

Available Online at http://www.recentscientific.com

CODEN: IJRSFP (USA)

International Journal of Recent Scientific Research Vol. 10, Issue, 06(F), pp. 33076-33081, June, 2019

International Journal of Recent Scientific

Research

DOI: 10.24327/IJRSR

Research Article

F - INDEX OF GENERALIZED MYCIELSKIAN OF GRAPHS

AmalorpavaJerline J, Litta E, Dhanalakshmi K and Benedict Michael Raj L

Department of Mathematics, St. Joseph's College, Trichy, India

DOI: http://dx.doi.org/10.24327/ijrsr.2019.1006.3600

ARTICLE INFO

Article History:
Received 4th March, 2019
Received in revised form 25th
April, 2019
Accepted 18th May, 2019
Published online 28th June, 2019

Key Words:

First Zagreb Index, F-index, Mycielskian graph

ABSTRACT

The F-index or forgotten topological index of a graph is defined as the sum of cubes of the vertex degrees of the graph. In this paper, we find F- index of generalized Mycielskian of graph and product graphs.

Copyright © AmalorpavaJerline J et al, 2019, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

For a graph G, the F-index or forgotten topological index is defined as the sum of cubes of the vertex degrees of the graph and it is denoted by F(G). That is, F(G) = $\sum_{v \in V(G)} d_G(v)^3$ where

 $d_G(v)$ denotes the degree of the vertices v in G. It can be easily shown that the above definition is equivalent to $F(G) = \sum_{uv \in E(G)} \left[d_G(u)^2 + d_G(v)^2 \right]$. This index was introduced in 1972,

in the same paper where the first and second Zagreb indices were introduced to study the structure dependency of total electron in [10]. This index was reintroduced by Furtula B and Gutman I recently in 2015 [8]. After that, so many authors studied about this index.

De et al. gave some basic properties of this index and showed that this index can enhance the physico-chemical applicability of Zagreb index and found the F-index of different chemically interesting molecular graphs and nanostructures in [15]. Basavanagoudet al. computed the first Zagreb index, coindex and forgotten index of certain d-transformation graphs in [5]. Cheet al. gave some lower and upper bounds of the forgotten index in terms of graphs irregularity, Zagreb indices, graph size, and maximum and minimum vertex degree in [21]. Akhteret al. determined the formulas for the F-index of four

operation on graphs in [3]. Gaoet al. gave the forgotten topological index of several widely used chemical structures which often appear in drug molecular graphs in [9]. Ghobadi et al. investigated first Zagreb index, F-index and F-coindex of the line graph of some chemical graphs using the subdivision concept in [11].

Jerlineet al. gave the first and the second Zagreb indices of the generalized Mycielskian of a graph G, and the complements of

 $\mu_k(G)$, in terms of the order and size of the Graph G and obtained exact expressions for the first and the second Zagreb indices of the generalized Mycielskian of some graph operations in [1]. De *et al.* gave the Narumi-Katayama index of some derived graphs such as a Mycielski graph, subdivision graphs, double graph, extended double cover graph, thorn graph, subdivision vertex join and edge join graphs in [16]. Bindusree *et al.* obtained the First Zagreb index, First Zagreb Eccentricity index, Eccentric connectivity indices and polynomials and connective eccentricity index for the complement of Mycielski graphs in [7].

Mahdi *et al.* found the Gutman index of Mycielskian of graphs. They determined exact value of the Gutman index of the complement of arbitrary Mycielskian graphs in [14]. Behtoei*et al.* determined the degree distance of the complement of arbitrary Mycielskian graphs and also determined this graphical invariant for the Mycielskian of graphs with diameter two in

*Corresponding author: AmalorpavaJerline J
Department of Mathematics, St. Joseph's College, Trichy, India

[6]. Konch*et al.* determined the NK values of two derived graphs namely Mycielskigraph and thorn graph in [13]. In this work, we compute the F-index of Generalized Mycielskian of graphs and product graphs.

Preliminaries

We begin this section with some basic definitions. Let G be a simple undirected graph with n vertices and m edges. The complement of the graph G, denoted by \bar{G} , is the graph with the same vertices set as G, where any two distinct vertices are adjacent if and only if they are not adjacent in G. The degree of a vertex v of G is the number of edges adjacent to v and it is denoted by $d_G(v)$.

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two simple graphs. The **union** $G_1 \cup G_2$ is the simple graph with $V = V_1 \cup V_2$ and $E = E_1 \cup E_2$ is called the union of G_1 and G_2 . When G_1 and G_2 are vertex disjoint, $G_1 \cup G_2$ is denoted by $G_1 + G_2$ and it is called the join of the graphs G_1 and G_2 . The tensor product $G_1 \times G_2$ is the simple graph with $V(G_1 \times G_2) = V_1 \times V_2$ as its vertex set and two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G_1 \times G_2$ if and only if, u_1 is adjacent to u_2 in G_1 and v_1 is adjacent to v_2 in G_2 .Clearly, $|V(G_1 \times G_2)| = |V(G_1)||V(G_2)| =$ $n_1 n_2$ and $|E(G_1 \times G_2)| = 2|E(G_1)||E(G_2)| = 2m_1 m_2$. The Cartesian product $G_1 \square G_2$ is the simple graph with $V(G_1 \times$ G_2) = $V_1 \times V_2$ as its vertex set and two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G_1 \square G_2$ if and only if, either $u_1 = u_2$ and v_1 is adjacent to v_2 in G_2 or u_1 is adjacent to u_2 in G_2 and $v_1 = v_2$. Clearly $|V(G_1 \square G_2)| = |V(G_1)||V(G_2)| =$ $|E(G_1G_2)| = |V(G_1)|E(G_2)| + |V(G_2)||E(G_1)| =$ $n_1 n_2$ and $n_1m_2 + n_2m_1$. The lexicographic product $G_1[G_2]$ of two graphs G_1 and G_2 is the simple graph with $V(G_1[G_2]) = V_1 \times$ V_2 as its vertex set and two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G_1[G_2]$ if and only if, either u_1 is adjacent to u_2 in G_1 or $u_1 = u_2$ and v_1 is adjacent to v_2 in G_2 . Clearly $|V(G_1[G_2])| = |V(G_1)||V(G_2)| = n_1n_2$ and $|E(G_1[G_2])| =$ $|E(G_1)||V(G_2)|^2 + |E(G_2)||V(G_1)| = m_1 n_2^2 + m_2 n_1$. The **corona product** $G_1 \circ G_2$ of two graphs G_1 and G_2 is defined to be the graph obtained by taking one copy of G_1 and $|V(G_1)|$ copies of G_2 and then joining the i^{th} copy of G_2 , $i = 1, 2, ..., |V(G_1)|$. Clearly $|V(G_1 \circ G_2)| = n_1(1 + n_2)$ and $|E(G_1 \circ G_2)| = m_1 + n_1 m_2 + n_1 n_2$. The **disjunction** $G_1 \vee G_2 = m_1 + n_2 + n_2 + n_3 + n_4 + n_$ G_2 of two graphs with $V(G_1 \vee G_2) = V_1 \times V_2$ as its vertex set and two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G_1 \vee G_2$ if and only if, either u_1 is adjacent to u_2 in G_1 or v_1 is adjacent to v_2 in G_2 . Clearly $|V(G_1 \vee G_2)| = |V(G_1)| |V(G_2)| = n_1 n_2$ and $|E(G_1 \vee G_2)| = |E(G_1)||V(G_2)|^2 + |E(G_2)||V(G_1)|^2 2|E(G_1)||E(G_2)| = m_1n_2^2 + m_2n_1^2 - 2m_1m_2.$

Let G be a simple connected graph with n vertices and m edges. Let the n vertices of the given graph G be $v_1, v_2, ..., v_n$. For a graph G = (V, E), the generalized Mycielskian, denoted by $\mu_k(G)$, of G is the graph whose vertex set is the disjoint

union
$$V \cup \left(\bigcup_{i=1}^k V^i\right) \cup \{u\}$$
, where $V^i = \{x^i : x \in V\}$ is an

independent set, $1 \le i \le k$, and edge set $E(\mu_k(G)) = E \cup_{i=1}^k \{y^{i-1}x^i; x^{i-1}y^i : xy \in E\}) \cup \{x^ku : x^k \in V^k\}$, where

 $x^0 = x$ and $y^0 = y$. By the definition of the generalized Mycielskian of G, we have the following observations.

- $|V(\mu_k(G))| = (k+1)n+1$
- $|E(\mu_k(G))| = (2k+1)m + n$
- If $u^0v^0 \in E(G)$, then $u^0v^0, u^iv^{i+1}, u^{i+1}v^i \in E(\mu(G))$ for $0 \le i \le m-1$.
- $d_{\mu_k(G)}(v^i) = 2d_G(v); 0 \le i \le k-1$
- $d_{\mu_k(G)}(v^k) = d_G(v) + 1$ for all $v \in V(G)$
- $d_{\mu_k(G)}(u) = n$

For other notations in graph theory, please refer to [4].

Lemma 2.1[2] If G is a r-regular graph, then $M_1(G) = nr^2$

Lemma 2.2If G is a r-regular graph, then $F(G) = nr^3$

Lemma 2.3 [17] If G is a simple connected graph with n vertices and m edges then

$$F(\mu_k(G)) = (8k+1)F(G) + 3M_1(G) + 6m + n(n^2+1)$$

Lemma 2.4 [18] If G is a simple connected graph with n vertices and m edges, then

$$F(\bar{G}) = n(n-1)^3 - 6m(n-1)^2 + 3(n-1)M_1(G) - F(G)$$

Lemma 2.5 If G is a simply connected graph with n vertices and m edges then

$$M_1(\bar{G}) = M_1(G) + (n-1)[n(n-1) - 4m].$$

F-index of Generalized Mycielskian Graph

In this section, we compute F-index of Generalized Mycielskian of graph complement and complement of Mycielskian graph.

Theorem 3.1 :If G is a simple connected G with G with G vertices and G edges. Then

$$F(\mu_k(\bar{G})) = (8k+1)n(n-1)^3$$

$$-3(n-1)^2[2m(8k+1)-n]$$

$$-F(G)(8k+1)$$

$$+3M_1(G)[8kn-8k+n]$$

$$-3(n-1)[4m-n]-6m+n(n^2+1)$$

 $-3(n-1)[4m-n] - 6m + n(n^2+1)$ **Proof** Let $\bar{n} = |V(\bar{G})| = n$ and $\bar{m} = |E(\bar{G})| = \frac{n(n-1)}{2} - m$.
By lemma 2.3, $F(\mu_k(\bar{G})) = (8k+1)F(\bar{G}) + 3M_1(\bar{G}) + 6\bar{m} + \bar{n}(\bar{n}^2+1)$

By lemma 2.4 and lemma 2.5.

$$F(\mu_{k}(\bar{G}))$$

$$= (8k+1)[n(n-1)^{3} - 6m(n-1)^{2} + 3(n-1)M_{1}(G) - F(G)]$$

$$+3[M_{1}(G) + (n-1)[n(n-1) - 4m]] + 6\left[\frac{n(n-1)}{2} - m\right]$$

$$+ n(n^{2} + 1)$$

$$= (8k+1)n(n-1)^{3} - (n-1)^{2}(6m(8k+1) - 3n)$$

$$- F(G)(8k+1)$$

$$+ M_{1}(G)[3(n-1)(8k+1) + 3]$$

$$- 12m(n-1) + 3n(n-1) - 6m$$

$$+ n(n^{2} + 1)$$

$$= (8k+1)n(n-1)^{3} - (n-1)^{2}(6m(8k+1) - 3n)$$

$$- F(G)(8k+1)$$

$$+3M_{1}(G)[(n-1)(8k+1) + 1]$$

$$- (n-1)[12m - 3n] - 6m + n(n^{2} + 1)$$

$$= (8k+1)n(n-1)^3 - 3(n-1)^2[2m(8k+1) - n] - F(G)(8k+1) + 3M_1(G)[8kn - 8k + n] - 3(n-1)[4m - n] - 6m + n(n^2 + 1)$$

Corollary 3.2 If *G* is a r-regular graph then,

$$\begin{split} F \big(\mu_k(\bar{G}) \big) &= n[3r^2[8kn - 8k + n] \\ &\quad + (n-1)^3[r(8k+1) + 1] - r^3(8k+1) \\ &\quad - 3(n-1)[2r+1] \\ &\quad - 3r + n^2 + 1] \end{split}$$

Proof: Since G is r-regular, by the lemma 2.1,2.2 and by theorem 3.1

$$\begin{split} F\left(\mu_k(\bar{G})\right) &= 3nr^2[8kn - 8k + n] + (8k + 1)n(n - 1)^3 \\ &- (n - 1)^2\left[6\frac{nr}{2}(8k + 1) - 3n\right] - nr^3 \\ (8k + 1) - (n - 1)\left[12\frac{nr}{2} - 3n\right] - 6\frac{nr}{2} + n(n^2 + 1) \\ &= n[3r^2[8kn - 8k + n] \\ &+ (n - 1)^3[r(8k + 1) + 1] - r^3(8k + 1) \\ &- 3(n - 1)[2r + 1] \\ &- 3r + n^2 + 1] \end{split}$$

Theorem 3.3 If G is a connected simple graph with n vertices and m edges. Then

$$\begin{split} F(\overline{\mu_k(G)}) &= M_1(G)(12k^2n + 15kn + 3n - 3) \\ &\quad + (8k+1)F(G) + n[(k+1)^4n^3 \\ &\quad + (k+1)^3n^2 \\ -6(k+1)^2n(2mk+m-n) + 12m(k+1) + 3kn^2 + 3n] \\ &\quad - 6m - n(n^2 - 1) \end{split}$$

Proof Let $n^* = |V(\mu_k(G))| = (k+1)n + 1$ and $m^* = |E(\mu_k(G))| = (2k+1)m + n$.

By the lemma 2.3 & 2.4

By the relimit 2.3 & 2.4
$$F(\overline{\mu_k(G)}) = n^*(n^* - 1)^3 - 6m^*(n^* - 1)^2 \\ + 3(n^* - 1)M_1(\mu_k(G)) - F(\mu_k(G)) \\ = [(k+1)n+1][(k+1)n+1-1]^3 \\ - 6[(2k+1)m+n] \\ = [(k+1)n+1-1]^2 \\ + 3[(k+1)+1-1][(4k+1)M_1(G)+4m \\ + n(n+1)] \\ -[(8k+1)F(G)+3M_1(G)+6m+n(n^2+1)] \\ = M_1(G)[12k^2n+3kn+12kn+3n-3] \\ - (8k+1)F(G)-6m \\ - n(n^2+1)n[(k+1)^4 \\ n^3+(k+1)^3n^2-(k+1)^2n(12mk+6m-6n) \\ + 4m(3k+3)+3kn^2+3n] \\ = M_1(G)(12k^2n+15kn+3n-3) \\ + (8k+1)F(G)+n[(k+1)^4n^3 \\ + (k+1)^3n^2 \\ -6(k+1)^2n(2mk+m-n)+12m(k+1)+3kn^2 \\ + 3n]-6m-n(n^2-1)$$

Corollary 3.4.If *G* is a r-regular graph then,

$$\begin{split} F\Big(\overline{\mu_k(G)}\Big) &= n[3r^2(4k^2n+15kn-n-3)-(8k+1)r^3\\ &- [3n^2(k+1)^2(2k+1)\\ &+6n(k+1)+3]+(k+1)^4n^3+(k+1)^3n^2\\ &+ (6(k+1)^2+3k-1)n^2+3n-1] \end{split}$$

Proof Since *G* is a r-regular, by the lemma 2.1,2.2 and by the theorem 3.3,

$$\begin{split} F\left(\overline{\mu_k(G)}\right) &= nr^2 [12k^2n + 15kn + 3n - 3] \\ &- \left[(8k+1)nr^3 + 6\frac{nr}{2} + n(n^2+1) \right] \\ &+ n[(k+1)^4n^3 \\ &+ (k+1)^3n^2 - (k+1)^2n\left(12\frac{nr}{2}k + 6\frac{nr}{2} - 6n\right) \\ &+ 4\frac{nr}{2}(3k+3) + 3k^2n + 3n] \\ &= n[3r^2(4k^2n + 15kn - n - 3) - (8k+1)r^3 \\ &- [3n^2(k+1)^2(2k+1) + 6n(k+1) + 3] \\ &+ (k+1)^4n^3 + (k+1)^3n^2 + (6(k+1)^2 + 3k - 1)n^2 + 3n \\ &- 1] \end{split}$$

F-Index of Generalized Mycielskian of Graph Operations

Lemma 4.1: [15] Let G_1 and G_2 be graphs. The F-index of union of G_1 and G_2 is given by

$$F(G_1 \cup G_2) = F(G_1) + F(G_2).$$

Lemma 4.2: Let G_1 and G_2 be graphs. The first Zagreb index of union of G_1 and G_2 is given by

$$M_1(G_1 \cup G_2) = M_1(G_1) + M_1(G_2).$$

Lemma4.3: [15] Let G_1 and G_2 be graphs. The F-index of tensor product of G_1 and G_2 is given by

$$F(G_1 \times G_2) = F(G_1)F(G_2).$$

Lemma 4.4: [19] Let G_1 and G_2 be graphs. The first Zagreb index of tensorproduct of G_1 and G_2 is given by

$$M_1(G_1 \times G_2) = M_1(G_1)M_1(G_2).$$

Lemma 4.5: [15] Let G_1 and G_2 be graphs. The F-index of Cartesian product of G_1 and G_2 is given by

$$F(G_1 G_2) = n_2 F(G_1) + n_1 F(G_2) + 6m_2 M_1(G_1) + 6m_1 M_1(G_2).$$

Lemma 4.6: [12] Let G_1 and G_2 be graphs. The first Zagreb index of Cartesian product of G_1 and G_2 is given by

$$M_1(G_1 \square G_2) = n_1 M_1(G_2) + n_2 M_1(G_1) + 8m_1 m_2.$$

Lemma 4.7: [15] Let G_1 and G_2 be graphs. The F-index of Lexicographic product of G_1 and G_2 is given by

$$F(G_1[G_2]) = n_2^4 F(G_1) + n_1 F(G_2) + 6n_2^2 m_2 M_1(G_1) + 6n_2 m_1 M_1(G_2).$$

Lemma 4.8: [12] Let G_1 and G_2 be graphs. The first Zagreb index of Lexicographic product of G_1 and G_2 is

given by
$$M_1(G_1[G_2]) = n_2^3 M_1(G_1) + n_1 M_1(G_2) + 8n_2 m_1 m_2$$
.

Lemma 4.9: [15] Let G_1 and G_2 be graphs. The F-index of corona product of G_1 and G_2 is given by

$$\begin{split} F(G_1 \circ G_2) &= F(G_1) + n_1 F(G_2) + 3 n_2 M_1(G_1) + 3 n_1 M_1(G_2) \\ &\quad + 6 n_2^2 m_1 + 6 n_1 m_2 + n_1 n_2 (n_2^2 + 1). \end{split}$$

Lemma 4.10: [20] Let G_1 and G_2 be graphs. The first Zagreb index of coronaproduct of G_1 and G_2 is given

by
$$M_1(G_1 \circ G_2) = M_1(G_1) + n_1 M_1(G_2) + 4(n_2 m_1 + n_1 m_2) + n_1 n_2 (n_2 + 1).$$

Lemma 4.11: [15] Let G_1 and G_2 be graphs. The F-index of disjunction product of G_1 and G_2 is given by

$$\begin{split} F(G_1 \vee G_2) &= n_2^4 F(G_1) + n_1^4 F(G_2) - F(G_1) F(G_2) \\ &+ 6 n_1 n_2^2 m_2 M_1(G_1) + 6 n_1^2 n_2 m_1 M_1(G_2) \\ &+ 3 n_2 F(G_1) M_1(G_2) + 3 n_1 F(G_2) M_1(G_1) \\ &- 6 n_2^2 m_2 F(G_1) - 6 n_1^2 m_1 F(G_2) \\ &- 6 n_1 n_2 M_1(G_1) M_1(G_2). \end{split}$$

Lemma 4.12: [12] Let G_1 and G_2 be graphs. The first Zagreb index of disjunction product of G_1 and G_2 is given by

$$\begin{split} M_1(G_1 \vee G_2) &= n_2(n_1n_2 - 4m_2)M_1(G_1) \\ &+ n_1(n_1n_2 - 4m_1)M_1(G_2) + M_1(G_1)M_1(G_2) \\ &+ n_1n_2m_1m_2. \end{split}$$

Lemma 4.13: [15] Let G_1 and G_2 be graphs. The F-index of join of G_1 and G_2 is given by

$$F(G_1 + G_2) = F(G_1) + F(G_2) + 3n_2M_1(G_1) + 3n_1M_1(G_2) + 6n_2^2m_1 + 6n_1^2m_2 + n_1n_2^3 + n_2n_1^3.$$

Lemma 4.14: [12] Let G_1 and G_2 be graphs. The first Zagreb index of join of G_1 and G_2 is given by

$$M_1(G_1 + G_2) = M_1(G_1) + M_1(G_2) + n_1n_2[n_1 + n_2] + 4n_2m_1 + 4n_1m_2.$$

Theorem 4.15: Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two simple connected graphs such that $|V(G_1)| = n_1, |V(G_2)| = n_2$, $|E(G_1)| = m_1$ and $|E(G_2)| = m_2$. Then $F(\mu_k(G_1 \cup G_2)) = F(\mu_k(G_1)) + F(\mu_k(G_2)) + 3n_1n_2(n_1 + n_2)$.

Proof: Clearly
$$n = |V(G_1 \cup G_2)| = n_1 + n_2$$
 and $m = |E(G_1 \cup G_2)| = m_1 + m_2$. By lemma 2.3, 4.1 and 4.2

$$F(\mu_k(G_1 \cup G_2)) = (8k + 1)F(G_1 \cup G_2) + 3M_1(G_1 \cup G_2) + 6(m_1 + m_2) + (n_1 + n_2)((n_1 + n_2)^2 + 1)$$

$$= (8k + 1)(F(G_1) + F(G_2)) + 3(M_1(G_1) + M_1(G_2)) + 6m_1 + 6m_2 + +(n_1 + n_2) + (n_1^2 + n_2^2 + 2n_1n_2 + 1)$$

$$= (8k + 1)F(G_1) + (8k + 1)F(G_2) + 3M_1(G_1) + 3M_1(G_2) + 6m_1 + 6m_2 + n_1^3 + n_1 + 6m_2 + n_1^3 + n_1 + n_1^2 + 2n_1^2 + n_2 + n_1^2 + n_1^2 + n_2^3 + 2n_1n_2^2 + n_2$$

$$= (8k + 1)F(G_1) + 3M_1(G_1) + 6m_1 + n_1^3 + n_1 + (8k + 1)F(G_2) + 3M_1(G_2) + 6m_2 + n_2^3 + n_2 + 3n_1^2n_2 + 3n_1n_2^2$$

$$= (8k + 1)F(G_1) + 3M_1(G_1) + 6m_1 + n_1(n_1^2 + 1) + (8k + 1)F(G_2) + 3M_1(G_2)$$

$$+6m_2 + n_2(n_2^2 + 1) + 3n_1n_2(n_1 + n_2)$$

$$= F(\mu_k(G_1)) + F(\mu_k(G_2)) + 3n_1n_2(n_1 + n_2)$$

Theorem 4.16: Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two simple connected graphs such that $|V(G_1)| = n_1, |V(G_2)| = n_2$, $|E(G_1)| = m_1$ and $|E(G_2)| = m_2$. Then $F(\mu_k(G_1 \times G_2)) = (8k+1)F(G_1)F(G_2) + 3M_1(G_1)M_1(G_2) + 12m_1m_2 + n_1n_2(n_1^2n_2^2 + 1)$.

Proof: Clearly $n = |V(G_1 \times G_2)| = n_1 n_2$ and $m = |E(G_1 \times G_2)| = 2m_1 m_2$. By lemma 2.3,4.3 and 4.4 $F(\mu_k(G_1 \times G_2)) = (8k+1)F(G_1 \times G_2) + 3M_1(G_1 \times G_2) + 6(2m_1 m_2) + (n_1 n_2)((n_1 n_2)^2 + 1) = (8k+1)(F(G_1)F(G_2)) + 3(M_1(G_1)M_1(G_2)) + 12m_1 m_2 + n_1 n_2(n_1^2 n_2^2 + 1)$

Theorem 4.17: Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two simple connected graphs. Then

$$\begin{split} F \Big(\mu_k (G_1 \square G_2) \Big) &= (8k+1) n_2 F(G_1) + (8k+1) n_1 F(G_2) \\ &\quad + \left[(8k+1) 6 m_2 + 3 n_2 \right] M_1(G_1) \\ &\quad + \left[(8k+1) 6 m_1 \right. \\ &\quad + 3 n_1 \right] + M_1(G_2) + 24 m_1 m_2 + 6 (n_1 m_2 + n_2 m_1) \\ &\quad + n_1 n_2 (n_1^2 n_2^2 + 1). \end{split}$$

$$\begin{aligned} \mathbf{Proof:} \qquad & Clearly \qquad & n = |V(G_1 \square G_2)| = n_1 n_2 \text{and} \\ m &= |E(G_1 \square G_2)| = n_1 m_2 + n_2 m_1. \text{ By lemma } 2.3, 4.5 \text{ and } 4.6 \end{aligned}$$

$$F \Big(\mu_k (G_1 \square G_2) \Big) = (8k+1) F(G_1 \square G_2) + 3 M_1 (G_1 \square G_2) \\ &\quad + 6 (n_1 m_2 + n_2 m_1) + n_1 n_2 (n_1^2 n_2^2 + 1) \end{aligned}$$

$$= (8k+1) \{ n_2 F(G_1) + n_1 F(G_2) + 6 m_2 M_1(G_1) \\ &\quad + 6 m_1 M_1(G_2) \} \\ + 3 \{ n_1 M_1(G_2) + n_2 M_1(G_1) + 8 m_1 m_2 \} + 6 (n_1 m_2 + n_2 m_1) \\ &\quad + n_1 n_2 (n_1^2 n_2^2 + 1) \end{aligned}$$

$$= (8k+1) n_2 F(G_1) + (8k+1) n_1 F(G_2) \\ &\quad + \left[(8k+1) 6 m_2 + 3 n_2 \right] M_1(G_1) \\ + \left[(8k+1) 6 m_1 + 3 n_1 \right] M_1(G_2) + 24 m_1 m_2 \\ &\quad + 6 (n_1 m_2 + n_2 m_1) + n_1 n_2 (n_1^2 n_2^2 + 1) \end{aligned}$$

Theorem 4.18 Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two simple connected graphs. Then

$$\begin{split} F(\mu_k(G_1[G_2]) &= (8k+1)n_2^4F(G_1) + (8k+1)n_1F(G_2) \\ &\quad + \left[(8k+1)6n_2^2m_2 + 3n_2^3 \right] M_1(G_1) \\ + \left[(8k+1)6n_2m_1 + 3n_1 \right] M_1(G_2) + 24n_2m_1m_2 \\ &\quad + 6(m_1n_2^2 + m_2n_1) + n_1n_2(n_1^2n_2^2 + 1) \\ \textbf{Proof} \textbf{Clearly} &\quad n &= |V(G_1[G_2])| = n_1n_2 \textbf{and} \\ m &= |E(G_1[G_2])| = m_1n_2^2 + m_2n_1. \ \text{By lemma 2.3, 4.7 and 4.8} \\ F(\mu_k(G_1[G_2])) &= (8k+1)F(G_1[G_2]) + 3M_1(G_1[G_2]) \\ &\quad + 6(m_1n_2^2 + m_2n_1) + n_1n_2(n_1^2n_2^2 + 1) \\ &= (8k+1)\{n_2^4F(G_1) + n_1F(G_2) + 6n_2^2m_2M_1(G_1) \\ &\quad + 6n_2m_1M_1(G_2)\} + 3\{n_2^3M_1(G_1) \\ &\quad + n_1M_1(G_2) + 8n_2m_1m_2\} + 6(m_1n_2^2 + m_2n_1) + n_1n_2(n_1^2n_2^2 + 1) \\ &= (8k+1)n_2^4F(G_1) + (8k+1)n_1F(G_2) \\ &\quad + [(8k+1)6n_2^2m_2 + 3n_2^3]M_1(G_1) \\ + [(8k+1)6n_2m_1 + 3n_1]M_1(G_2) + 24n_2m_1m_2 \\ &\quad + 6(m_1n_2^2 + m_2n_1) + n_1n_2(n_1^2n_2^2 + 1). \end{split}$$

Theorem 4.19: Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two simple connected graphs. Then

$$\begin{split} F\big(\mu_k(G_1\circ G_2)\big) &= (8k+1)F(G_1) + n_1(8k+1)F(G_2) \\ &+ \left[(8k+1)n_2+1\right]3M_1(G_1) + \left[(8k+1)n_2+1\right] \\ &+ 1 \right] \\ &3n_1M_1(G_2) + 6(8k+1)n_2^2m_1 \\ &+ 24(2k+1)n_1m_2 + (8k+1)n_1n_2^3 \\ &+ (8k+11)n_1n_2 \\ &+ 12n_2m_1 + 6m_1 + n_1(3n_2^2+1) + n_1^3 \left[1+2n_2+3n_2^3+n_2\right]. \end{split}$$

$$\begin{aligned} \mathbf{Proof} \quad \text{Clearly} \quad n &= |V(G_1\circ G_2)| = n_1(1+n_2) \text{and} \qquad m = \\ |E(G_1\circ G_2)| &= m_1+n_1m_2+n_1n_2. \quad \text{By lemma } 2.3, \quad 4.9 \quad \text{and} \\ 4.10 \quad F\big(\mu_k(G_1\circ G_2)\big) &= (8k+1)F(G_1\circ G_2) + 3M_1(G_1\circ G_2) \\ &+ 6[m_1+n_1m_2+n_1n_2] + [n_1(1+n_2)] \\ [n_1^2(1+n_2)^2+1] &= (8k+1)[F(G_1)+n_1F(G_2)+3n_2M_1(G_1)+3n_1M_1(G_2) \\ &+ 6n_2^2m_1+6n_1m_2 \\ +n_1n_2(n_2^2+1)] + 3\{M_1(G_1)+n_1M_1(G_2)+4(n_2m_1+n_1m_2) \\ &+ n_1n_2(n_2+1)\} \\ +6[m_1+n_1m_2+n_1n_2] + [n_1(1+n_2)][n_1^2(1+n_2)^2+1] \end{aligned}$$

```
= (8k + 1)F(G_1) + n_1(8k + 1)F(G_2)
                                                                            +M_1(G_1)M_1(G_2)+n_1n_2m_1m_2
                  +[(8k+1)n_2+1]3M_1(G_1)
                                                                                               +6(m_1n_2^2+m_2n_1^2-2m_1m_2)
                         +[(8k+1)+1]3n_1M_1(G_2)+S_1
                                                                                               + + n_1 n_2 (n_1^2 n_2^2 + 1)
where S_1 = 6(8k + 1)n_2^2m_1 + 6(8k + 1)n_1m_2 +
                                                                        = (8k+1)n_2^4F(G_1) + (8k+1)n_1^4F(G_2) - (8k
(8k+1)n_1n_2(n_2^2+1)+12(n_2m_1+n_1m_2)
                                                                                           +1)F(G_1)F(G_2) + (8k+1)6n_1n_2^2m_2
      +3n_1n_2(n_2+1)+6[m_1+n_1m_2+n_1n_2]
                                                                       M_1(G_1) + (8k+1)6n_1^2n_2m_1M_1(G_2)
                        + [n_1 + n_1 n_2][n_1^2 (1 + n_2)^2 + 1]
                                                                                         +(8k+1)3n_2F(G_1)M_1(G_2)+(8k+1)
    = 6(8k+1)n_2^2m_1 + 6(8k+1)n_1m_2 + (8k+1)n_1n_2^3
                                                                          3n_1F(G_2)M_1(G_1) - (8k+1)6n_2^2m_2F(G_1) - (8k
                      +(8k+1)n_1n_2+12n_2m_1
                                                                                            +1)6n_1^2m_1F(G_2)-(8k+1)6n_1n_2
    +12n_1m_2 + 3n_1n_2^2 + 3n_1n_2 + 6m_1 + 6n_1m_2 + 6n_1n_2
                                                                          M_1(G_1)M_1(G_2) + 3n_1n_2^2M_1(G_1) - 12n_2m_2M_1(G_1)
                     + [n_1 + n_1 n_2]
                                                                                            +3n_1^2n_2M_1(G_2)-12n_1m_1M_1(G_2)
                    [n_1^2(1+2n_2+n_2^2)+1]
                                                                          +3M_1(G_1)M_1(G_2) + 3n_1n_2m_1m_2 + 6m_1n_2^2 + 6m_2n_1^2
    = 6(8k+1)n_2^2m_1 + 6(8k+1)n_1m_2 + (8k+1)n_1n_2^3
                                                                                            -12m_1m_2+n_1^3n_2^3+n_1n_2
                      +(8k+10)n_1n_2+12n_2m_1
                                                                     = (8k+1)(n_2^2 - 6m_2)n_2^2F(G_1)
                                                                                       + (8k + 1)(n_1^2 - 6m_1)n_1^2F(G_2) 
- (8k + 1)F(G_1)F(G_2)
  +12n_1m_2 + 3n_1n_2^2 + 6m_1 + 6n_1m_2
                    + [n_1 + n_1 n_2][n_1^2 + 2n_2 n_1^2 + n_1^2 n_2^2 + 1]
   = 6(8k+1)n_2^2m_1 + 24(2k+1)n_1m_2 + (8k+1)n_1n_2^3
                                                                            +(2n_1n_2^2m_2+n_1n_2^2-4n_2m_2)(8k+1)3M_1(G_1)
                     + (8k + 10)n_1n_2 + 12n_2m_1
                                                                                              +(2n_2n_1^2m_1+n_2n_1^2)
+3n_1n_2^2 + 6m_1 + n_1^3 + n_1^3n_2 + 2n_1^3n_2 + 2n_1^3n_2^2 + n_1^3n_2^2
                                                                                              -4n_1m_1)(8k + 1)3M_1(G_2)
                  + n_1^3 n_2^3 + n_1 + n_1 n_2
                                                                       +(8k+1)3n_2F(G_1)M_1(G_2)+(8k+1)3n_1F(G_2)M_1(G_1)
   = 6(8k+1)n_2^2m_1 + 24(2k+1)n_1m_2 + (8k+1)n_1n_2^3
                                                                                          -(8k+1)6n_1n_2M_1(G_1)M_1(G_2)
                     +(8k+11)n_1n_2+12n_2m_1
                                                                              +3n_1n_2m_1m_2 + 6(m_1n_2^2 + m_2n_1^2 - 2m_1m_2)
   +3n_1n_2^2 + 6m_1 + n_1^3 + n_1^3n_2 + 2n_1^3n_2 + 2n_1^3n_2^2 + n_1^3n_2^2
                                                                                                + n_1 n_2 (n_1^2 n_2^2 + 1).
                     + n_1^3 n_2^3 + n_1
                                                                     Theorem 4.21 Let G_1 = (V_1, E_1) and G_2 = (V_2, E_2) be two
   = 6(8k+1)n_2^2m_1 + 24(2k+1)n_1m_2 + (8k+1)n_1n_2^3
                                                                     simple connected graphs. Then
                     +(8k+11)n_1n_2+12n_2m_1
         +6m_1 + n_1(3n_2^2 + 1) + n_1^3[1 + 3n_2 + 3n_2^3]
                                                                      F(\mu_k(G_1 + G_2)) = (8k+1)F(G_1) + (8k+1)F(G_2)
F(\mu_k(G_1 \circ G_2)) = (8k+1)F(G_1) + n_1(8k+1)F(G_2)
                                                                                       +(3n_2+3)M_1(G_1)+(3n_1+3)M_1(G_2)
                  +[(8k+1)n_2+1]3M_1(G_1)+[(8k+1)
                                                                                             +6\{(8k+1)n_2^2m_1+(8k+1)n_1^2m_2
                                                                                         + n_1^2 n_2 + n_1 n_2^2 + 2 m_1 n_2 + 2 m_2 n_1 + m_1
                  3n_1M_1(G_2) + 6(8k+1)n_2^2m_1
                                                                              +n_1n_2} + (8k + 1)n_1n_2^3 + (8k + 1)n_1^3n_2 + n_1^3 + n_2^3
                      +24(2k+1)n_1m_2+(8k+1)n_1n_2^3
                      +(8k+11)n_1n_2
                                                                                         + n_1 + n_2
 +12n_2m_1+6m_1+n_1(3n_2^2+1)+n_1^3[1+2n_2+3n_2^3+n_2]
                                                                                   Clearly n = |V(G_1 + G_2)| = n_1 + n_2 and
                                                                     Proof
                                                                     |E(G_1 + G_2)| = m_1 + m_2 + n_1 n_2 . By lemma 2.3, 4.13 and
Theorem4.20 Let G_1 = (V_1, E_1) and G_2 = (V_2, E_2) be two
                                                                     4.14
simple connected graphs. Then
                                                                      F(\mu_k(G_1+G_2)) = (8k+1)[F(G_1) + F(G_2) + 3n_2M_1(G_1)]
                                                                                       +3n_1M_1(G_2)+6n_2^2m_1+6n_1^2m_2+n_1n_2^3
F(\mu_k(G_1 \vee G_2)) = (8k+1)(n_2^2 - 6m_2)n_2^2F(G_1)
                                                                     +n_2n_1^3] + 3\{M_1(G_1) + M_1(G_2) + n_1n_2[n_1 + n_2] + 4n_2m_1
                  + (8k + 1)(n_1^2 - 6m_1)n_1^2F(G_2) 
- (8k + 1)F(G_1)F(G_2)
                                                                                       +4n_1m_2
                                                                          +6\{m_1+m_2+n_1n_2\}+(n_1+n_2)[(n_1+n_2)^2+1]
       +(2n_1n_2^2m_2+n_1n_2^2-4n_2m_2)(8k+1)3M_1(G_1)
                                                                        = (8k+1)F(G_1) + (8k+1)F(G_2) + (3n_2+3)M_1(G_1)
                         +(2n_2n_1^2m_1+n_2n_1^2)
                                                                                          +(3n_1+3)M_1(G_2)+S_2
                         -4n_1m_1)(8k + 1)3M_1(G_2)
                                                                     where S_2 = (8k + 1)6n_2^2m_1 + (8k + 1)6n_1^2m_2 +
  +(8k+1)3n_2F(G_1)M_1(G_2) + (8k+1)3n_1F(G_2)M_1(G_1)
                                                                     (8k+1)n_1n_2^3 + (8k+1)n_1^3n_2 + 3n_1n_2(n_1+n_2)
                     -(8k+1)6n_1n_2M_1(G_1)M_1(G_2)
                                                                          +12m_1n_2 + 12m_2n_1 + 6m_1 + 6m_2 + 6n_1n_2
        +3n_1n_2m_1m_2+6(m_1n_2^2+m_2n_1^2-2m_1m_2)
                                                                                            +(n_1+n_2)[n_1^2+n_2^2+2n_1n_2+1]
                          + n_1 n_2 (n_1^2 n_2^2 + 1).
                                                                         = (8k+1)6n_2^2m_1 + (8k+1)6n_1^2m_2 + (8k+1)n_1n_2^3
         Clearly n = |V(G_1 \vee G_2)| = n_1 n_2 and
                                                                                           +(8k+1)n_1^3n_2+3n_1^2n_2+3n_1n_2^2
|E(G_1 \vee G_2)| = m_1 n_2^2 + m_2 n_1^2 - 2m_1 m_2. By lemma 2.3, 4.11
                                                                       +12m_1n_2+12m_2n_1+6m_1+6m_2+6n_1n_2+n_1^3+n_1^2n_2
and 4.12
                                                                                         + n_1 n_2^2 + n_2^3 + 2n_1^2 n_2
F(\mu_k(G_1 \vee G_2)) = (8k+1)F(G_1 \vee G_2) + 3M_1(G_1 \vee G_2)
                                                                     +2n_1n_2^2 + n_1 + n_2
                  +6(m_1n_2^2+m_2n_1^2-2m_1m_2)+n_1n_2(n_1^2n_2^2)
                                                                      = (8k+1)6n_2^2m_1 + (8k+1)6n_1^2m_2 + (8k+1)n_1n_2^3
                                                                                       +(8k+1)n_1^3n_2+6n_1^2n_2+6n_1n_2^2
               = (8k+1)[n_2^4F(G_1) + n_1^4F(G_2) - F(G_1)F(G_2)]
                                                                      +12m_1n_2 + 12m_2n_1 + 6m_1 + 6m_2 + 6n_1n_2 + n_1^3 + n_2^3 + n_1
                  +6n_1n_2^2m_2M_1(G_1)+6n_1^2n_2m_1M_1(G_2)
   +3n_2F(G_1)M_1(G_2) + 3n_1F(G_2)M_1(G_1) - 6n_2^2m_2F(G_1)
                                                                          = 6\{(8k+1)n_2^2m_1 + (8k+1)n_1^2m_2 + n_1^2n_2 + n_1n_2^2\}
                     -6n_1^2m_1F(G_2)
                                                                                            +2m_1n_2+2m_2n_1+m_1+m_2+
    -6n_1n_2M_1(G_1)M_1(G_2)] + 3\{n_2(n_1n_2 - 4m_2)M_1(G_1)\}
                                                                     n_1 n_2 \} + (8k+1) n_1 n_2^3 + (8k+1) n_1^3 n_2 + n_1^3 + n_2^3 + n_1 + n_2
                      + n_1(n_1n_2 - 4m_1)M_1(G_2)
```

$$\begin{split} F \big(\mu_k (G_1 + G_2) \big) &= (8k+1) F(G_1) + (8k+1) F(G_2) \\ &\quad + (3n_2 + 3) M_1 (G_1) + (3n_1 + 3) M_1 (G_2) \\ &\quad + 6 \{ (8k+1) n_2^2 m_1 + (8k+1) n_1^2 m_2 \\ &\quad + n_1^2 n_2 + n_1 n_2^2 + 2 m_1 n_2 + 2 m_2 n_1 + m_1 \\ &\quad + m_2 \\ &\quad + n_1 n_2 \} + (8k+1) n_1 n_2^3 + (8k+1) n_1^3 n_2 + n_1^3 + n_2^3 \\ &\quad + n_1 + n_2 \end{split}$$

References

- AmalorpavaJerline J, Dhanalakshmi K, Benedict Michelraj L, The First and the Second Zagreb Indices of the Generalised Mycielskian Of Graphs, Electronic Notes in Discrete Mathematics.53(2016) 239-258
- Arezoomand Majid, Bijan Taeri, Zagreb Inices of the Generalised Hierarchical Product of Graphs, MATCH commun.Math. Comput.Chem,69(2013) 131-140
- 3. Akhter S,Imaran M,Computing the Forgotten Topological Index of Four operations on Graphs, AKCE International Journal of Graphs and Combinatories,14 (2017)70-79
- 4. Balakrishnan R, Ranganathan K, A textbook of Graph Theory, Springer-Verlog, New York, 2000
- BasavanagoudB, Timmanaikar S, Computing First Zagreb and Forgotten Indices of certain Dominating Transformations Graphs of Kragujevac Trees, Journal of Computer and Mathematical Sciences, 8(3)(2017)50-61
- 6. Behtoei A, AnbarloeiM, Degree Distance Index of the Mycielskian and its complement, *Iranian Journal of Mathematical Chemistry*, 7(1)(2016)1-9
- Bindhusree A R, Lokesha v, and Ranjini P S,Topological Indices On the Complement of Mycleiskian Graphs,IOSR Journal of Mathematics 01-07
- 8. Furtula B, Gutman I, A Forgotten Topological Index, J . Math. Chem 53(2015) 1184-1190
- Gao W, Siddiqui M K, Imaran M, Jamil M K, Farahani M R, Forgotten Topological Index of Chemical Structurien Drugs, Saudi Pharm J,24(3)(2016)258-264
- 10. Gutman I, TrinajsticN,Graph theory and molecular orbitals. Total ∏ − electron energy of alternant hydrocarbons, Chem, Phys,Lett.17(1972)535-538

- Ghobadi.S ,Ghorbaninejad. M, First Zagreb Index, Findex and F- coindex of the Line Subdivision graphs, Turkish Journal of Analysis and Number Theory,5(1)(2017)23-26
- 12. Khalifeh M H, YousefiAzari H, Ashrafi A R, The first and the second Zagreb indices of graph operations, Discrete Appl.Math 157(2009)804-811
- 13. KonchN, Borah. P international Journal of mathematics trends and technology, 50(3)(2017)134-138
- 14. Mahdi Anbarloei, Ali Behtoei, Gutman index of the Mycielskian and its complement, arXiv:1502.01580v2 [math.CO] 13 Mar 2017
- 15. Nilanjan De. Sk. Md. Abu Nayeem, Anita Pal, F-index of some graph operations, Discrete Mathematics, Algorithms and Applications 8(2)(2016)1650025(17 pages) DOI:10.1142/S1793830916500257.
- 16. Nilanjan De. Narumi-Katayama Index of Some Derived Graphs, Bulletin of the International Mathematical; Virtual Institute,7(2017)117-128
- 17. Nilanjan De, Computing Certain Topological Indices of Generalised Mycielskian Graphs, International Journal of Discrete Mathematics, 2017 2(3)112-118
- 18. Pattabiraman K, Vijayaragavan M, F-indices and its Coindices of some Composite Graphs and their complements, *M J Journal an Applied Mathematics*, 1(1) (2016)26-31
- 19. Yarahmadi Z, Computing Some Topological indices of Tensor Product of Graphs, *Iranian Journal of Mathematical Chemistry*, 2(1)(2011)109-118
- 20. Yarahmadi Z, Ashrafi A R, The Szeged, vertex PI, first and second Zagreb indices of corona product of graphs, Filomat 26(3)(2012)467-472
- 21. ZhongyuanChe, Zhibo Chen, Lower and Upper bounds of the Forgotten Topological Index, MATCH Communication Math. Comput.Chem, 76(2016)635-648

How to cite this article:

AmalorpavaJerline J *et al.*, 2019, F – Index of Generalized Mycielskian of Graphs. *Int J Recent Sci Res.* 10(06), pp. 33076-33081. DOI: http://dx.doi.org/10.24327/ijrsr.2019.1006.3600
