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The effect of variable viscosity and thermal conductivity of the two dimentional stagnation point 
flow of an incompressible non-Newtonian micropolar fluid impinging on a permeable plate in 
presence of magnetic field is investigated. By means of similarity transformation the governing 
equations are reduced to boundary value problem of nonlinear coupled ordinary differential 
equations and solved numerically. The effects of different dimensionless parameters such as 
temperature dependent viscosity parameter and thermal conductivity parameter, microrotation 
parameter, Prandtl number etc. on flow and heat transfer has been studied. The results are presented 
graphically for velocity distribution, temperature distribution and micropolar distributions for 
various values of non-dimensional parameters. It is found that the effects of the parameters giving 
variable property of viscosity and thermal conductivity are significant.  

 

 
 

 
 

 
 
 

 
 

 
 

 
 
 
 
 
 

 
 

 
 

 
 

  
 
 

 

 
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 

 

 
 

 
 

 
 

 
 
 
 
  
 
 
 

INTRODUCTION 
 

The theory of micro polar fluids was originally formulated by 
Eringen [1]. For a resume of the theory and more recent 
literature see the book by Lukaszewiez [2].The two 
dimensional flow of a fluid near a stagnation point is a classical 
problem in fluid mechanics. It was first examined by Hiemenz 
[3], who demonstrated that the Navier-Stokes equations 
governing the flow can be reduced to an ordinary third order 
differential equation using similarity transformation. Owing to 
the nonlinearities in the reduced differential equation, no 
analytical solution is available and the nonlinear equation is 
usually solved numerically, subject to two-point boundary 
conditions, one of which is prescribed at infinity. 
 

The problem of stagnation point flow was extended in 
numerous ways to include various physical effects. The 
axisymmetric three-dimensional stagnation point flow was 
studied by Homman [4]. The results of these studies are of 
great technical importance; for example, in the prediction of 
skin-friction, as well as heat/mass transfer near stagnation 
regions of bodies of high speed flows, and also in the design of 
thrust bearings and radial diffusers, drag reduction, 
transpiration cooling, and thermal oil recovery. In either the 
two or three dimensional case, Navier-Stokes equations 
governing the flow are reduced to an ordinary differential 

equation of the third order using a similar transformation. The 
effect of suction on the Hiemenz flow problem has been 
considered in the literature. Schlichting and Bussman [5] were 
the first to give the numerical results. More detailed solutions 
were later presented by Preston[6]. An approximate solution to 
the problem of uniform suction is given by Ariel [7]. The effect 
of uniform suction on the Homman problem, where the flat 
plate is oscillating in its own plane, is considered by Weidman 
and Mahalinggam [8]. In hydromantic, the problem of Hiemenz 
flow was chosen by Na[9] to illustrate the solution of a third 
order boundary value problem using the technique of finite 
differences. An approximate solution of the same problem has 
been provided by Ariel[10]. Attia gave the effect of an 
externally applied uniform magnetic field on the two or three-
dimensional stagnation point flow in the presence of uniform 
suction or injection. 
 

The study of heat transfer in boundary layer flows is of 
importance in many engineering application, such as the design 
of thrust bearings and radial diffusers, transpiration cooling, 
drag reduction, and thermal recovery of oil. Massoudi and 
Ramezan [11] used a perturbation technique to solve for the 
stagnation point flow and heat transfer of a second grade non-
Newtonian fluid. Their analysis is valid only for small values 
of the parameter that determines the behavior of the non-
Newtonian fluid. Later, Massoudi and Ramezan [12] extended 
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the problem to non-isothermal surfaces. Garg [13] improved 
the solution obtained by numerically computing the flow 
characteristics for any value of the non-Newtonian parameter 
using a pseudo-similarity solution. Non-Newtonian fluids have 
been considered by many researchers. Thus, among the non-
Newtonian fluids, the solution of the stagnation point flow for 
visco elastic fluids has been given by Rajeshwari and Rathna 
[14], Beard and Walters [15] Stagnation point flow of a non-
Newtonian micro polar fluid was studied by Nath [16] and 
Nazar et al.[17] in the hydrodynamic case. 
 

Through the viscosity and thermal conductivity are assumed as 
constant properties but these are temperature dependent. There 
in this paper we considered the effect of variable viscosity and 
thermal conductivity on the steady laminar flow of an 
incompressible non-Newtonian micro polar fluid at a two-
dimensional stagnation point with heat transfer.  
 

Governing Equations 
 

The equation of motion for incompressible viscous micro polar 
fluid is given by 
 

     2. .
V

V V p V V N F
t

   
 

           
 


      ,       (2.1)                   

           

where    is the mass density of the fluid, p is the pressure, µ is 

the viscosity, N


 is the angular velocity, κ is the material 

constant and t denotes time. F


 is the body force per unit 
volume due to flow through porous media given by 

            
*

v
F V




 
,                   (2.2)                    

where ν is the kinematic viscosity of the fluid and λ* is the 
coefficient of permeability of the porous media. 
The equation of angular momentum for incompressible viscous 
micro polar fluid is given by 
 

      . 2
N

j V N N V N
t

   
 

         
 


     ,                (2.3) 

  

where j is the micro-inertia per unit mass, γ is the material 
constants. 
The equation of heat transfer is given by 
 

      . .p

T
C V T T

t
    

 
       

 


,   (2.4)     

     
where Cp is specific heat at constant pressure, T is the 
temperature of the fluid, λ is the coefficient of thermal 

conductivity of the fluid,   is the viscous dissipation function 

and is given by 
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                    

 (2.5) 

 

Formulation of the problem 
           

Consider the two-dimensional stagnation point flow of an 
incompressible non-Newtonian micro polar fluid impinging 
perpendicular on a permeable wall and flowing away along the 
x-axis. This is a plane potential flow which arrives from the y-

axis and impinges on a flat wall placed at y =0, divides into two 
streams on the wall, and leaves in both directions. The flow is 
through a porous medium, where the Darcy model is assumed. 
The viscous flow must adhere to the wall, whereas the potential 
flow slides along it. (u, v) are the components of velocity at any 
point (x, y) for the viscous flow, whereas (U,V) are the velocity 
components for the potential flow. The velocity distribution in 
the frictionless flow in the neighborhood of the stagnation point 
is given by  
 

U(x) =ax, V(y) = -ay  
  

Where the constant a (>0) is proportional to the free stream 
velocity far away from the surface.  
 

Mass equation: 
u

x
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+
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Momentum equation: 
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Angular momentum equation:  
 

  (u
N

x




 + v

N

y




) = 

j

 2

2

N

y




 - 

h

j
(2N +

u

y




)               (3.3)                                                                                       

       
Energy equation:  
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where N is the micro rotation or angular velocity whose 
direction of rotation is in the x-y plane, μ is the velocity of the 

fluid,   is the density of the fluid, K  is the Darcy 

permeability and j,   and h are the micro-inertia per unit mass, 

spin gradient viscosity, and vortex viscosity respectively which 

are assumed to be constant,  is the thermal conductivity and 
Cp is the specific heat at constant pressure. Here   is assumed 

to be given by  
 
  = ( μ+h/2)l  

   
and we take l=ν/α as a reference length and ν is the kinematic 
viscosity.               
The appropriate physical boundary conditions of equations are 

u(x,0)= 0 , v (x, 0 )= 0, N(x, 0) = - n
u

y




      T(x,0) =Tw 

y  :  u (x,y) U(x) = ax,  v(x,y) 0, N(x,y) 0, 

T(x,y)  T   
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Where n is a constant and 0 n 1. The case n = ½ indicates 
the vanishing of the anti-symmetric part of the stress tensor and 
denotes week concentration of microelements. The governing 
equations subject to the boundary conditions can be expressed 
in a simpler form by introducing the following transformation  

  =
a

y


, u = axƒ′( ), v = - a νƒ( ), N =ax 
a


 g ( ),  

g( ) = - ½ ƒ″( ) (3.7)                         and     

θ( ) = 

W

T T

T T







                  (3.8)                                                                                                                                

 
The fluid viscosity is assumed to be inverse linear function of 
temperature   as  

   
1 1 1

1 , rT T a T T
  



       ,      

a= 




  and     
1

rT T
                                              (3.9)     

where a and  rT  are constants and their values depends on the 

reference state and the thermal property of the fluid. In general 

a>0 for liquids and a<0 for gases. rT  is transformed reference  

temperature related to viscosity parameter. α is constant based 

on thermal property and    is the viscosity at T=T   

similarly, consider the variation of thermal conductivity as,  
 

   
1 1 1

1 , kT T b T T
  



       , b= 




  and   

1
kT T

                                                                  (3.10) 

 

where b and  kT  are constants and their values depends on the 

reference state and thermal property of the fluid   is constant 

based on thermal property and  is the viscosity at T=T∞. 

Using equation (12), it can be easily verified that the continuity 
equation is satisfied automatically and using equation (12)- 
(15) in the equations (7) –(9) become, 
 

 21 0
2

r r r r r

r r r r r

K
f f ff f f m Mf

         


    

       
                 
   

        

                               (3.11)                              
 

1
2

K 
 

 
g″= K( 2g + ƒ″ ) + ƒ′ g –f g              (3.12)                                                                                                 

     

and  
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   2 2 2

2
0kk k

r

k kk

P f M f f
  

 
   

   
       

  

  (3.13)                                                                                       

Where  0
h

K


   is the material parameter, 
K

m
a




 is 

the porosity parameter. 
Transform boundary conditions are    
 

 f =0, f  =0, g =- n f″ , θ =1                                          (3.15) 

f′ = 1, f 0, g0 , θ =1    
      

RESULTS AND DISCUSSION 
 

In this paper we have attempted to develop a mathematical 
analysis for investigating the effect of variable viscosity and 
thermal conductivity of stagnation point flow and heat transfer 
of a micro polar fluid in a porous medium in presence of 
magnetic field.  
 

 

Fig 1  Velocity distribution profiles f   along against η for various values of 

viscosity parameter θr taking  Pr=0.70  Ec=0.10 go=1.00 m=0.10 K=0.10 
M=0.10  θk=-10.00 

 

 
 

Fig 2 Velocity distribution profiles f ′ along against η for various values of 
parameter M taking  Pr=0.70  Ec=0.10 go=1.00  K=0.10 θr=-10.00  θk=-10.00 

 

 
 

Fig 3 Velocity distribution profiles f ′ along against η for various values of 
parameter  θr taking  Pr=0.70  Ec=0.10 go=1.00 M=0.10 K=0.10 θk=-10.00 
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Fig 4 Micro rotation distribution profiles g along against η for various values of 
parameter M taking  Pr=0.70  Ec=0.10 go=1.00 K=0.10 θr=-10.00 θk=-10.00 

 

 
 

Fig 5 Micro rotation distribution profiles g along against η for various values of 
parameter θr taking  Pr=0.70  Ec=0.10 go=1.00 m=0.10 K=0.10 M=0.10  θk=-

10.00 
 

 
Fig 6 Temperature distribution profiles along against η for various values of 

parameter θk taking  Pr=0.70  Ec=0.10 go=1.00 m=0.10 K=0.10 M=0.10 θr=-
10.00 

 

The system of differential equations (3.2), (3.3) and (3.4) 
governed by the boundary conditions (3.6)  is solved 
numerically by applying numerical techniques based on the 
common Runge-Kutta shooting method [1980]. Numerical 
computation for velocity and temperature field was carried out 
for various values of the viscosity parameter and thermal 
conductivity parameter and M. 
 

The graphical representation of velocity distribution ( f ), axial 

velocity distribution ( f  ), micro rotation distribution ( g ), 

temperature distribution against  are presented in figures (Fig. 

1–Fig. 6) for different values of the parameters as mentioned in 
the respective figures.  
 

Initially solution was taken for constant values of  Pr=0.70, 
Ec=0.10, go=1.00, m=0.10, M=0.10, θr=-10.00, θk=-10.00 with 
the viscosity parameter θr ranging from -12 to -1 at the certain 
values of θk=-10. Similarly the solutions have been found with 
varying the thermal conductivity parameter  θk  ranging from -
12 to -1 at the certain values of θr=-10 keeping other values 
remaining same. Solutions have also been found for different 
values of parameters M and m. The Fig. (1-3) represents the 
variation in velocity distribution with the variation of viscosity 
parameter θr and parameter M at prescribed surface 
temperature.  
 

From Fig. (1) it is seen that the velocity distribution increases 
as viscosity parameter  
 

θr increases. From Fig. (2 and 3 ) show the variation of velocity 
distribution with the variation of magnetic parameter M and 
viscosity parameter θr at prescribed surface temperature. From 
Fig. (2) and (3) it is seen that the velocity (u) decreases as 
parameter M increases and increases as parameter θr  increases. 
From Fig. (4), it is seen that the micro rotation distribution g 
decreases for smaller values of η  for the increasing values of 
magnetic parameter (M).  
 

From Fig. (5), it is seen that the microrotion distribution 
decreases as θr increases. From Fig. (6), it is seen that the 
temperature distribution increases as temperature 
corresponding to the thermal conductivity parameter increases. 
The presented analysis has shown that the flow field is 
appreciably influenced by the viscosity temperature-variation, 
thermal conductivity-temperature variation. Therefore, we can 
conclude that to predict more accurate results the variable 
viscosity, thermal conductivity effects have to be taken in to 
consideration in the electrically conducting fluid. 
 

CONCLUSIONS 
 

In this study, the effect of variable viscosity and thermal 
conductivity of of the two-dimensional stagnation point flow of 
an non-Newtonian micropolar fluid with heat transfer through 
porous medium in presence of magnetic field is examined. The 
resulting partial differential equations, which describe the 
problem, are transformed into ordinary differential equations 
by using similarity transformations. Numerical evaluations are 
performed and graphical results are obtained. The results 
presented demonstrate clearly that the viscosity and thermal 
conductivity parameters have a substantial effect on velocity 
distribution, micropolar distribution and temperature 
distribution. 
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