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In this work the aim is to control the chaotic unstable behavior of a dynamic rotor using the optimal 
linear control theory OLC, minimizing the chaotic unstable behavior arising from the vibration 
system, to become a stable signal. To develop this work, there were several steps ranging from the 
characterization of the experiment consisting of the acquisition of the rotor signal compared with the 
theoretical model and justified by the stability criteria of Routh-Hurwitz. In a second step, we were 
introduced an unbalanced mass and analyzed the vibration signal, characterizing the stability of the 
system by Lyapunov method. In this phase were also developed, mathematically, the equations of 
characteristics solutions derived from the equations of the space system. Finally, in the third step, for 
effective control was used linear state feedback control, linear control design minimizing the chaotic 
signal in a stable point. The results found, the application of control theory, was the effective control 
of the chaotic unstable signal of the dynamic rotor, thus justifying the result of this work. 
 
 
 
  

  

  
 
 

 
 

 
 

 

 
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 

 

 
 

 
 

 
 

  
 
 
 

INTRODUCTION 
 

The dynamics, the concepts and theory that involves physics, 
can be related to the characteristics of the movement and 
deformation of a particular body or system whose behavior is 
analyzed on the principles of analytical mechanics, kinematics 
and kinetics. Mathematical concepts through the governing 
equations are also applied to understanding the dynamics of a 
system, and the results of the solution of these balances 
between, describe the different states for the specific 
conditions.  
 

The studies of dynamical systems begin, when Aristotle (384-
322 BC) becomes the precursor of the concept of teleology, 
which can be defined as the explanation for something 
according to their purpose or intended [1]. Aristotle (384-322 
BC) developed different theories involving the field of physics, 
one of them describing the four elements earth, air, fire and 
water, and its dynamic relationships exemplified in nature, 
which described the characteristics that constituted the 
movement object, namely, the function and its purpose, [1].  
 

After, different researchers contributed information to classical 
mechanics as Galileo (1564-1642), Isaac Newton (1642-1727) 

and Leibniz (1646-1716), Leonhard Paul Euler (1707-1783), 
Jean le Rond d ' Alembert (1717-1783), Joseph-Louis Lagrange 
(1736-1813), Pierre Simon Marquis de Laplace (1749-1827), 
Alexander Mikhailovich Lyapunov (1857-1918), Poincaré 
(1854-1912), [2; 3; 4; 5; 6]. 
 

Currently modern dynamics, derived from classical dynamics 
can be called deterministic dynamics, which aims to describe 
the state of a system, adopting the idea that the next state in 
time is determined solely by the current state [7]. The theory of 
dynamical systems applied to dynamic rotor is an excellent 
example of use. For a dynamic rotor system, the rotating shaft 
of the flotation given by the coupling of the lateral 
displacement and gyroscopic effect is a phenomenon difficult 
to control and often occurs in applications related to aircraft 
[8]. The rotor misalignment is one of the most common 
problems encountered when studying rotating machines, which 
also remains incomplete in his understanding, which, so far, no 
satisfactory analysis explains the range of different phenomena 
observed in this process [9]. 
 

Different researchers have applied the criterion of Routh-
Hurwitz to identify the stability of a rotor, and one work are 
studied three methods of algorithms that perform the Routh-
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Hurwitz test, namely, a stable and simple, one unstable and 
fast, and an intermediary between the two commented, and all 
applied in an ecosystem [10]. The criterion of Routh-Hurwitz 
stability proving the method of elementary geometric 
considerations in the complex plane, being applied in control 
systems theory [11]. 
 

In the other study the application of a new robust control 
method in a nonlinear system, whose purpose is to control the 
variation of the horizontal speed of the wind turbine through a 
signal without the knowledge of the general parameters of this 
turbine [12]. Other case, it seeks to ensure traced speed control 
and regulation of reactive stator power, for it was built a 
controller based on the concept of Lyapunov, which ensured 
uniformity in the boundary region, all the signs the closed loop 
system [13]. 
 

The dynamics of a system whose qualitative model is 
represented by a system of several degrees of freedom and uses 
different theories vibration to finally obtain the system control 
using a proportional–integral–derivative(PID) controller [14]. 
Was developed a linear quadratic regulator LQR control 
research to analyze the dynamic behavior of vehicles, 
proposing solutions considering the torque and angles of the 
wheels [15]. Already it is presents a new methodology using 
LQR theory considering the parametric optimization with 
piezoelectric actuators installed in a laminar composite 
structure [16]. 
 

Dynamic Rotors 
 

Studies of dynamic impellers come from 1895, and in Föppl 
research, generally consisted of a single disk positioned 
symmetrically between the rotary axis and undamped, 
demonstrating the stability of the system at supercritical speed 
[17]. The result of this study showed results as: a) a shaft may 
have several critical speeds, and depending on certain 
conditions, those speeds are the natural frequencies of a non-
rotatable shaft; b) the introduction of the general theory of 
Reynolds to meet the critical speed; c) gyroscopic effect 
regarding the dependence of speed, and even the calculations of 
vibrations unbalancing. But even considering all this 
information, the shaft behavior analysis for different speeds, 
they were not enough to fully understand this dynamic system 
[18].  
 

Jeffcott in 1919 used the same model introducing the concept 
of damping, and published this work in an English newspaper, 
and since then, this model is considered Jeffcott's rotor[17]. 
 

Dynamic rotors are designed for specific areas, while many of 
the results presented in various research works are difficult to 
analyze and thus to obtain a possible result, the general 
understanding of a setting is required [17]. The areas of 
application of the dynamic rotor may be, turbines, generators, 
compressors, among others, whose forces acting on the shaft 
are bending and torsion forces both vibrations are considered. 
The dynamic vibrations of the rotor depend on the geometry, 
structure, bearing type, and excitation forces, among others, 
which can result to system instability[18; 19]. 
 

“The instability of a dynamic rotor is a special case of the 
general theory of dynamic instability” [19]. 

The dynamic phenomena of a rotor, provided that modeled, can 
be studied considering a system as a single degree of freedom, 
SDOF [18], and multi dregree of freedom, MDOF [20].  
 

Nowadays vibration theory for dynamic rotor systems, is called 
Jeffcott Rotors theory, and contains a placed disk 
symmetrically in the middle of the axis and can be modeled 
mathematically considering the physical conditions of relative 
movement of the axis of flexion, and the gyroscopic effect 
[18,21]. The details of Jeffcott rotor system on a cartesian plane 
and the phase angle displacement from the point � (disc center 
of mass), can be describe as	�	is the angular velocity, �is time, 
�is the damping factor, and	� and	� points, referenced to 
cartesian plane�, �, are respectively represented by	���, ��� 

and	���, ��� , and segment is	������� = 	��, and				�������� = ��. 

� = ��	is the phase angle, and	�	is the angle of displacement 
of the mass center disk coupled to the shaft [18; 21]. It 
considers that the system has no loss, and assuming that the 
disk mass does not affect shaft stiffness, and bending is 
uniform, and the shaft simply supported shaft stiffness equation 

��it is written as,	�� =
��.�.�

��
, where�is the modulus of 

elasticity, �is the moment of inertia.	��	is the axis of the 
damping coefficient. Therefore, considering that the axis is 
uniform in diameter �, the moment of inertia of the equation 

�is written as, � =
���

��
. 

The equation of motion for a homogeneous solution [18; 21], 
they are written as, 
 

��̈�� + ���̇�� + ����� = 0                                    (1) 
 

��̈�� + ���̇�� + ����� = 0                                    (2) 
 

Considering that ��� = ���
��, and	��� = ���

��, and�is 

amplitude and	��� = 	 ���� = cos(��) + ����	(��) which is the 
notation of a complex exponential, which can simultaneously 
treat two forms of harmonic excitation [22].The homogeneous 
solution by Laplace method is [22], 
 

(��� + �� + ��)���
�� = 0                                    (3) 

 

(��� + �� + ��)���
�� = 0                                    (4) 

 

where, ��	is damping, and	��	is the stiffness of the shaft in 
complex form, and the characteristic damped equation rotor 
system written in general is 
 

��� + �� + �� = 0                     (5) 
 

and its roots, the eigenvalues are, 
 

��,� = −
��

�.�
± ��

��

�
− �

��

�.�
�                                   (6) 

 

It is possible to obtain information from the behavior of a linear 
dynamic rotor through the governing equations, such as natural 
vibrations, unbalancing and vibrational transients, using the 
modal analysis technique [23]. The application of this 
technique results as a response of an inelastic rotation with 
symmetric matrices and proportional damping. 
 

The gyroscopic effect occurs misalignment of the shaft relative 
to its bearing members. The movements which occur in the 
gyroscopic effect, result in the axis of rotation around the �  and 
� axis, the disc center of mass � [21], A mathematical model 
for a dynamic rotor, and also consider the conditions of the 
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physical forces acting on the system, so the coupled equations 
representing the system can be written vectorially, and thus 
represented by the following mathematical model [21; 24], 
 

��̈ + ���̇ + �� = 0                     (7) 
 

Generalizing the state vector, we have, � = �

��
��
���
���

�, the array of 

mass �, the gyroscopic mass matrix � and � the stiffness 

matrix, are respectively written as, � = �

� 00 0
0 �0 0
0 0�� 0

0 00 ��

�,� =

�

0 00 0
0 00 0
0 00 ��

0 0− �� 0

�,� = �

� 00 �

0 �� 0
0 �� 0
� 00 �

�. 

 

and�the mass of the shaft, �̈� , �̈�	represents the second 
derivative of displacement in the �  axis, and displacement	�,in 
relation to the geometric center, respectively; 

�̈��, �̈��	representing the second derivative of the angular 

displacement relative to the center of mass � of the disk axes �  

and �, respectively; �̇��, �̇��	representing the first derivative of 

the angular displacement relative to the center of mass � of the 
disk axes �  and �, respectively; and finally,	�	is the angular 
frequency. The	�, �, �	are equations that define the stiffness 
parameter, therefore,� = �� + ��, � = −��� + ���, � =
���

� + ���
�, being��, ��	stiffness constants; and�, � represent 

the distance between the mass center of the shaft [21; 24]. The 
��, ��are the rotational movements relative to the disc center of 

mass �, the equations are �� =
�

�
(��� + ���), �� =

�

�
(��� + ���). The	���, ���	are the angular displacements 

relative to the disc center of mass � treated as the result of 

gyroscopic forces, the equation are�� =
�

�
(��� + ���), 

��� =
�

�
(�� − ��), being	�	is the total distance between the 

bearings of the shaft, and �	and � correspond to the distance 
from the center axis of mass � until the end of the 
shaft.The��, ��are respectively the transverse moment of inertia, 

and moment of rotational inertia, and can be calculated 

as�� =
�

�
��� +

�

�
���, and�� =

���

�
. 

 

The precession is calculated by the symmetrical inclination of 
the gyroscopic matrix � representing the coupling between the 
motion of the � and � axis. In the case of uncoupling of the 
translational movement and angular movement, � = 0, the 
matrix condition, should be considered that� = �� = ��, and 
the rotor is axially symmetrical about the center of mass, 

where	
�

�
= � = � [21; 24].The stiffness matrix is then written 

 

 as, � = �

� 00 0
0 �0 0
0 0� 0
0 00 �

�. 

 

Experimental Methods - System Characterization 
 

The experimental method was developed based on a practical 
experiment designed to provide a signal of a dynamic rotor. 

The experiment is based on a 0,5 hp motor of the 60 Hz; the 
frequency inverter is able to operate in the frequency 0-60 Hz; 
the shaft is 1045 steel and has a diameter of 6,0 mm; shaft 
length 120,0 mm; two rolling bearings P205-UC205. The 
equipment used for measuring the vibration, operates in the 
frequency range of 10 at 1 kHz, with an approximate sensitivity 
vibration sensor 15 mA DC, with all these devices were 
manufactured satisfying the standard ISO2954-2012 [25]. 
 

This procedure for the characterization of the system, 
consisting of a simple analysis is to verify that the difference 
between the amplitudes of the numerical simulation with the 
experimental values, given the same initial conditions [26]. The 
initial conditions for this experiment and numerical simulation 

are: mass � = 0,5	��; stiffness� = 20.10�
���

���; frequency 

� = 60	��; shaft diameter � = 6,0	��; distance to the shaft 
center � = � = 60,0	��; shaft length	� = 120,0	��; 
anddamping � = 0,01. 
 

The numerical simulation was performed using the coupled 
equations that make up the system, and considering the initial 
conditions.  
 

The signals of the accelerometer were obtained considering two 
different experimental applications, the first being, signal 
capture using new bearings, and the second was using a good 
and bad bearing. The method for capturing the acceleration of 
experimental applications, first and second signal was placing 
the accelerometer in the bearing 1 and after 2. 
  

The results of this analysis show that the amplitudes of the 
numerical simulation and the experimental signal are similar in 
size and that when the amplitudes have different sizes it is 
possible to state that the bearing-bearing system has 
interference. Therefore, the characterization of the system is 
valid when the amplitudes of the numerical model have the 
same size as the signal of the experimental model [26]. 
 

The error in this analysis was done using the statistical 
technique of error analysis by finite sampling, which can Table 
1 show the difference between the results. 
 

Thus, it can be said that the results found is valid and the 
experimental method can be applied for future experiments 
[26]. 
 

Table 1 Error analysis sampling finite - 60Hz 
 

 
 

Analysis Using Stability Routh-Hurwitz Criteria 
 

The method of Routh-Hurwitz, applied to the dynamic system 
under study aims to show the result of qualitative stability. 
 

The equations of the dynamic system equation 7 can also be 
written as,��̈� + ��� − ���� = 0; ��̈� + ��� − ���� = 0; 
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���̈�� + ����̇�� + ��� + ���� = 0; ���̈�� − ����̇�� + ��� +

���� = 0, considered equations of the dynamic rotor, [18; 21]. 

Using the initial conditions of the system, and applying them in 
the dynamic equations, the result of stability, analytically 
solved, can be found using the criteria of Routh-Hurwitz. 
 

Thus, replacing the values of the initial conditions in the 
equations of the dynamic system, we have these equations 
rewritten,  
 

0,5�̈� + 0,92443�� = 0                     (8) 
 

0,5�̈� + 0,92443�� = 0                     (9) 
 

0,19744�̈�� + 0,32197 ∙ 3,0815�̇�� + 0,053121��� = 0 (10) 
 

0,19744�̈�� − 0,32197 ∙ 3,0815�̇�� + 0,053121��� = 0 (11) 
 

Then, the equations 8-11, these are respectively rewritten as, 
 

0,5�� + 0,92443� = 0;  
0,5�� + 0,92443� = 0; 
0,19744�� + 0,053121� = 0; 
0,19744�� + 0,053121� = 0. 
 

Transferring the values of the coefficients of the polynomial 
equations for different tables, and applying the conditionΔ =

�
��
1

��
��
�, we have the solution to the equations, respectively,  

 

equation solution 8, Δ = �
0,5
1

0
0,92443

�;  

equation solution 9, Δ = �
0,5
1

0
0,92443

�;  

equation solution 10, Δ = �
0,19744

1
0

0,053121
�;  

equation solution 11, Δ = �
0,19744

1
0

0,053121
�. 

 

Observe that in the result,Δ , the leftmost column is positive in 
all terms, and the results of the roots of polynomial equations, 
these equations can be shown in table 2.  
 

Table 2 Roots of polynomial equations 

 
 

The criterion of Ruth-Hurwtiz ensures that all the roots of this 
polynomial have negative real part if ��coefficients are positive 

[27]. 
 

Whereas the system is characterized, after, it is done the 
stability analysis by Routh-Hurwitz method, allowing you to 
create criteria of the stability behavior. The Rout-Hurwitz 
method is a qualitative analysis method that determines that the 
results can be stable or unstable.  
 

The results of the solution of the dynamical system equations 
shows that all the equations of the first column on the left side 

are positive values, and table 2, the roots of the equations are 
negative, and thus, it can be stated that the system study is 
asymptotically stable. 
 

Another significant analytical approach shows that the result of 
the characterization is similar amplitudes and associated forces 
balance condition in the system, and the result of 
asymptotically stable stability, the overall result is seen as more 
efficient and higher quality. 
 

Therefore, it is understood that the results so far, not only show 
the state of stability of the initial conditions, but also serves as 
an analysis parameter of different results for the signals 
acquired dynamic rotors. 
 

Mechanics Instability 
 

In a mechanical system design is necessary to consider 
phenomena linked to stability, and that can be analyzed 
mathematically through equations of motion representing the 
spatial model [8]. 
 

The dynamic system disturbed by external agents is stable 
when the response to disturbance, stands close to its 
equilibrium position, while instability considering the same 
condition of disturbance of external agents, it can be 
understood as the removal of the equilibrium point [8]. The 
system with one degree of freedom and having random 
movement may result in chaotic oscillations [28]. 
 

The notation often used for the analysis of stability is the 
theory of Lyapunov. Considering the equations of motion of a 
dynamical system, you can determine if this system is stable or 
unstable by direct and indirect method of Lyapunov [8]. 
 

In a linear system, �̇ = �� + �� = �(�, �); �̇ = �� + �� =
�(�, �); the general solution, considering the equilibrium point 
(�∗, �∗) = (0,0), can be written as, �(�) = �����; �(�) =
�����. Therefore, the homogeneous system can be written 
as(� − �)�� + ��� = 0 ; ��� + (� − �)�� = 0, and that a 
system is non-homogeneous, the determinant of the matrix, 
which is the system must be equal to 

zero,��� �
(� − �) �

� (� − �)
� = 0 [29]. Mathematically have a 

polynomial	�� + �� − �� − �� − �� = 0; the result of which 
the roots are eigenvalues��with real and imaginary. 
 

The stability criterion for a linear system depends on the real 
part of the eigenvalue ��(��), so using the Lyapunov 
parameter, we have the conditions for	��(��) ≠ 0the 
hyperbolic equilibrium or not degenerated; for	��(��) < 0the 
asymptotic stability; for	��(��) > 0the asymptotic instability; 
for ��(��) = 0	equilibrium is not hyperbolic, elliptical or 
degenerated [29; 30]. This method is known as the indirect 
method of Lyapunov [8]. 
 

The Lyapunov exponent, when applied, evaluates the 
sensitivity in the initial conditions of a discrete or continuous 
time system, the result shows the divergence of neighboring 
trajectories corresponding to an average rate in time [7; 29]. 
 

"A strange attractor can be seen as a result of an infinite 
number of stretching in one direction and contraction in other 
directions, combined with unfolding" [29].  
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Measurement of contraction and elongation can be measured 

and if	�	(� + 1) = ���(�)�, and the factor of the Lyapunov 

exponent ��	measures the distance of �stretching to�′, 
then	� ′ = ���. The equation	|�(� + �) − �(�)| = |�|��, 
shows the dependence of the variation of elongation with�, 
and��has direct dependency relationship of the � distance, 
measured in the plane of the two-dimensional axis [7; 29; 40]. 
Whereas � repetitions occur, the equation representing this 
system is written as, |��(� + �) − ��(�)| = |�|���, and 
evidencing the Lyapunov exponent � and we will then� =
�

�
�� �

(��(���)���(�))

�
�. It is observed that the elongation still 

depends on � and�, considering the elongation of a small 
distance infinitesimal, � → ∞for� → ∞, the equation is written 

as, �(�) = lim�→∞ lim
�→�

�

�
�� �

(��(���)���(�))

�
�. This equation can 

also be written as	�(�) = lim�→∞
�

�
�� �

���(�)

��
�. 

The result of Lyapunov exponent is then defined as, if � > 0the 
exponential divergence is considered an unstable node; if� <
0then the exponential is convergent, considered a stable node 
[7;29]. 
 

Instability Analysis System with Imbalance Mass 
 

To from the system to be considered characterized, the 
sequence is to study the vibration signal of the rotor dynamic 
system by introducing anunbalancing mass. The result of this 
study is to see if the signal from the vibration of the dynamic 
rotor has a chaotic behavior, and classifies it according to the 
conditions of Lyapunov exponent. 
 

At first, the experiment, a mass unbalanced the mounting disc 
is inserted, secured to the shaft, and the initial conditions of the 

system are, � = 0,6	��; � = 20.10�
���

���; � = 60��; 

� = 6,0	��; � = � = 60,0	��; � = 120,0	��; � = 0,01. 
The experiment was the same system used for the 
characterization process, and with the same components and 
measurement apparatus. Only the working frequency was 
changed in procedure, � = 20	�� e � = 25	��, therefore, it 
was observed that frequencies exceeding that were no longer 
necessary because of the result found. The numerical 
simulation was made considering the same equations and only 
by changing the mass, note figures 1 and 2 
 

 
 

Fig 1 Comparison between the numerical simulation and experimental signal - 
Position 1 (20Hz) 

 

It is observed that figures 1 and 2, both contain differences in 
amplitudes, between the results of the theoretical and 
experimental model, and can be explained by the introduction 
of the unbalance mass, which was introduced in the disk 
centered in the middle of the axis, between the Bearings. If the 

unbalance mass was not introduced into the system, the 
amplitudes would be the same between the result of the 
numerical simulation and the experimental signal. 

 

 
 

Fig 2 Comparison between the numerical simulation and experimental signal - 
Position 2 (20Hz) 

 

The same procedure was done for the frequency of 25Hz, and it 
was noted that the result between the amplitudes increased 
when compared to the frequency of 20Hz. 
 

Observing the increasing amplitude analysis, it can be seen that 
when the frequency is 60 Hz, the amplitudes would be even 
larger, hence for this experiment, the maximum frequency was 
25 Hz. 
 

Considering also that the sampling procedure was the same 
standard, developed in the characterization of the experiment, 
the error calculated by the error analysis method was 2%. Table 
3 shows the standard deviation and variance for each measured 
point, which shows the difference between the theoretical and 
experimental variance for each frequency, 20Hz and 25Hz, 
together with the standard deviation. 
 

Note that with the introduction of unbalancing mass, the 
amplitudes of the numerical simulation and experimental signal 
has difference, therefore, is necessary to investigate the 
behavior of the state system stability. 
 

Table 3.Error Analysis Sampling Finite - 20 Hz and 25 Hz 

 
Thus, using the indirect method of Lyapunov, the result of 
analysis of the state of stability (see Figure 1-table 4). 
 

Analytical Solution Stability 
 

The differential equations of the dynamic rotor, which 
represent the spatial model [18; 21], will be developed 
analytically by applying the Lyapunov technique [8; 28; 29; 
30]. Therefore, considering the system of equations, and 
substituting the terms with the initial conditions of the system, 
we will,  
 

0,6�̈� + 0,92443�� = 0                   (12) 
 

0,6�̈� + 0,92443�� = 0                   (13) 
 

0,19744�̈�� + 0,32197 ∙ 3,0815�̇�� + 0,053121��� = 0 (14) 
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0,19744�̈�� − 0,32197 ∙ 3,0815�̇�� + 0,053121��� = 0 (15) 
 

The solution characteristic of the equations 12-15 are written 
respectively as,  
 

�(�) = 1[(�� ∙ cos(1,241	�) + (�� ∙ sen(1,241	�)] 
�(�) = 1[(�� ∙ cos(1,241	�) + (�� ∙ sen(1,241	�)] 
�(�) = 1[(�� ∙ cos(4,3525	�) + (�� ∙ sen(4,3525	�)] 
�(�) = ���

��,���	� + �� ∙ � ∙ �
���,���	� 

 

For analytical solution, the equation is that the lateral 
displacement, the characteristic equation was found and the 
result is the equilibrium point in the � and � axes, and the 
method used was a solution to ordinary differential equation of 
a single variable. For the equation representing the angular 
displacement, was also found a characteristic equation for each 
situation, with solution of the equilibrium point in the � and � 
axes, however, the theorem was used for ordinary differential 
equation of two variables, with the direct method of Lyapunov 
working with its eigenvalues and eigenvectors (see Figure 2-
table 5). 
 

It is observed that for the lateral displacement phenomenon in � 
and �, the eigenvalues are equal to zero and the eigenvalues are 
positive and negative respectively, it shows that the equilibrium 
point can be characterized as inflected node (hyperbolic), and 
stability as asymptotically stable. While for the angular 
displacement, �, that is, the eigenvalue equal to zero, with 
positive and negative eigenvalues, respectively, and its state 
classified as inflected node (hyperbolic), and stability as a 
stable asymptotically. Already, in y, the eigenvalue is nonzero, 
and the eigenvector is zero, so the equilibrium point is 
classified as saddle (hyperbolic), and is unstable. 
 

In general, we can say that the system is unstable stability. 
Because the condition of the system under study, be unstable 
stability, it was numerically simulated the Lyapunov exponent 
to analyze the existence of chaos in the system. Thus, Figure 3 
shows the result of Lyapunov exponent. 
 

It is observed that the Lyapunov exponents from 1 to 5 are 
positive, and according to the state analysis is unstable node 
and may be associated with chaos, while the Lyapunov 
exponents 6 to 8 are negative, with stable node [7;29]. 
 

 
 

Fig 3 Lyapunov Exponent 
 

Control Project 
 

The system so far has unstable behavior and may be associated 
with chaos, and so, you can use the optimal control theory in a 
project that comes from the need for a system to behave in the 
pre-established form, and also when applied to a dynamic 

system operates with a minimum cost using the linear quadratic 
regulator technique LQR [31; 32]. 
 

Thus, to control the unstable signal rotor vibration with the 
same initial conditions, it will be used the technique of linear 
optimal control, LOC. It is desired that the result is to minimize 
the chaotic vibrations of the system by reducing the movement 
until a stable point.  
 

For the chaotic motion reduction solution is used the linear 
state-feedback control proposed by [33], and is applied to 
various systems by [34; 35; 36; 37; 38], and a proposed 
problem by [39]. For y(0) = y�,  
 

�̇ = �(�)� + ℎ(�) + ��                   (16) 
 

Were y	 ∈ 	ℜ� is a state vector, A(t) 	 ∈ 	ℜ��� is a boundary 
conditions matrix (parameters) which elements are time 
depending, B	 ∈ 	ℜ��� is a matrix of constants, u ∈ 	ℜ� is a 
control vector and h(y) ∈ 	ℜ� is a vector which the elements are 
continuous non-linear functions, h(0) = 0. It is highlighted that 
the chosen of A(t) is not the only influence of controller 
efficiency. For a finite time interval and A, B, Q and	R been 
matrixes of constants elements, the positive defined matrix	P is 
the solution of the algebric non-linear Riccati equation, given by: 
 

�� + ��� − �������� + � = 0                  (17) 
 

Control Theory Application 
 

Through numerical simulation and using the initial conditions 

of the system, we obtain, � =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1
1
1
1
1
1
1
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

;  � =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
�� − ���
�� − ���
�� − ���
�� − ���
�� − ���
�� − ���
�� − ���
�� − ���⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ;�� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0
0⎦
⎥
⎥
⎥
⎥
⎥
⎤

 , the  

matrix � = ��is a positive-definite matrix, i.e., the eigenvalues 
are positive, in this case ��,� = 1	and	� = [1], (see Figure 3-
matrix A), and	�|�|��|��� … |����| ≠ 0, Then, it is 
considered that the dynamic system is controlled, (see Figure 4-
matrix P), and after we obtain simplified optimal control, 
� = − 1,02044�� − 0,3953�� + 0,9582�� − 0,2800�� −
0,3760�� − 0,9182�� + 5,0923�� + 4,5320��.  
System path without control is grayed out, and with control, is 
black, and can be seen through the figure from 4 to 7. 
 

 
 

Fig 4 Lateral Shift Control x� 
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Figure 4 shows the controlled signal response is black, and the 
uncontrolled are gray, and the first figure on the left side, 
displacement in time, and the center, the speed in time, and 
next the right to the phase space. Figure 5 is the same 
representation as in Figure 4. 
 

 
 

Fig 5 Lateral Shift Controly� 
 

Figure 6 and 7 are shown for angular displacement in � and �, 
respectively, and has the same descriptive representation of the 
positioning of Figures 4 and 5. 
 

 
 

Fig 6 Angular Displacement Controlθ�� 
 

 
 

Fig 7 Angular Displacement Control θ�� 
 

CONCLUSION 
 

It is observed that the results of unstable and chaotic stability 
behavior were controlled using a control strategy, whose 
technique used is the optimal linear control, which reduces the 
chaotic movement of this system to the equilibrium point. 
Therefore, it can be said that the controller developed in this 
research meets the needs of stabilizing the signal of an unstable 
rotor up to the point of equilibrium. 

The application of this method can be done in rotary machines 
of predictive maintenance, improving the effective control and 
consequently the reduction of costs. 
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