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Singh et al. (2017) have developed calibration estimators of population mean in two-stage stratified
random sampling by calibrating integrated sampling design weight when the auxiliary information is
available at element (second stage unit) level for the entire population. Obviously, if the auxiliary
information is available at the element level for entire population, then population mean/total of the
auxiliary variable is also known. In the present paper, double (two-steps) calibration estimators of
the population mean have been developed by calibrating integrated sampling design weight at first
step and calibrating stratum weight at the second step using known population total/mean of the
auxiliary variable. A limited simulation study with real data has been conducted to examine the
relative performance of the calibration estimators over the usual estimator of the population mean
without using auxiliary information in two-stage stratified random sampling. It has been found
from the results of simulation study that double (two-steps) calibration estimator has brought
considerable improvement in the precision of the estimate of population mean.

Copyright © Dhirendra Singh, 2018, this is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is

properly cited.

INTRODUCTION

Deville and Sarndal (1992) made use of known population
totals of auxiliary variables related to the study variate to
calibrate sampling design weight for improving Horvitz-
Thompson estimator of population total of the variable of
interest. Several research workers have made significant
contribution in this area. Sdrndal (2007) and Kim and Park
(2010) have presented a comprehensive review of the work in
calibration estimation in sample surveys. Calibration approach
based estimation of population total has been extended to
stratified random sampling by Singh et al. (1998), Tracy et al.
(2003), Kim ef al. (2007), Singh and Arnab (2011), Sinha et al.
(2016) etc. Aditya et al. (2016) have developed calibration
approach based regression type estimator of population total in
two-stage sampling when the auxiliary information related to
the study variate is available at primary stage unit (psu) level.
Mourya et al. (2016) have also developed calibration estimator
in two-stage sampling when the auxiliary information is
available at second stage unit (ssu) level for selected psu(s).
Recently, Singh et al. (2017) have developed calibration
estimators of population mean in two-stage stratified random

*Corresponding author: Dhirendra Singh

sampling by calibrating integrated sampling design weight
when the auxiliary information is available at element (ssu)
level for the entire population. Obviously, if the auxiliary
information is available at the element level for entire
population, then population mean/total of the auxiliary variable
is also known. In the present paper, double (two-steps)
calibration estimators of the population mean have been
developed by (i) Calibrating integrated sampling design weight
at first step, and (ii) calibrating stratum weight at the second
step using known population total/mean of the auxiliary
variable in section-4., their variances are derived and properties
are discussed. Rest of the paper is organized as follows; the
usual estimator of population mean in two-stage stratified
sampling without using the auxiliary information is described
in section-2. Development of one-step calibration estimator in
two-stage stratified random sampling is described in section-3.
A simulation study with real data has been conducted to
examine the relative performance of the estimators in section-5.
A concluding remark has been presented in section-6.
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The usual estimator of population mean in two-stage
stratified random sampling without using auxiliary
information

Let the population of elements U =(1,2,3.....K,....N) is
partitioned into U,,U,,U,,....... U.,.... UN,

1

psu’s. The
denoted by U, =
U,,U,....U,;... Uy ). Thesize of U, is denoted by N,

population  of  psu’s is

So, we have U = U U, and N = ZN Let the

i=1

population of psu’s U,is stratified into G

1L,2,3,.c. @ G . The size of the gth

strata, 1i.e
stratum is denoted

. th
as N,,ie g

stratum consists of N < psu’s such that

ZNg = N,. Let N is the number of ssu of i" psu in
g=1
th .
g stratum (i =
Ng

N g0 = ZN gi»the total number of elements in g
i=1

L23. N,), such that

th

stratum. Let the population of N g Psu’s inthe g &

isdenotedbyU, = (U,;,U 0 U oo U, ).
We further define

stratum

_ N,
N 0 = , average number of ssu per psu.
g
[ g = value of y corresponding to k" element of i” psu in
g 4 stratum.
< h h
lgi = nygik , total of y in i" psuof g" stratum.
k=1
N
. th £ th
N z yeik > Mean per ssuin - psuof g stratum.
gi k=
Né’ Ng’
;o= t . th
ve = yeik » total of y in g stratum.
i=l k=1
3 — = the population mean per
ve Lygi -
N N N, 5
ssu in g " stratum.
Ng
e = —ztygi , the average total of y per psu.
g i=l

At-first stage, a random sample § < of n g Psu’s from N <

. th . . . .
psw’s in g stratum is drawn according to sampling design
P, () with the inclusion probabilities 77, and 7, at psu

level.

At-second stage, we draw a random sample §; of size 7,

elements from the selected 1" psu in gth

stratum
i=123...... n,) according to design B, () with inclusion
probabilities 77 Ji

We also define

~ A
= - i =g
Ay =Ty — Ty,  with A ", and
&y

Ay, =7 ithA ,, , =—/ 1
S e

The obj ective to estimate is the population mean

- G _
:_ZZZ veik gO Ly :Z;Qgtyg @
o

and TC gt -

g =1 i=l k=l g=l1
G
where Q g = , stratum weight, such that Z Q g =
g=1
The usual Horvitz-Thompson estimator of (HT) [ e is given
by
t_ (HT = Zzagtktygzk (3)
N Ngo ~
b 1 1
where a _, =a_a_,.,d, =——,Qa_ ; = .
gik gigkli> Ygi > Yaklfi
ﬂ-gi ”gk/i
The above estimator can be alternatively expressed as
2 d (HT)
! = 4)
yg(HT) NgN
Where Za oV il ygi(nr) and

A

1 , _ _
Lygi(ur) = N_Z @ gy )il g 18 the HT estimator of £,
g S

A

The variance of 7,7 can be written as sum of two

components as per Sarndal et al. (1992)

: +V
V(t ) — psu _ Ssu (5)
vg(HT) 2372
NgNgo
With
t .t . 14
ygr g i
Vpsu = ZZAgij > Vvsu = Z_ and
U, ﬂgi ﬂgj U, ﬂgi

ZZAgkl ygtk tygil '
Fay Moy

The first component me is unbiasedly estimated by
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Py ~

. -t f 1(1 .
- g Yy N
Vo = 2.2 04 o > o 4 (©)
Sg gl g Sg Tl gl
tyglk tygll

%/n/ o/

The second component V__ is unbiasedly estimated by

ssu
-
=2 ™
Se ﬂ.gi
Therefore, V(fyg(HT)) is given by
52 Vpsu + Vvsu
NN

(tyg(HT)) -

A V
§ § y ygl g/ + § i (8)
NN2 S rgmy Tmy,

Now, the estimator of ty in stratified random sampling is given
by

A

t, =

A

Q tyg(ur) ©)

Mo

1

oy
Ii

The variance of , 1s given by

. G . .
V(fy )= ZQzV(l‘yg(HT)) , where V(l‘yg(HT)) is given in
g=1
2.5). (10)

The estimator of variance of , is given by

a G n A A
V(ty )= zlng(tyg(HT)) , where V(lyg(HT)) is given in
g=

(2.8). (11)

If the sampling design is simple random sampling without

A

replacement (SRSWOR) denoted as SI, the estimator (g
under SRSWOR is given by
A 1 g N ;2

lyg(SI) N ygi » where Zygi Ztyglk (12)
I’lg i=l go R k=1

The variance of lT o (s1) is given by

N, Y (N, Y (N, -n,)
_ g Sz 1 Z gi gi Sz 13
TN, TN N nn, e
NglVg g'lg =l g0 it Vg
2
1 &N,
where Sbyg = z = l‘ygi —l‘yg and
Ng _1 i=1 Ngo
1 £ _
2 2
S yei Ng,' _1 ;(tygik - lygi)

The unbiased variance estimator is given by

A(a )_ Ng_l’lg 52 1 i(Ngi_n[)Sz

= + )
ve(sr) byg vei
n,N, n,N, = nN,
(14)
where
n N 2
g N A
S ! £r o —t and
byg n —1 N e e
g =1 go
2
1 & ; ~
2 _ gi
Syei = n —1 N tyglk Lygi |
i k=1 go
nl
AN,
vei AT ygik :
nl k= N

The estimator l‘ in SRSWOR can be

? ZQétys SI)

equation (2. 12). 15

expressed as

Py

where tyg(SI) is given in above

The variance of t_ o(s7) 18 given by

( ) ZQZ (yg (s1) ), where V( yg(SI)) is given in

(2.13). (16)
The unbiased variance estimator is given by

A G N
V(ty(SI))=Z;QzV(tyg(SI)), where V( yg(SI)) is given in
o

(2.14). (17)

Calibration estimator of population mean in two-stage
stratified random sampling when auxiliary information is
available at ssu level

We follow the notations and definitions as described section-2.

Consider that the auxiliary information # xaik related to the study
variate [ Vi is available at ssu level corresponding to k"

elements of i” stratum. The psu total of X is

N,

. th
psu in g
gi
- th
L for 1
k=1

therefore automatically obtained, i.e 7,

Ng Ngi

= zztxgik be the total of x for g " stratum.
i=l k=l

psu. Let 7,

The usual Horvitz-Thompson estimator of t_yg without using

auxiliary information given in (2.3) reproduced here is

tyg(HT N N Zz Dgikl ygi (1)

go Sg S;
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wherea , =a,a, ,, which is an integrated weight. We want
to calibrated a, .Let W, be the integrated calibrated weight

and therefore, the calibrated estimator of e is given by

?ycg N Ngo ZZ,: gtk yeik )

We find out the w ik by minimizing the chi-square distance

measure

)
glk gtk

Z Z subject to the constraints
S; qgtkaglk
N N ZZ glk xglk = txg (3)
go ‘Sg S;
Therefore , the following function will be minimized with

respect to W,

( g‘k’ ) ZZ( gik glk)z

5 qg:kagxk
0w, 1)
Giwgik )

qglk gik xgzk

)
Wg[k gtk Z Z qglk aglkttg,k [N Ngo xg Z Zagd\ xgik ]

[Z Z ngk xgik g go ;g J (4)

=0 , yields

Putting the Value of W, inabove equation (3.2), we get

quguagdt»gzk vgik 1
Ly NgN ZZaglkttgzk + "qu&k(l& kt » [l‘xg Ngﬁgo %;agiktxgikJ

g0 Sg

A

=typur) T B, (fxg - f_xg(m)) (©)

Where t_ o(HT) = N N ZZaglktxglk ,

8" go Sg Si
2 1
ye(HT) = N N ZZa git? ygix are the Horvitz-Thompson
estimators of { and ¢ and

xg g’

2 Z quk aglk xgik yglk
B, 5
lek aglk xgik

Now, the calibration estimator of t_y in two-stage stratified

random sampling is given by

;:i ZQ [tngT +B( ? HT) (7)

Under SRSWOR (say, SI) and for Qo =

xgik

, we shall

show that estimator 7 yc given in (3.7) reduces to separate ratio

estimator in two-stage stratified random sampling. From (3.7),

we can write 7 yc under SRSWOR as

A G A
t z,ty& SI)
z,
1 A - 1 N, »
Q — — +B I— —gl b
8t g (S[) xg xgi
1 n, N n, ‘s Ngo
g Nas
n N ygi
where B, (g £ &
g 1 Z N, =
AT xgi
Mg s, Vo
g t A 1 N, »
_ g T F o gi 7
_ng = l,, where = Z]v_tygl and
g=1 I Mg s, Ngo
2 1 Ngi fal
t,=— — .. 8)
g xgi
Mg s, Ngo

Following the procedure given by Sukhatme et al. (1984), the

. . :C .
approximate variance of 7, gy has been derived as

A G 212
V( ;<S,))= Z;QgV(’fg(m)

S|l Lo s ~2R,S},, + R3S )+ Liuz RN
~ 2l n N byg bxyg n,N, 5 g n, N gi

g g g e

)

t
2 Qo2 2 _ ygee
WhereDgi = Sygi —2Rngygl +RgSg , Rg =—— and
xgee
N2 | N 2
2 gi 2 _ - _ 7
Ug =3 ’Sbyg - Z(ugitygt‘ tyg") >
N N _]. i=1
go 4
1w °
5 _
Sygt - Z(tyglk tyg") >
Ngi _1 k=1
2
1 &) - -
S,Z = u t j® _t o0 >
bxg Ng _1 — ( gi” xgi xg )
2
1 & .
Sji - tx i tx e ) >
& Ngi _1 = ( gik g )
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1 & - - _
SI;xyg = —_Z(ugilxgi- - lxg" Xugitygi- - tyg")

N, -15
1 & _ _
Sxygi = N _ 1 (txgik - txgio Xtygik - tygit )
gi i=1

The approximate variance of yc( s7) can alternatively be written

R L L

g g NNy im1 i g

The approximate estimator of variance of 7 yc( ) is given by

i - 20 )

2
S 1 1 B B 1 & 1 1
2 2 ' 2 2 2 2
= ;Qg{(n_]v](shyg = 2R 1Sy +Rgls/»g)+ N Zuw [7_N7g(] dy

g g Mg Ng iz

+R2

xygi g ’

2 _ 2
Where d,; =5,,, —2R,s
Z”gz vgi

Zugl /

, 1 le ~ 1 le a

St = HZ(% Lygi — (ZugttygiJ
g

i=1

R

gl —

2
1 & 1 & -
S = I u,t. .
byg ygl 8t ygl
n,—13 n, i-1
g g 2
12 1 1 t:
= — >Yu .t .
bxg gz xgz gi” xgi ’
n,—143 ng i=1
n ~ ~
Sovgi = 14 Z( xglk —t xgi tyglk t vei )’
S .= Z L, — R
ygi ygik ygi ) >
I’li - 1 k=1
S .= L — .
xgi xgik xgi
I’li - 1 k=1

The approximate estimator of variance of ¢ ;(SI) can

© 7 (12)
LG (1 1),
N Zu”f(?_N J dﬁ'}

i=1 }’lg g =1 i gi

alternatively be written as

g 1 1 1 & 5[ _n
- zQz{[—NJ S5, -85 )+

My

Development of double (two-steps) calibration estimator of
population mean in two-stage  stratified random sampling
when both stratum weights and design weights at PSU level
are calibrated

The calibrated estimator of 7 y is given by

R G N,
ty‘ = ZQgtyg , where Q) ¢ = = stratum weight and
g=1
. ‘o
16 =—2—. (1)
g
NgNgo

Now, we want to calibrate stratum weight (. Let Q:g be the

calibrate weight of (2 g Therefore, two-steps calibration

estimator is proposed as

A

ng Y8 (2)

We minimize the chi-square distance measure function

i(gg -Q,)f

N

g=I qgQg
subject to the calibration constraints
G . ~ G G
> Q. =i and Y Q =>Q 3)
g=1 g=1 g=1

The following function is minimized with respect to Q'g
IR i(Q —Qg%gg +2Al(gg'j@ JY}%(ng 7293

g=1 2=l
are Lagrange multiplier. Differentiation

“4)

where A,and A,

equation (4.4) with respect to Q;, and equating it to zero, i.e

the solution of 8¢(Q'g . ﬂ) =0
oQ,)

Seoi, ®)

, yields

Putting the value of Q'g in equation (4.2), then the estimator

zce
of ty reduces as

~ ~ A G ~
zce — Zc 7z z
(=10 +b| 1 =Y Q, 1 6)
g=1
G 2 G 2
G o Znggtngnggtxg
ey g=1 g=1
ZInggtygt xg G
- 20,9,
where b, = e 5
G ~
G Y ;nggtxg
Z}Qg‘]g (txg - G
- 22,4,
g=1
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The calibration estimator forg, = 1, reduces as

A 2 Al g 2
1=t +b| 1, —> Q.1 (7)
g=1
G ol G ol
G A Z}Qgt.vgz;ggtxg
zc 7 8= 8=
Z]Qgtvg xXg G
where « ng
-
/=

o . . Zee . !
The conditional approximate variance of 7 for given €2 is

given by

A G A
Zcc | 12 Zc
V(ty )_ Z Qg V(tyg ) ®)
g=1
Following the Sarndal et al. (1992) and Aditya et al. (2016),

. :C .
the variance of l‘ can be written as

N, N
n 1 e il i
c — gl é/ }él Vgl
V(tyg)_ N2N2 Z Agi/ Z ZZ gklfi
eWNgo | =1 21 Toillg  iml Ly k=1 1m0 T )i ¥ 1)
where U, =t — Bt and
N,

&)

{
o,
By
o
%

|
T
>|=
0

The conditional approximate estimate of variance of . ycc for
given Q' is given by

i )=t )

g=1

where V( )1s given by

e M oo W o B P
I}(;;g)_]\/zl]\fz[;ZZI—AWX% i, + Zﬂz Zﬂ gkl:{t} i —t)ﬂ/J ]
8 go

il j= gi k=1 1= Toatii Tl

~

where u,; =1, —Efxgi and

n gi” xgi

" i=1
Zagitygi(HT) Lot — g

o

Under SRSWOR (say, SI), then calibration estimator for
g, =1, reduces as

A A A G A
Ll =15 +0] }—Z:,ngxg (10)
] G a3 G ol
G ZIQgtychIQg xg
ng ng xg = G =
o 2.9,
where [;1' = e 3

o e . . z . !
The conditional approximate variance of #;° for given € is

given by
V(?fflm): gZi;Qfng(?fg(sz>) (1)

Ny Noi
8i i
tygfktygil

. _B(Sl)t . and

The conditional approximate estimate of variance of t_ycc for

given Q'g is given by
G
55 cc _ n25e
V(ty )_ ng V(tyg) (12)
g=1
where

1N ) I NN )
V(szd) N[zﬁg(_)m Vetli Wgﬂg/ Sré - Fliz(ﬂ—l Zzt)gfk i :|

= HiA
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ugl. :tygz _B(Sl)txgi and
g g
Uygi| Lugi = 20w / g
A i=1 i=1
(1) ng ng 2
~n ~
txgi - txgi ng

Simulation study

A limited simulation study has been carried out with real data.
The population MU284 given in Appendix-C of Sérndal et al.
(1992) have been used. There are 50 psu’s of varying size. The

variable under study (y) is population of 1985 and an auxiliary

variable (x) is the population of 1975. The 50 psu’s are

stratified into 4 strata considering the value of X in ascending
order. The stratum I consists of 13 psu’s, stratum II consists of
14 psu’s, stratum III consists of 12 psu’s, stratum IV consists of
11 psu’s respectively. The samples of size 4 psu’s were drawn
by SRSWOR independently from strata 1 to 4, respectively.
This process has been repeated 300 times independently. That
means, we obtained 300 samples of size 4 psu’s from each
stratum. Sub samples of size 3 ssu’s are drawn by SRSWOR
from each sample of psu’s in each stratum. The values of y
and X in sub samples were used to compute the population

o A

mean. In this process, we get 300 estimates of tyg(SI)’ fycg(y)

from 300 sub samples in each stratum. We compute the values

of T} based on usual estimator 7 (s1) without using auxiliary
. . . . . iC iCC
information and calibration estimators, 7y, f(s) from

1200 samples. The true populations mean of ) has also been

computed i.e 29.363. The following two criteria were used for
assessing the relative performance of these estimators:
(i) The percent absolute relative bias (%RB) defined as,

oursfi)= L[ 3T

i=1

x100

(ii) The percent relative root mean square error (%RRMSE)
defined as,

~ 1 &(T-T
%RRMSE(0) = |- Y| =——| x100
ST\ T
Where S is the number of simulation. The percent relative bias
(%RB) and the percent relative root mean square error

(%RRMSE) has been computed for each f: Their values are
presented in the table-5.1.

Table 1 Percent relative bias (%RB) and percent relative root
mean square error (% RRMSE) of the estimators.

Estimators %RB %RRMSE
a * 7.013
Lys)

l; ¢ 0.189 0.362
¥(SI)

2, 0.146 0.281
Lys)

* Unbiased estimator

It can be observed from the results of the Table-5.1 that
calibration approach for estimation of the population mean of y
has drastically decreased the percent relative root mean square
error (Y%RRMSE) to about 0.3 percent from 7.0 percent when
usual estimator without using auxiliary information was
applied. Among the calibration estimators, two-steps

calibration estimator (£ ;(C sr)) was found to be the best as it has

lowest %RRMSE of 0.281 percent. The percent relative bias
has been found to be within the range of below one percent for
all the calibrated estimators. The result shows that the two-
steps calibration approach of estimating population mean in
two-stage stratified random sampling has brought considerable
improvement in the precision of the estimates.

CONCLUDING REMARKS

If the auxiliary information is available at element (second
stage unit) level for the entire population, then the calibration
approach based calibration estimator have brought significant
improvement in the precision of the estimate of population
mean in two-stage stratified random sampling. It may be

mentioned that the two-steps calibration estimator 7. ;(CS[) has

been found better performance than the other one-step
calibration estimator.
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