .                               (60) 

                                                                                                         

On the other hand, we notice that an electromagnetic field, 
interacting with a quantum particle wave packet (40), with the 
cut-off velocity c , must propagate with the same velocity c  
(Fig. 3), otherwise the particle and the field not interacting one 
another during the whole evolution. 
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Fig 3 Wave packet of a quantum particle with the cut-off velocity, interacting 
with an electromagnetic field propagating with the same velocity, called ‘light 

velocity’. 
 

In a material structure with a uniform mobile

a field propagating with a velocity c , and a decay rate

the interaction of this field with the electric charge, is
by a wave equation 
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    


                                     

From (60) and (61), by eliminating the Laplacian of the electric 

field and a time integration with an integration constant

, we obtain the Ampère-Maxwell law, 
 

     0 0

0

1
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

                                                         

depending on and the light velocity

0 0

1
c

 


can be considered of the more specific form with a total field 
variation in time, 
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1 d
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d
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         


                   

including the component generated by a charge motion with

velocity r
  induced by this field, 

 

    
d

, , ,
d

E r t E r t r E r t
t t r

  
   

  

      

 

                                                                                      

For a charge velocity r
 induced by this field, 

 

 , 0r E r t 
  ,                                                               

 

we obtain the last term of (64), 
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

             

as a function of the density  ,r t


. We define the electric 

current density of the mobile charge with a mobility

considered material structure, 
 

        0, , , , ,j r t r t r r t E r t E r t       
       

                                       

which means a decay rate of the electromagnetic field 
proportional to the mobility and the density of the electric 
charge, 
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off velocity, interacting 
with an electromagnetic field propagating with the same velocity, called ‘light 

uniform mobile charge density  , 

decay rate due to 

charge, is described 

, , , 0E r t E r t E r t
 

   
 

    
.           (61)   

From (60) and (61), by eliminating the Laplacian of the electric 

an integration constant  Dj r
 

 DB r t E r t E r t j r   
    ,               (62) 

0 0

1

 
. This equation 

the more specific form with a total field 
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d
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r t t
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          ,      (63)   

charge motion with the 

, , ,E r t E r t r E r t
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.                  (64) 

                                                                                       

induced by this field,  

                                              (65) 
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,     (66) 

. We define the electric 

of the mobile charge with a mobility  in the 

 , , , , ,j r t r t r r t E r t E r t    
       ,           (67)  

which means a decay rate of the electromagnetic field 
proportional to the mobility and the density of the electric 

 
0

,r t


 





.                                                 

                                                                                    

With (64), (66), and (67), equation (63) takes the conventional 
form of the Ampère-Maxwell law of the magnetic circuit, as a 
curl of the magnetic field induced by an electric current
 

     , , Dj r t j r t j r 
    

 

and a time variation of the electric field, 
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With (58), we find that this equation is in agreement with the 
charge conservation, 
 

   , ,j r t r t
r t


 

 
 

  
 .      

                                                               

The total current (69) with the

the diffusion current, proportional to the gradient of the charge 
density, not taken into account in 
but reobtained as an integration constant. 
 

 We consider a unity vacuum impedance,
 

0 0 0 0/ 1, 1/       
 

for the intensity of the magnetic field
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as a function of the magnetic induction

intensity of the electric field E r t

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suggestinga normalization of the charge and current densities

  and j r
  , 

04   (75) 
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the Maxwell equations (54), (70), (55), and (57)
the more symmetric form [15],
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In this representation of the Maxwell equations, the current 

density /j r c
  has the same dimension unit as the charge 

density  , and the electric field
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.                                                                 (68)    

With (64), (66), and (67), equation (63) takes the conventional 
Maxwell law of the magnetic circuit, as a 

curl of the magnetic field induced by an electric current 

j r t j r t j r
  

                                             (69)                                                                                                       

and a time variation of the electric field,  
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
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 
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.                   (70) 

With (58), we find that this equation is in agreement with the 

, ,j r t r t
 

.                                               (71) 

with the component  Dj r
 

may include 

diffusion current, proportional to the gradient of the charge 
density, not taken into account in the equations (60) and (61), 
but reobtained as an integration constant.  

We consider a unity vacuum impedance, 

0 0 0 0/ 1, 1/ c        ,                          (72) 

for the intensity of the magnetic field 

                                               (73) 
                                                                                                                        

as a function of the magnetic induction  ,B r t
 

, and the 
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. For a spherical geometry 
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suggestinga normalization of the charge and current densities 
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the Maxwell equations (54), (70), (55), and (57) with (58), take 
the more symmetric form [15], 
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In this representation of the Maxwell equations, the current 

has the same dimension unit as the charge 

, and the electric field E


 the same dimension unit as 
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the magnetic field H


, as the Coulomb law for an electric 

charge q  has the simpler form
3/E qr r

 
.  

 

Relativistic wave Equations 
 

For the wave function of a quantum particle (40), we consider 
the Lagrangian as a function of the Hamiltonian, 
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as a solution of equation 
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It is interesting that with the canonical momentum 
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the total derivative takes a form depending on this momentum, 
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d
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With this expression, from (79) we obtain the relativistic 
quantum dynamic equation for a quantum particle of a form 
like the conventional Schrödinger equation,  
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but with the total time derivative with changed sign instead of 
the partial derivative,  and with the relativistic Hamiltonian 
(48) instead of the classical one as in the Dirac relativistic 
equation. We consider Dirac’s Hamiltonian, 
 

       2 2 2
0 0 0 1 1 2 2 3 3,H p r c M c p eU r c M c p p p eU r          

     ,        (83) 
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as functions of the Pauli spin operators, 
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and the anti-commutation relations, 
 

   , 2 , , 2 , i .i j ij i j ij i j ijk k                       (86) 

 
With these operators, and the mechanical momentum as a 
function of the canonical momentum (80), 

 i ,p eA r t
r


  



 
  ,                                                      (87)                                                                                                                        

for the wave function four-vector of a quantum particle in 
electromagnetic field, 

1

1 2

2 3

4



 


 



 
 

        
 
 

,                                                           (88) 

from the dynamic equation (82) we obtain the explicitequations 
 

      

           

      

2
1 0 1

4 4 3

2
2 0 2

i , ,

i , , ic i , , i , , ,

i , ,

x y z

x y z r t M c eU r r t
t x y z

c eA r t r t eA r t r t c eA r t r t
x y z

x y z r t M c eU r r t
t x y z

c

 

  

 

     
       

    
                   

       

    
      

    

 

  
  

     
  

  
  

           

      

       

3 3 4

2
3 0 3

2 2

i , , i i , , i , , ,

i , ,

i , , i i , ,

x y z

x y

eA r t r t c eA r t r t c eA r t r t
x y z

x y z r t M c eU r r t
t x y z

c eA r t r t c eA r t r t
x y

  

 

 




                  

       

    
       

    

   
       

    

     
  

  
  

   
     

      

           

1

2
4 0 3

1 1 2

i , , ,

i , ,

i , , i i , , i , , .

z

x y z

c eA r t r t
z

x y z r t M c eU r r t
t x y z

c eA r t r t c eA r t r t c eA r t r t
x y z



 

  




      

 

     
        

    
                          

 


  
  

     
  

 (89) 

 

Compared to Dirac’s similar equations, obtained from the 
Schrödinger equation with Dirac’s relativistic Hamiltonian, 
these equations include new terms depending on the particle 
momentum and velocity, which come from the new dynamic 
equation (82) including the total time derivative instead of the 
partial derivative. At the same time, from the relativistic wave 

function (78) for a particle with an energy E , 
 

 
 

    

 
   i i

,
3 3

3/2 3/2

1 1
, , d , d

2 2

Pr Pr H P r t P r E P r t

r t P t e P P t e P
h h

  
 

      
     

         
 

   
.         (90)  

              

we obtain the time independent equation 
 

     ,H P r r E r 
   

,                                               (91)   

                                                                                    

similar to the conventional Schrödinger equation, but with the 
relativistic Hamiltonian (83).With Dirac’s spin operators, 
 

 1 2 3, ,   


,                                                             (92) 
                                                                                                                             

 
and the mechanical momentum 
 

 1 2 3, ,p p p p


,                                                               (93) 
                                                                                                                                

this equation takes the form      
                    

       0 0 , ,c M c p eU r r t E r t       
    

.    (94)                                                                              

 

With the Pauli spin vector  
 

 1 2 3, ,   


,                                                              (95)  
                                                                         

for the wave function (88) with two vector components, this 
equation takes a form of two coupled two-dimensional 
equations, 

       

       

2
0 1 2 1

2
0 2 1 2 .

M c eU r r c p r E r

M c eU r r c p r E r

   

   

    

     

     

     

 

(96)                                                                            
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By eliminating the coupling terms, we obtain a non-linear 

equation for the two-dimensional component  1 r


 of the 

wave function (88), 
 

         
22 2 2

0 0 1 1E M c eU r E M c eU r r c p r            
      ,      (97)    

         

and the same equation for the other two-dimensional 

component  2 r


. With the mechanical momentum (93), and 

the Pauli spin vector (95) with the commutation relations (86), 
we obtain the coefficient of the right-hand side of this equation, 
 

     
2 2 2

1 1 2 2 3 3 ip p p p p p p         
     

.   (98) 
 

With the mechanical momentum (87), for the second term of 
this equation we obtain 
 

         

         

 

i , i , i

i i

i i .

p p eA r t eA r t e A A

e A A e A A A

e A e B

  

    

 

            
 

              
   

  

      
  

    
 

 
 

                   (99)  

      

Thus, the coefficient (98) takes a form depending on the 
magnetic field and the spin vector, 
 

 
2 2p p eh B  

   
.                                                    (100) 

 

With this coefficient, the dynamic equation (97) takes a form 
 

       
2

2
1 0 12 2

0 0 0

1

2 2 2 2
s

p E e
B r U r E M c eU r r

M M c M c
  

   
           

   

      ,      (101) 

 

depending on the spin magnetic moment, 
 

0 02
s s

e e
s g s

M M
   

   
,                                        (102) 

 

proportional to the spin angular momentum   
 

1

2
s 


,                                                                            (103)  

                                                                            

with a coefficient called giro-magnetic ratio 
 

0/sg e M .                                                                   (104)   
                                                                        

We notice that for the classical case of a small velocity,
2

0E M c , and of a sufficiently weak electromagnetic field, 

  2
0 ,eU r M c e A p 

 
, equation (101) reduces to a 

the classical Schrödinger equation with spin interaction, 
 

     
2

1 1

0

,
2

s c

p
B eU r r E r

M
  

 
   

 

    
             (105) 

                                                                                      

with the classical energy 
 

2
0cE E M c  .                                                              (106)                                                                           

 

On the other hand, with the mechanical momentum operator 
(87), which for a sufficiently weak magnetic field is 

ip
r


 




  ,                                                                     (107)                                                                         

we find that the relativistic dynamic equation (101) includes 

only an orbital angular momentum jl  of the particle in the 

electric potential  U r


, which satisfies the commutation 

relations 
 

, ii j ijk kp l p     ,                                                        (108) 

                                                                                                                               

as an additional term to the spin angular momentum in the total 
angular momentum 
 

j l s 
 

.                                                                        (109) 
                                                                                                                                        

We consider the condition of commutation of a component 3j
with the particle Hamiltonian 
 

   0 0 1 1 2 2 3 3,H p r c M c p p p      
 

,          (110) 

 

     3 3 3, , 0H j H l s   .                                             (111) 
 

From the equality of the two terms 
 

 

          
          

3 1 3 1 2 3 2 3 3 3 4 3 0

3 1 1 3 2 2 3 3 3 3 1 2 2 1

, , , , ,

, , , , i ,

H s c s p s p s p s M c

H l c p l p l p l c p p

   

    

   

      

 (112)  

     

with the commutation relations (108), we obtain equations for 
the considered spin component, 
 

       1 3 2 2 3 1 3 3 4 3, i , , i , , , 0.s s s s                (113) 
                                                         

With the anti-commutation/normalization relations (86), 
 

2 2
2 1 1 2 1 2, 1         ,                                     (114) 

                                                                                                       

we obtain the considered component of the spin angular 
momentum (103), 
 

31 2 1 2

3 1 2

31 2 1 2

00 0 0
i i i

00 0 02 2 2 2
s

   
 

   

     
            

      

    .    (115)  

 

                      
This means that just in the relativistic case, but for a 
sufficiently weak magnetic field, the total angular momentum 
has the simple form (109), as the sum of the orbital angular 
momentum with the proper angular momentum (the spin) of 
the extrinsic matter of a quantum particle. Otherwise, a 
significant additional angular momentum arise due to the 

magnetic field, from the vector potential  ,A r t
 

in the kinetic 

tem of equation (101) with the momentum (87). 
 

Quantum Particle in Gravitational field and black hole 
 

In a gravitational field, the physical hyper surface

 0 1 2 3, , ,x ct x x x  gets a curvature. We consider a time 

constant gravitational field (null space-time metric elements, 
time independent metric elements), and determine the metric 
tensorina reference system of spherical coordinates

 , , ,ct r   , from Einstein’s law of gravitation of a null Ricci 

tensor, 

, , 0R      
                   .         (116)                                                                                  
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In this case, for the metric tensor elements one can consider a 

form dependingon two functions  u r and  v r  [15], 

 
   

   

2 2 2 2 2
00 11 22 33

2 200 11 22 2 33 2 2

, , , sin

, , , sin .

u r v r

u r v r

g e g e g r g r

g e g e g r g r



    

      

      

     (117)   

             
From the diagonal matrix elements of equation (116), we 
obtain the system of equations: 
 

             

         

     

2 22 1
00

2 1
11

2

22

2
33 22

2 0

2 0

1 1 0

sin 0.

u r v r

v r

R u r u r u r v r r u r e

R u r u r u r v r r v r

R ru r rv r e

R R







           

        

        

 

             (118) 

                                             
From the first two equations, we obtain equation 
 

    0u r v r   ,                                                          (119) 

                                                                                                                     
with a solution 
 

    0u r v r  .                                                            (120) 

                                                                                                                                
With these two equations, from the third equation (118) we 
obtain the differential equations 
 

     

     

2 2

2 2

1 2 1

1 2 1,

u r u r

v r v r

ru r e re

rv r e re 

       

       

                        (121)  

                                                                                      
with the solutions 
 

 

 

2

1

2

2
1

2
1 ,

u r

v r

m
e

r

m
e

r



 

 
  
 

                                                       (122)   

                                                                                                      
depending on an integration constant m . For the determination 

of the two functions  u r  and  v r  we used only a 

combination (119) of the first two equations (118), and the 
third equation (118). It is interesting that the derivative of the 
first equation (121), 
 

         2 222 2 2 0u r u rre ru r ru r u r e
          

,          (123)    

                                                                

is in agreement with the second equation (118) with the relation 
(119), 
 

     2

11

2 2
0

ru r ru r u r
R

r

   
  ,                     (124)                                                                                 

which means that (122) is a solution of the whole system of 
equations (118). In this way, the matrix elements (117) take the 

form of the Schwarzschild solution of the metric tensor for a 
constant gravitational field in spherical coordinates, 
 

1

2 2 2
00 11 22 33

1

00 11 22 2 33 2 2

2 2
1 , 1 , , sin

2 2
1 , 1 , , sin ,

m m
g g g r g r

r r

m m
g g g r g r

r r









  

 
         

 

   
           
   

      (125) 

                             

which means a time-space interval in a central gravitational 
field of the form 
 

1

2 2 2 2 2 2 2 2 22 2
d 1 d 1 d d sin d

m m
s c t r r r

r r
  


   

        
   

.  (126)       

 

For a quantum particle in gravitational field, we consider wave 
functions of the form (34) and (37) with a Lagrangian of the 
form (35), with a time-space diagonalization of the metric 
tensor, 
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P x M c g g x x t
i

x t P t e P P P

P t e P P P

P t x t e x x x

x t e x x x

 





 







  
  

 

   
  



















 




 










          (127)  

                                                    

and the momentum (36), 
 

0

1

2
i

j ijj

L
P M cg x

c x


  





.                                            (128)  

                                                                         

With this expression and the fundamental relation (26), we 
obtain the group velocity of a quantum particle wave packet 
(127), 
 

 2
0 00

00
0

d

1d

2

i j
jij

j j

j
i

j
ij

M c g g x x cx
x cx

t g g x xM cg x




  
  

    
 

  


 

.                    (129) 

 

With this velocity, we define the Hamiltonian of the quantum 
particle 
 

 , ,j j j
jH cP x L x x t   .                                            (130) 

 

With the definition (128) of the momentum and the group 
velocity of the second wave packet (127) for the time 
derivative of this momentum, from the differential of the 
Hamiltonian (130), 
 

d d d d

d d d d d

d d d d d ,

j
j j

j

j j j j
j j j j

j j j j
j j j j

H H H
H P x t

P x t

L L L
cx P cP x x x t

x x t

L
cx P cP x cP x cP x t

t

  
  

  

  
    

  


    





  


  
                 

(131) 

 

we obtain the Hamilton equations 
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d

d

d

d

.

j

j

j

j

x H

t P

P H

t x

H L

t t







 



 
 

 

                                                                     (132) 

                                                                                                                          

With these equations, for a conservative system, 
 

0
L

t





,                                                                           (133) 

                                                                                                                                          

we obtain the Hamiltonian conservation, 
 

 
dd d

, 0
d d d

j
jj

j j j j
j j j

PH H x H H H H
H P x

t P t x t P x x P

     
     

     

,              (134)     

 

with an eigenvalue equal to the energy of the quantum particle, 
 

 , j
jH P x E .                                                              (135) 

                                                                                                                                     

If we consider an atom emitting light in a central gravitational 
field, from (126) we obtain the frequency of this light as a 
function of its distance r from the gravitational center, 
 

01
1

r c

t r s
 

 
,                                                           (136)                                                                                                                   

 

and the constant 
 

0 2r m .                                                                           (137) 
                                                            

For a decreasing r , the frequency (136) describes a redshift of 
the electromagnetic radiation – at the boundary of a black hole,

0r r , no light is emitted. For a better description of a black 

hole, we reconsider the geodesic equation for the general 
relativistic case, 
 

2

2

d d d

d d d

x x x

s s s

  

  ,                                              (138) 

 
                                                                                                                       

 of a radial motion, 
 

2 3d d
0

d d

x x

s s
  .                                                                (139) 

                                                                                                                                     

With a diagonal metric tensor, we obtain the geodesic 
equations 
 

 

2 0 0 1 1 0 0 1
0 0 00
01 10 0012

0 1 0 1 0
00 00 00 00

00,1 01,0 01,0 00,1

2 1 0 1 1 0 0 1
1 1 11
01 10 1012

11
10,1 11,0

d d d d d d d
2

d d d d d d d

dd d d d d

d d d d d d

d d d d d d d
2

d d d d d d d

x x x x x x x
g

s s s s s s s

gx x x x x
g g g g g g g

s s s s s s

x x x x x x x
g

s s s s s s s

g g g

     

       

     

   
0 1 0 1 1

11 11 11
10,1 11,0

dd d d d d

d d d d d d

gx x x x x
g g g g

s s s s s s
    

  (140) 

 
 
                           

which, with the relations 
 

00 11

00 11

1 1
,g g

g g
  ,                                             (141) 

                                                                                                                 
 

take an integrable form 
 

2 0 0
00

00 2

2 1 1
11

11 2

dd d
0

d d d

dd d
0

d d d

gx x
g

s s s

gx x
g

s s s

 

 

                                               (142)                                                                                                       

 

for the velocities 
 

0 1
0 1d d

,
d d

x x
v v

s s
  .                                                (143)                                                                                             

 

With the integration constants 0k  and 1k , we obtain 
 

0
00 0

1
11 1 .

g v k

g v k




                                                                       (144)  

                                                                                  

From the first equation with the Schwarzschild solution (125), 
we obtain the velocity 
 

0 0

2
1

k
v

m

r




,                                                                    (145) 

                                                                                                                 

as a function of the integration constant 0k . We notice that, 

with the fundamental equation (26) and the Schwarzschild 
solution (125), we can eliminate the other integration constant 
 

1k , 

2 20 1
00 11

00 11

1

1.

g v g v

g g

 

 
                                                    (146) 

                                                                                                                       

With (144), the first equation (146) becomes 
 

0 1
0 1 1k v k v  ,                                                                (147)   

                                                                               

as by multiplication with 00g , with the second equation (146) 

and (125), it is of the form 
 

2 20 1 2
1

m
k v

r
   .                                                          (148)                                                                                                

We obtain the velocity 
1v of an approaching particle, as a 

function of the same integration constant 0k ,  

1/2

1 2
0

2
1

m
v k

r

 
    

 
,                                             (149)                                                                                                    

as the time velocity of this particle is 
1/21 1

2
00 0

0

d d 2 2
1 1

d d

r x v c m m
c c k

t x v k r r

   
         

   
.    (150)                                                                    

According to this theory, for a particle approaching a black 

hole from the outside, 2r m , its velocity decreases, 
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becoming null at the boundary of this black hole – this particle 
never enters the black hole. On the other hand, for a particle 
approaching the boundary of a black hole from the inside,

2r m , its velocity also decreases – a particle never exits 
from the black hole. In other words, according to (150), a 
particle moving in the proper system of a black hole seems to 
infinitely delay at the boundary of this black hole.  However, 
this reasoning is not exactly true for the quantum dynamics, 
where a differential element of matter is not lonely approaching 
the boundary of a black hole, but always as a part of the matter 
distribution of a quantum particle, as it is described by the 
wave functions (127), the other differential elements perturbing 
the gravitational field considered in this theory. More than that, 
the case of a single particle approaching the boundary of a 
black hole is not a realistic one. A large number of quantum 
particles significantly perturb the gravitational field, making 
the boundary of black hole penetrable from the outside and 
from the inside – absorption and evaporation processes of a 
black hole are always present. From the geodesic equation of a 
particle with a trajectory as a function of a parameter ,  
 

2

2

d d d

d d d

x x x  

  

  ,                                               (151)   

                                                                                              

with the velocities ,cx cx   , we obtain the particle 

acceleration 
 

2
2

2

d

d

i
ix

c x x
t

 
     ,                                                    (152) 

 

which, with the Christoffel  symbol as a function of the metric 
tensor elements, is 
 

 
2

2
, , ,2

d 1

d 2

i
ix

c g g g g x x
t

  
           .        (153)  

                                                                              

This expression takes a simpler form for a small velocity 

compared to the light velocity,
0 0, 1ix x x    , 

 

 
2

2
0,0 0,0 00,2

d 1

d 2

i
ix

c g g g g
t


      ,                   (154) 

                                                                                             

which, for a diagonal metric tensor and a constant gravitational 
field is 
 

2
2

00,2

d 1

d 2

i
ii

i

x
c g g

t
 .                                                         (155) 

                                                                                                                               

It is interesting that this assumption is also reasonable at the 
boundary of a black hole, where, according to (150), the 
velocity is null, a quantum particle penetrating this boundary 
only due to some perturbations of the gravitational field 
induced by this particle, or by other quantum particles, always 
present in the realistic cases. With the Schwarzschild metric 
element (125), of the form 
 

00 1 2g V  ,                                                                   (156) 
                                                                                                                                     

as a function of the Newtonian potential 

m
V

r
  ,                                                                       (157) 

 

from (155) we obtain the particle accelerations 
 

2
2 2

,2
,

d

d

i
ii ii

i

i

x m
c g V c g

t r

 
    

 
.                                (158) 

 

With Schwarzschild matrix elements (125), these accelerations 
take a form 
 

2 2

2 2 2 2

2

2

2

2

d 2 2
1 1

d

d
0

d

d
0,

d

r m mc GM M
G

t r r c r r

t

t





   
        

   





                  (159)    

                                                                   

depending onthe constant of gravitation
11 1 3 26.67259 10 Kg m sG     and the mass M  

generating the gravitational potential. For 
 

 0 2

282
2 2 m,47. 243 10

GM
r r m M

c
    

 
 

equations (159) describe the dynamics of a quantum particle in 
a Newtonian potential 
 

 0

M
U r G

r
  .                                                            (160)  

                                                                                                                       

At the same time, we find that for a black hole, with a 
sufficiently strong gravitational field for confining the mass

M  in a sphere with the radius 
 

0 2Mr r m  ,                                                                (161) 
 

the attraction acceleration (159) for 0r r ,for 0r r turns out 

into a repulsion one, as for 0r r it is null. We notice that for 

our planet with the mass
245.9722 10 Kg which leads to

0 0.0089mr  , with the radius 6378mMr  at equator, and 

6357 mMr  at a pole, the condition (161) is far from being 

satisfied.  
 

Quantum Particle in a Gravitational wave and the Graviton 
spin 
 

We consider a quantum particle described by the wave 
functions 
 

 
 

   

 
 

   

j

j

i
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i
1 2 33/2

i
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i 1 2 3
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1
, , d d d
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1
, , d d d ,

2

j

j

P x L x x t

j

P x L x x t

j

x t P t e P P P

P t x t e x x x

 

 

 


 


 
 

  
 



















      (162)     

                                                         

with the Lagrangian 

  2
0,L x x M c g x x   

    ,                               (163)                                                                      

under the action of a gravitational wave described by the 
d’Alembert equation,  
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, 0g g
   ,                                                           (164)                                                                                                                                

 

as, with a time-space diagonalization of the metric tensor,

0 0jg  , the canonical momentum is 
 

0

1

2
i

j ijj

L
P M cg x

c x


  





.                                          (165) 

                                                                                                                  

From the time derivative of this momentum as a group velocity 
of the wave packet (162), with the fundamental relation (26), 
 

2 2
0 , 0

,2 2
0 0 ,

d 1 1

d 2 2

1
,

22

k i i
j j ij k ij j

j

j

L
P cP M c g x x M c g x

t x

x x g
M c M c g x x

g x x

 
  

 



    



   

   

 
 

 

                   (166)  

                                                         

and the geodesic equation 
 

d

d
x x x x

s
    

      ,                                           (167) 

                                                                                                                   

we obtain the dynamic equation 
 

, ,
i k i

ij k ij jg x x g x x g x x   
         .                        (168) 

                                                                                                  

With the second kind Christoffel symbol, 
 

   , , , , , ,

1 1

2 2
i i i ij

j j jg g g g g g g g g 
                    

,   (169) 

      

we obtain a dynamic equation depending only on the 
derivatives of the metric tensor, 
 

 , , , ,

1
0

2
i k

ij k j j jg x x g g g x x 
           .         (170)   

                                                                                

By a diagonalization of the time dependent component of the 
metric tensor, 
 

,0 0jig  ,                                                                         (171)  
                        

from the dynamic equation (170) we obtain 
 

  0 0
, , , 00, 00,

1 1 1

2 2 2
i k

ji k jk i ik j j jg g g x x g x x g         .         (172)         

 

Since the gravitational waves are generally generated by heavy 
cosmic objects, in these equations we considered a small 

velocity, 
0 1x  , as the geodesic equation (167) takes the form 

 
0 0

00 00
i j i j

ij ijx x x x x x x                .             (173)   

                                                              
At the same time, in equation (172) we distinguish the first 
kind Christioffel symbol, 
 

00,

1

2
i k

kij jx x g   .                                                    (174)                                                                                           

By multiplying equation (174) with
jx , with the geodesic 

equation (173) and the time-space diagonalization of the metric 
tensor, we obtain the acceleration of a quantum particle in a 
gravitational field, 
 

 00 00, 00,

1 1

2 2
i j k k k j

k ij k k k jg x x x x g x x x g g x  
 

 
       

 
        ,(175)   

of the form of a gradient of the metric element 00g  which, in 

this way, appears as a gravitational potential, 
 

00,k kx g ,                                                                       (176)  
                             

Or 
 

00,
k kj

jx g g .                                                                  (177) 
                                                                    

As a solution of the gravitational wave equation (164), we 
consider a metric tensor of the second order in coordinates, 
 

g u l x x 
   ,                                                        (178)    

                                                                                                                           

proportional to an amplitude tensor u , and a polarization 

tensor l  which, according to the equation of propagation 

(164), satisfies the normalization condition 
 

0l  .                                                                              (179)  
                                                                                                                                          

With the solution (178) for the metric tensor in a gravitational 
wave, the dynamic equation (177) is 
 

00
k kx u l x

 .                                                                 (180)                                                                                                           

For a gravitational field oscillating in the direction
1x ,  

 

0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 31, 1, 0 , 0l l l l l l l l         ,        (181) 

                                                               

the dynamic equation (180) takes the form of harmonic 
oscillation: 
 

1 1
00x u x  .                                                                   (182)  

                                                                                                                             

With the metric elements for a weak gravitational field, 
 

00 11 22 331, 1, 1, 1g g g g       ,            (183)    
                                       

from (181) we obtain the polarization elements 
 

0 1 2 3
00 00 0 11 11 1 22 22 2 33 33 31, 1, 0 , 0l g l l g l l g l l g l        ,(184)     

              

as the whole dynamics of the metric tensor g is described by 

the coordinate dependence (178) and the amplitude tensor. 

Since l x x 
 in (178) is a scalar, the amplitude tensor is 

proportional to the metric tensor: 
 

,u ug u ug 
   ,                                        (185)   

                                                                                                              

where u  is the ‘total’, or the ‘scalar’ amplitude. This 
amplitude can be considered as a function of the amplitude 
matrix elements, 
 

g u u ug g ug   
      .                                  (186) 

                                                                                                
By the contraction of the indexes  and  , we obtain  

4u ug u 
   .                                                             (187) 

                                                                                                                              

On the other hand, from (185) with (183) we obtain 
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00 00u ug u  ,                                                              (188) 
                                                                                                                               

as the dynamic equation (182) takes the form 
 

1 1x ux  .                                                                        (189) 
On the other hand, we notice that the gravitational wave 
equation (164) has a solution of the first order in coordinates, 
 

g u l x
   ,                                                             (190)     

                                                                                                                            

we consider with a normalization condition similar to (179), 
 

0l l
  .                                                                          (191)   

                                                                                                    

With this solution, the dynamic equation (177) with (188) 
becomes 
 

k kx ul ,                                                                        (192) 
 

which means an acceleration of the quantum particle under the 
action of the gravitational wave. By multiplying equation (186) 

with the polarization vector l , we obtain equations for the 

amplitude matrix elements as functions of the total amplitude, 
 

l u l u
   .                                                                    (193) 

                                                                                                                                   

With the metric elements for a weak gravitational wave 
 

00 11 22 331, 1g g g g     ,                                (194) 
                                                                

propagating in the direction
3x , we obtain the polarization 

vectors 
 

0 1 2 3

0 1 2 3

1, 0, 1

1, 0, 1,

l l l l

l l l l

    

   
                                       (195) 

                                                                                                     

which satisfy the normalization equations (191), as the metric 
dynamics is described by the amplitudes. With these vectors 
and the metric elements (194), equations (193) take the form 
 

0 3 00 33
0 0 00 30 00 30

0 3 00 33
1 1 01 31 01 31

0 3 00 33
2 2 02 32 02 32

0 3 00 33
3 3 03 33 03 33

0

0

.

u u g u g u u u u

u u g u g u u u

u u g u g u u u

u u g u g u u u u

     

     

     

      

                         (196) 

                    

From the first and the last equations, with (187) and the metric 
elements (194), we obtain 
 

   00 11 22 33
00 33 00 11 22 33 00 11 22 33

1 1 1
2

2 2 2
u u u u g u g u g u g u u u u u

          
,        (197)  

               

which yields 
 

 11 22 00 33 2u u u u u      ,                                  (198)  
                                                        

and 

 03 00 332u u u   .                                                     (199)                                                                           

With these equations, the transform equation 
 

u g g u g g u    
   ,                                (200)    

                                                                                                 

and the second and the third equations (196), we calculate the 
invariant  
 

 

   

   
2

2

22 2 2 2 2 2 2 2 2 2
00 11 22 33 01 02 03 12 13 23 00 33

22 2 2 2 2 2 2
11 22 12 00 33 00 33 00 33 00 33

2 22 2 2
11 22 12 11 22 11 22

4

2

1
2 2 2 2 2 2

2

1 1
2

2 2

1
2

2

u

u

I u u u

u u u u u u u u u u u u

u u u u u u u u u u u

u u u u u u u


 

           

         

      





2

122 ,u

 
  
 
  



         (201)   

         

where we distinguish a term describing a proper dynamics, 
 

 
2 2

0 11 22 12

1
2

2
I u u u   ,                                         (202)   

                                                                                                       

and a term
22u , describing the action of the gravitational wave 

on the quantum particle, 
 

2
0 2uI I u  .                                                                (203) 

                                                                                                                                     

The invariant (202) describes a rotation of the amplitude tensor

u . For a description of this rotation, we define the operator 

R of the rotation of a vector  1 2,A A A  with an angle 

4


  in a plane  ,x y  (Fig. 4), 

 

1 2

2 1 .

RA A

RA A



 
                                                                   (204) 

                                                             

We obtain the eigenvalue equation 
 

2 1 1R A A  ,                                                                  (205) 
                                                                                                                                         

with the eigenvalue 
 

iR   .                                                                            (206) 
                                                                                                                             

 
 

Fig 4 Rotation with   of a vector   in a plane . 

 
We define similar, symmetric expressions for the rotation of a 
tensor, 

1A

2A
A

RA
1A

2A x

y
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 

 

 

11 12 21 12 21

22 21 12 12 21

21 12 22 11

1

2

1

2

1
.

2

Ru u u u u

Ru u u u u

Ru Ru u u

   

      

  

                         (207)  

                                                                                     

From the first two equations, we obtain 
 

 

 
11 22

11 22 12

0

2 .

R u u

R u u u

 

 
                                                      (208) 

                                                                                                                        

By applying the operator R to the second equation, with the 
third equation (207), we obtain 
 

 2
11 22 12 22 112R u u Ru u u    .                              (209) 

                                                                                                      

Thus, for the definition (207) of this operator R  we reobtain 

the eigenvalue (206). We notice that, by a rotation R , the first 
term of the proper dynamics invariant (202), with the second 
equation (208), takes the form of the second term of this 
invariant, 
 

   
2 2 2

11 22 12 12

1 1
2 2

2 2
R u u u u     .                     (210) 

                                                                                          

At the same time, the second term of the proper dynamics 
invariant (202), with the last equation (207), takes the form of 
the first term of this invariant, 
 

     
2

2 2

12 22 11 11 22

1 1
2 2

2 2
Ru u u u u

 
     

.       (211)           

 

This means that, by rotation, the terms of the invariant (202) 

transform one another. We consider the rotation operator R


with an angle


of a vector  A r 
, 

 

   

   

   

   

 i

i

,S

R A r A r r

A r r A r
r

A r r A r
r

A r SA r

e A r

  

 

 

 

 









  


   




   



 





 

  

  


  


 



                   (212) 

                                                                                           

as a function of the angular momentum operator,  

iS r
r


  



 
 .                                                                  (213)                                                                                    

This operator is of the form 
 

iSR e 
 

.                                                                      (214)                                                                                               
From the rotation of a vector with an angle , which is 
equivalent to an inversion, 
 

     iSR A r e A r A r      
  

,                            (215) 
                                                                                 

we obtain the angular momentum eigenvalue we call spin,

1S  .  With this eigenvalue, from the invariance of a scalar 
with a rotation operator (214),  
 

           

     

     

i i i

i i i

Scalar , , , , , ,

, , ,

, , , ,

t

t

S S S

S

u x y A x y B x y R u x y R A x y R B x y

e u x y e A x y e B x y

e u x y e A x y e B x y

      
 

    


    


            

          

          

  

    

 

  (216)  

          

we obtain the rotation operator of a tensor, 
 

       i 2i 2i, , , ,tS SR u x y e u x y e u x y e u x y  
   

   
  

,   (217) 
                                               

which means a tensor angular momentum eigenvalue 2tS   , 

we call the ‘graviton spin’. In other words, the amplitude tensor 

 ,u x y  describes a rotation of any intrinsic matter element 

as a component of a quantum particle (162), we call ‘graviton’, 
with the dynamic invariant (202). As we have shown above, the 
matrix elements of this tensor change such that, at any rotation 

with an angle / 2 , a term of this invariant takes the form of 
the other term. This means that for this rotation, with the spin

2 , any term of the invariant uI takes two times the same value 

in a complete rotation 2  . It is interesting to consider the 
rotation operator of a particle wave function, 
 

       

 


 

i

,

S

R r r r r r r
r

r r r
r

     

  


     




   







      


  


             (218) 

                                                              

which is 
 

iSR e 
 

 
 .                                                                         (219) 

                                                                                                                        

If we consider a two-particle state  
 

 
1 2 1 2 1 2 1 2, , ,i i r r r r i i 

   
,                                              (220) 

                                                                                              

with an inversion operator I , 
 

2 1 1 2 1 2 1 2, , , ,r r i i I r r i i
   

,                                          (221) 
                                                                                                                  

by applying two times this operator, 
 

2
1 2 1 2 2 1 1 2 1 2 1 2, , , , , ,r r i i I r r i i I r r i i 
     

,            (222)  
                                                                                

we obtain the eigenvalues 
 

12

2

1       for Fermions
1

1       for Bosons.

I
I

I

 
 


                              (223)   

                                               

Taking into account that a particle interchange can be 
considered as a particle double rotation with an angle   (Fig. 
5), 
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Fig 5 Particle inversion as a double rotation. 
 

 

   1 2 i SR R e 
   ,                                                       (224)           

                                                                                                              

we obtain the relation between the inversion eigenvalue and 
spin, conventionally called ‘the spin-statistics relation’, 
 

   

   

1

2

1 2 i2
1 1i2

1 2 i2
2 2

1 3
1 , ,...     for Fermions

2 2

1 1, 2,...     for Bosons.

S

S

S

I R R e S
I e

I R R e S


 


 


     

 
     

         (225) 

       

Compared to the rotation operator (214) describing the proper 
dynamics of the intrinsic matter as a component of a quantum 
particle, the rotation operator (219) describes the proper 
dynamics of the extrinsic matter of this particle. For the 
extrinsicmatter distribution of a quantum particle we define the 
flux  
 

J x   ,                                                                   (226)   
                                                                                                                              

satisfying the conservation condition of a null covariant 
divergence, 
 

: , , 0J J J J J      
           .                       (227) 

                                                                                         

We consider the second kind Christoffel symbol  
 

 , , ,

1

2
g g g g g  

             ,      (228) 

                                                                              

with the index contraction   . By taking into account the 

symmetry of the metric tensor, for the Christoffel symbol in 
equation (227) we obtain the expression 
 

 

   
 

, , , ,

1 ,1
, ,

1 1

2 2

1 1
,

2 2

g g g g g g

g
g g g g

g

  
        


 



    


    



           (229) 

                                                                       

as a function of the determinant g of the metric tensor. With 

this expression, the conservation condition of a null covariant 
divergence (227) takes the form of a null ordinary divergence,  
 

 :
,

0J g J g 



    ,                                      (230)                                                                                               

for which we can apply the Gauss integral formula. Thus, from 
the integral 

  3

,
d 0

V

J g x


  ,                                                  (231)                                                                           

over the space coordinates, by separating the time derivative 
from the spatial derivatives, we obtain the conservation 
formula 
 

 0 3 3 2

,
,0

d d d , 1,2,3
V

m m
m

m
V V

J g x J g x J g x m


 
        

 
  �

.  (232) 

                                      

For the classical case of a low velocity always considered in 
the proper system of a quantum particle, 

0 01: 1, ,m m mx g J x J x          , this 

formula takes the form of the conventional equation of 
conservation, 
 

3 2

,0

d d
VV

r J r


 
  

 
 

 
� .                                               (233) 

                                                                                                                     

Thus, a quantum particle appears as a distribution of 
conservative extrinsic matter, we call ‘quantum matter’ with a 

proper rotation with spin 
1

2
 for Fermions and spin 1 for 

Bosons, and with a component of intrinsic coordinates of the 

Universe, we call graviton, with the spin 2 . 
 

Summary 
 

We found that the conventional Schrödinger equation is 
contradictory to the basic Hamilton equations and to the 
principle of the energy conservation. A correct quantum 
dynamical equation has been obtainedonly when the 
Hamiltonian has been replaced by the Lagrangian – in this 
case, the Hamilton equations are obtained as group velocities of 
the wave packets describing the particle dynamics. With a 
relativistic Lagrangian, the relativistic principle of invariance 
of the time-space interval takes the form of a relativistic 
quantum principle of invariance of the time dependent phase of 
a quantum particle wave function. According to the general 
theory of relativity, we found that any acceleration in an 
external (non-gravitational) field is perpendicular to the 
velocity. In this case, the dynamics of the matter density is 
describable by a Fourier series expansion in waves 
perpendicular to the velocity, which, for a quantum particle, is 
normalized to the mass of the Lagrangian in the phases of these 
waves – QUANTUM MECHANICS. We considered black 
quantum particles with Lagrangians proportional to the particle 
masses, and visible quantum particles with additional 
Lagrangian terms proportional to the electric charges. For the 
interaction with an electromagnetic field, described by a vector 
potential conjugated to the coordinates and a scalar potential 
conjugated to time, we obtained Lorentz’s force for the 
electromagnetic fields defined by these potentials, and the 
Maxwell equations for these fields. From the Lagrangian as a 
function of the Hamiltonian and the momentum-velocity 
product, we obtained a relativistic Schrödinger-type equation 
which, in the explicit form, yields Schrödinger-Dirac type 
equations with new terms depending on velocity and 
momentum. For an energy eigenvalue, we obtained a non-
linear relativistic equation with spin interaction. In the non-
relativistic case, of asmall velocity and electric potential, this 
equation reduces the conventional Schrödinger equation with 
the spin interaction. For a quantum particle in a central 
gravitational field, we derived the Schwarzschild solution for 
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the metric tensor in the time dependent phase of the wave 
function of this particle. We obtained the velocity of a matter 
element which decreases when this element approaches the 
boundary of a black hole, tending to the null value while 
reaching this boundary. Thus, the boundary of a black hole 
cannot be passed neither from the outside, nor from the inside. 
However, by taking into account that any matter element is 
only a part of a quantum particle, asit is joint to the other parts 
of this particle and, in the realistic cases, to many other 
quantum particles, perturbing the gravitational field, we found 
that the boundary of a black hole is not totally unpassable: 
absorption and evaporation processes arise. With the 
Schwarzschild metric elements, from the geodesic equations 
we obtained the particle acceleration in a gravitational field. 
Compared to the Newtonian acceleration, we obtained a 
correction term which, for a black hole, takes the null value at 
the boundary of this black hole. For the metric tensor in a 
gravitational wave we considered two possible solutions: 1) a 
second order solution, proportional to an amplitude tensor and 
a polarization tensor, and 2) a first-order solution, proportional 
to an amplitude tensor and a polarization vector. From the 
second-order solution, we obtained an oscillation of the particle 
in a gravitational wave, while from the first-order solution we 
obtained a particle acceleration induced by a gravitational 
wave. From the normalization condition of the polarization 
vector, we obtained an invariant of the amplitude tensor 
including the particle acceleration and a proper dynamics of 
this particle. From the invariance of a scalar as a product of the 
amplitude tensor with two vectors with spin 1, for the intrinsic 
matter element as a component of a quantum particle, we call 
‘graviton’, we obtained a rotation operator with the spin 2. At 
the same time, from the equivalence of a double rotation of a 
two particle wave function with the inversion of these particles, 
we found a rotation operator with a half integer spin for 
Fermions and an integer spin for Bosons. Essentially, we found 
that a quantum particle is a distribution of a quantized quantity 
of extrinsic matter with a mass, an integer or a half-integer 
spin, possible charges, and a rotation of its intrinsic component, 
in the time-space coordinates, we call graviton, with a spin 2. 
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