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In this work, we focused on heat transfer analysis of Eyring Powell fluid from an isothermal sphere 
with the effects of radiation and thermal slip. The governing momentum and energy equations are 
transformed to nonlinear ordinary differential equations by use of a non-similarity transformation. 
These equations are described by numerically subject to physical applicable boundary conditions 
using the second order exact implicit finite difference Keller-box technique. The boundary layer 
conservation equations are parabolic in nature. The effects of Eyring Powell fluid parameter, 
Radiation parameter, Prandtl number and Thermal Slip on velocity and temperature profiles are 
discussed. 
 
 
 
 
 
  
 
  

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

INTRODUCTION 
 

The dynamics of non-Newtonian fluids has been a popular area 
of research because of its applications. Examples of such fluids 
include coal-oil slurries, shampoo, paints, clay coating and 
suspensions, grease, cosmetic products, custard and many 
others. The classical equations employed in simulating 
Newtonian viscous flows i.e., the Navier-Stokes equations fail 
to simulate a number of critical characteristics of non-
Newtonian fluids. Hence several constitutive equations of non-
Newtonian fluids has been presented over the past decades. The 
relationship between the shear stress and rate of strain in such 
fluids are very complicated in comparison in to viscous fluids. 
The viscoelastic features in non-Newtonian fluids and more 
complexities in the resulting equations. Besides all these 
challenges, several researchers even now are engaged in the 
flow analysis of non-Newtonian fluids. Hence several 
constitutive equations of non-Newtonian fluids have been 
presented over the past decades. Casson model, second- order 
Reiner-Rivlin differential fluid model, power-law Nano scale 

models, Eringen micro-morphic models, Jeffery’s viscoelastic 
models. 
 

The combination of natural and forced convection is known as 
dual convection and it is one of the main factors which affects 
the particle depositions. Dual convection flow plays a key role 
in electronic devices cooled by fans, atmosphere and ocean 
flows, drying of porous solid, solar power collectors, etc. In 
1944, Eyring and Powell proposed a distinct model known as 
Powell-Eyring fluid model (Powell and Eyring, 1944). This 
model has certain benefits over another non-Newtonian model, 
because it is derived from molecular theory of gases rather than 
the experimental relation and turn into viscous (Newtonian) 
mode at high and low shear rates. Even though mathematically 
it is more complex but advantages of this fluid model 
overcomes its the mathematics. Heat, mass diffusion through 
Powell-Eyring fluid plays a vital role in different geophysical, 
natural and industrial problems. For example moisture and 
temperature distribution over agricultural pitches, 
environmental pollution, underground energy transport, etc. 
(Hayat et al, 2012) studied the steady flow of a Powell-Eyring 
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fluid over a moving surface with convective boundary 
conditions. (Jalil et al, 2013) studied the flow and heat transfer 
of Powell-Eyring fluid over a moving surface in a parallel free 
stream. (Nagaraja et al, 2017) studied the laminar free 
convection boundary layer flow of Eyring Powell non-
Newtonian fluid past a horizontal circular cylinder in the 
occurrence of magnetic field and Soret and Dufour effects. 
(Gaffar et al, 2016) investigates the nonlinear, steady boundary 
layer flow and heat transfer of an incompressible Eyring-
Powell non-Newtonian fluid from an isothermal sphere with 
Biot number effects. (Malik et al, 2013) presented boundary 
layer flow of an Eyring Powell model fluid due to a stretching 
cylinder with variable viscosity. (Agbaje et al, 2017) explained 
this Paper he investigate the unsteady boundary-layer flow of 
an incompressible Powell-Eyring nanofluid over a shrinking 
surface.  (Rehman et al, 2017) analyzed unsteady 
characteristics of magneto-hydrodynamic dual convection 
boundary layer stagnation point flow of Powell-Eyring fluid by 
way of cylindrical surface. (Patel and Timol, 2009) numerically 
examined the flow of Eyring - power fluids from a two-
dimensional wedge. (Zueco and Beg, 2009) numerically 
studied the pulsatile flow of Eyring-Powell model. The effects 
of heat generation and thermal radiation on the fluid flow are 
taken into account. Radiation is the emission or transmission of 
energy in the form of waves or particles through space or 
through a material medium. Thermal radiation is a common 
synonym for infrared radiation emitted by objects at 
temperatures often encountered on Earth. Thermal radiation 
refers not only the radiation itself, but also the process by 
which the surface of an object radiates its thermal energy in the 
form black body radiation. Thermal radiation is generated 
when energy from the movement of charged particles within 
atoms is converted to electromagnetic radiation. (Gupta et al, 
2013) used a vibrational finite element to simulate mixed 
convective-radiative micropolar shrinking sheet flow with a 
convective boundary conditions. (Ramachandra Prasad et al, 
2007) analyzed the interaction of free convection with thermal 
radiation of a viscous incompressible unsteady flow past an 
impulsively started vertical plate with heat and mass transfer. 
(Agbaje et al, 2016) studied a numerical study of unsteady non-
Newtonian Powell-Eyring nanofluid flow over a shrinking 
sheet with heat generation and thermal radiation. Muhammad 
(Tamoor et al, 2017) studied the primary focus of this paper 
was to numerically investigate the radiation and slip effects on 
the axi-symmetric laminar boundary layer flow of a viscous, 
incompressible fluid, electrically conducting fluid past a 
permeable stretching cylinder embedded in a porous medium. 
(Rapits, 1998) has analyzed the thermal radiation and free 
convection flow through a porous medium. (Chamka et al, 
2001) have studied the radiation effects on free convection 
flow past a semi-infinite vertical plate with mass transfer. 
(Hayat et al, 2016) studied the combined effects of nonlinear 
thermal convection and radiation in 3D boundary layer flow of 
non-Newtonian Nano fluid are scrutinized numerically. 
(Nagendra et al, 2017) examined the nonlinear steady state 
boundary layer flow, Mathematical study of non-Newtonian 
nanofluid transport phenomena from an isothermal sphere, 
(Amanulla et al, 2017) explained Numerical Study of Thermal 
and Momentum Slip Effects on MHD Williamson Nanofluid 
from an Isothermal Sphere. (Nagendra et al, 2008) investigated 
Peristaltic motion of a power-law fluid in an asymmetric 

vertical channel. (Miraj et al, 2011) examined the effects of 
viscous dissipation and radiation on magneto-hydrodynamic 
free convection along a sphere with joule heating and heat 
generation. Further recent analyses include (Makinde and Aziz, 
2010). (Gupta et al, 2014) used a vibrational finite element to 
simulate mixed convective radiative micropolar shrinking sheet 
flow with a convective boundary condition. 
 

The objective of the present study is to examine ‘Effects of 
Radiation and Thermal Slip on Heat Transfer Analysis of non-
Newtonian Fluid from an Isothermal Sphere’. Numerical 
solutions for the velocity and the temperature distributions are 
obtained using a Keller-Box finite difference method. 

 

Non-Newtonian Constitutive Eyring-Powell Fluid  
 

In the present study a subclass of non-Newtonian fluids known 
as the Eyring-Powell fluid is employed flowing to its 
simplicity. The Cauchy stress tensor, in an Eyring-Powell non-
Newtonian fluid takes the form: 
 

1 11sinh
u ui i

ij x C xj j
 



 
 
  
 

  
 

                                  (1)  

Where   is dynamic viscosity,  and C  are the rheological 
fluid parameters of the Eyring-Powell fluid model. Consider 
the second-order approximation of the 1sinh   function as: 
 

3
1 1 11sin h

6
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
   
   
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    
  

            (2)                      

Where      
1 1

ui
C x j





 

The introduction of the appropriate terms into the flow model is 
considered next. The resulting boundary value problem is 
found to be well-posed and permits an excellent mechanism for 
the assessment of rheological characteristics on the flow 
behavior. 
 

Mathematical Flow Model 
 

Consider the steady, laminar, two-dimensional, viscous, 
incompressible, buoyancy-driven convection heat transfer flow 
from an Isothermal Sphere embedded in an Eyring Powell non-
Newtonian fluid. Fig.1 shows the flow model and physical 
coordinate system. Here x is measured along the surface of the 
sphere and y is measured normal to the surface, respectively 
and r is the radial distance from symmetric axes to the surface. 
r =a sin(x/a), ‘a’ is the radius of the sphere. 

 
Fig 1 Physical model and coordinate system 

 

The governing conservation equations can be written as 
follows: 
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
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                                   (5)      

Whereu  and v  are velocity components in x and y  
directions respectively. The boundary conditions are prescribed 
at the surface and the edge of the boundary layer regime, 
respectively as follows: 

0 : 0, 0, ( )

: 0

TAt y u v K h T Tw wy

As y u T T



     


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      (6)      

Here  T  is the free stream temperature,  k  is the thermal 

conductivity, wh  is the convective heat transfer coefficient, 

and wT  is the convective fluid temperature. The stream 
function    is defined by 
 

( ) ( )andr rru rv
y x
  

  
 

                               (7)    

And therefore, the continuity equation is automatically 
satisfied. In order to render the governing equations and the 
boundary conditions in dimensionless form, the following non-
dimensional quantities are introduced.           
 

3
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
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            (8) 

In view of the transformations defined in the above equations, 
the boundary layer eqns. reduce to the following third order 
system of dimensionless partial differential equations of 
momentum and energy for the regime. Substituting eqns. (8) 
into the Eqns. (4)- (5), we obtain the following equations as 
 

sin2 2 2) (1 cot )(1 f ff ff f f f f f
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  
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The transformed dimensionless boundary conditions are as 
follows 

0, 0, 0 , 1 (0)

, 0, 0

At f f ST
As f

  

 

     
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                  (11)     

Here primes indicate the differentiation with respect to    and 
1
4w

T
ahS Gr
k

  is the thermal slip parameter. The wall 

thermal boundary condition in (11) relates to convective 
cooling. The skin rubbing coefficient and Nusselt number (heat 
transfer rate) can be defined using the transformations depicted 
in the above with the following expressions. 

 
3

334 (1 ) ( , 0) ( , 0)
3

Gr C f ff
    


       (12) 

 

  1 4 ,0Gr Nu                                                         (13)        
             

The location,  � 0  , corresponds to the vicinity of the lower 
stagnation point on the sphere. 
Since s in 0

0



  i.e. For this scenario, the model defined by 

equations(9)- (10) contracts to an ordinary differential 
boundary value problem: 

   21 0f f f f                                        (14)    
                                                                                 

0f
Pr
 


                                                                       (15)    
   

The general model is solved using a powerful and 
unconditionally stable finite difference technique introduced by 
(Keller, 1978). The Keller-box method has a second order 
accuracy with arbitrary spacing and attractive extrapolation 
features.  
 

Numerical Solution   
 

In this study, the efficient Keller-Box implicit difference 
method has been utilized to solve the general flow model 
characterized by equations with boundary conditions .This 
strategy was initially developed for low speed aerodynamic 
boundary layers and this system is produced by Keller and this 
frame work is developed by (Cebeci and Bradshaw, 1984).This 
strategy has been utilized in a various scope of modern multi-
physical fluid flow issues. This technique remains among the 
most effective, adaptable and exact computational finite 
difference schemes employed in modern viscous fluid 
dynamics simulations. This method has been utilized broadly 
and effectively for more than three decades in a large spectrum 
of nonlinear fluid mechanics problems. Keller’s techniques 
provides unconditional stability and rapid convergence for 
strongly non-linear flows. It includes four key stages, 
summarized below. 
 

1. Reduction of the Nth order partial differential 
equation frame work to N first order equations 

2. Finite difference discretization of reduced equations  
3. Quasilinearization of non-linear Keller mathematical 

equations       
4. Block-tridiagonal elimination of linearized Keller 

mathematical equations 
 

Phase a: Reduction of the nth order partial differential 
equation system to N first order equations 
 

New variables are introduced to Eqns. (9) - (10) subject to the 
boundary conditions are first written as a system of first order 
equations. For this purpose, we reset eqns. (9) - (10) as a set of 
simultaneous. 
     , , , , ,u x y f v x y f t x y                         (16) 

These denote the variables for velocity and temperature 
respectively. Now Eqns. (9) - (10) are solved as a set of third 
order simultaneous differential equations: 
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Where primes denote differentiation . In terms of the 
dependent variables, the boundary conditions become: 
 

0, 0, 1 0
0, 0, 0

f u s at
u v s as




   
   

                          (22) 

                                                                                     

Phase b: Finite difference discretization of reduced boundary 
layer equations 
 

A two - dimensional computational grid (mesh) is imposed on 
the   plane as sketched in Fig.2. The stepping process is 
defined by: 

0, , 1, 2, ..... ,0 1 jh j Jj j J         
      (23)        

10 0, , 1, 2, .............
n n

k n Nn  


            (24)    

Where k and hn j
denote the step distances in the  (stream 

wise) and   (span wise) directions respectively 

 
Fig 2 keller Box element and boundary layer mesh 

If ng j  denotes the value of any variable at , nn j 
 
 
 

, then the 

variables and derivatives of equations. (25) (16)-(21) at 
1 2,1 2
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We now state the finite-difference approximation for equations 
(16) - (21) for the mid-point ,1 2

n
j  

  
, below 
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Where, we have used the following abbreviations    
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The boundary conditions are  
 

0 0 00, 1, 0, 0, 0n n n n n n
j j jf u s u v S             

 

Phase c: Quasilinearization of Non-Linear Keller Algebraic 
Equations 
 

If we assume 1 1 1 1 1 1, , , , ,n n n n n n
j j j j j jf u v s t q       to be known 

for the solution of 8J+8 equations for the solution of 6J+6 
unknowns , , , , ,n n n n n n

j j j j j jf u v s t q 0,1, 2...j J . This non - 
linear system of algebraic equations is linearized by means of 
Newton’s method as explained in (Keller, 1970) and (Subba 
Rao, 2016). 
 

Phase d: Block-tridiagonal Elimination of Linear Keller 
Algebraic Equations 
 

The linear system is solved using the block-elimination 
method, since it possess a block-tridiagonal structure consists 
of variables or constants, but here an interesting feature can be 
observed, namely that it consists of block matrices the 
complete linearized system is formulated as a block matrix 
system, where each element in the co-efficient matrix is a 
matrix itself. Then, this system is solved using the efficient 
Keller-box method. The numerical results are strongly 
influenced by the number of mesh points in both directions. 
After some trials in the  -directions (radial coordinate) a 
larger number of mesh points are selected whereas in the  -
directions (tangential coordinate) significantly less mesh points 
are necessary. The numerical algorithm is executed in 
MATLAB on a PC. The method demonstrates excellent 
stability, convergence and consistency, as elaborated by Keller. 
Coupled boundary layer equations in a  ,   coordinate 
system remain strongly nonlinear. A numerical method, the 
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Keller-Box implicit difference method, is therefore deployed to 
solve the boundary value problem defined by eqns. (9) - (10) 
with the boundary conditions (11).   
 

NUMERICAL RESULTS AND DISCUSSION   
 

Comprehensive solutions have been obtain and are presented in 
Figs. 3-10. The numerical issues includes   two independent 
variables (,), two dependent fluid dynamic variables  
and 4 thermo-physical and body constrained control 
parameters, namely ,Pr, F and TS . 
 

Figures 3- 4 illustrates the effect of Eyring-Powell fluid 
parameter , on velocity  f   and temperature  
distributions through the boundary layer regime. Velocity is 
significantly decreased with increasing   at larger distance 
from the sphere surface owing to the simultaneous drop in 
dynamic viscosity. Conversely, temperature is consistently 
enhanced with increasing values of     the mathematical 
model reduces to the Newtonian fluid as 0  and 0  . 
The momentum boundary layer equation in this case contracts 
to the familiar equation for Newtonian mixed convection from 
a sphere, viz. 
 

  sin2(1 cot ) f ff ff f f f
   

  
              

     (35) 

 
Fig 3 Influence of   on velocity profiles 

 
Fig 4 Influence of on temperature profiles 

 
Fig 5 Influence of F on velocity 

 
Fig 6 Influence of F on temperature profiles 

 

Figures 5and 6 show the effects of radiation parameter F, It is 
observed that the velocity and temperature profiles are 
converges and close to the boundary layer when increasing the 
radiation parameter. The flow is accelerated and velocity is 
increased. The temperature profiles are also increases when 
increasing the radiation parameter. 
 

Figures 7 and 8 depicts the effect of Prandtl number (Pr) on the 
velocity f  , temperature   distributions with transverse 

coordinate (). Fig. 6 shows that with increasing Prandtl 
number there is a strong deceleration in the flow. The Prandtl 
number expresses the ratio of momentum diffusion rate to 
thermal diffusion rate. When Pr is unity both momentum and 
heat diffuse at the same rate and the velocity and thermal 
boundary layer thicknesses are the same.  The monotonic 
decays in fig.7 are also characteristic of the temperature 
distribution in curved surface boundary layer flows.  
Figures 9 and 10 illustrate the influence of the thermal slip TS
on the transient velocity and temperature. As TS  increases the 
velocity and temperature decreases. The cause the   temperature   
buoyancy effects to decrease yielding a reduction in the fluid 
velocity. The increasing in the velocity and temperature 
profiles is accompanied by simultaneous reductions in velocity 
and temperature on boundary layer. 

 
Fig 7 Influence of Pr  on velocity profiles 

 
Fig 8 Influence of Pr  on temperature profiles 

 

 ,f 
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Fig 10 Influence of TS  on velocity profiles 

             
Fig 10 Influence of TS  on temperature profiles 

 

CONCLUSIONS 
 

Numerical solutions have been presented for the heat transfer 
analysis of non-Newtonian fluid from an Isothermal sphere 
with the effects of Radiation and Thermal Slip. The Keller-box 
implicit second order accurate numerical scheme has been 
utilized to efficiently solve the transformed, dimensionless 
velocity and boundary layer equations, subject to realistic 
boundary conditions. Excellent correlation with previous 
studies has been demonstrated testifying to the validity of the 
present code. The computations have shown that: 
 

 Increasing Eyring-Powell fluid parameter ( ) , 
reduces the velocity throughout the boundary layer, 
whereas it elevates temperature in the boundary layer. 

 Enhancing the radiation parameter ( )F , increases 
velocity and temperature profiles throughout the 
boundary layer regime. 

 Augmenting the Prandtl number (Pr) , depresses the 
velocity and the temperature profiles throughout the 
boundary layer regime. 

 Increasing the Thermal Slip ( )TS , increases velocity 
and decreases the temperature profiles. 
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