RESEARCH ARTICLE

 SECONDARY k-NORMAL MATRICES

 SECONDARY k-NORMAL MATRICES

 Krishnamoorthy, S and * Bhuvaneswari, G

 Krishnamoorthy, S and * Bhuvaneswari, G
 Department of Mathematics, Ramanujan Research Center, Govt. Arts College (Autonomous), Kumbakonam, Tamilnadu-612001 India

ARTICLE INFO

Article History:

Received $15^{\text {th }}$, March, 2013
Received in revised form 17 ${ }^{\text {th }}$, April, 2013
Accepted $24^{\text {th }}$, May, 2013
Published online $28^{\text {th }}$ May, 2013

Key words:

Normal, s-k normal and Moore-Penrose inverse, AMs Classification: 15A09, 15A57

Abstract

The concept of s-k normal matrices is introduced. Characterizations of s-k normal matrices are obtained.

© Copy Right, IJRSR, 2013, Academic Journals. All rights reserved.

INTRODUCTION

A square complex matrix $\mathrm{A} \in C_{n \mathrm{x} n}$ is called normal if $\mathrm{AA}^{*}=\mathrm{A}^{*} \mathrm{~A}$, where $\mathrm{A}^{*}=\overline{\mathrm{A}}^{\mathrm{T}}$ denotes the conjugate transpose of $\mathrm{A}[2]$. There are many equivalent conditions in the literature for a square matrix to be normal [3]. For an mxn complex matrix A, the Moore Penrose inverse A^{\dagger} of $A[2]$ is the unique nxm matrix X satisfying the following four Penrose equations:

$$
\text { (i) } \mathrm{AXA}=\mathrm{A} \text { (ii) } \mathrm{XAX}=\mathrm{X}
$$

(iii) $(\mathrm{AX})^{*}=\mathrm{AX}$ (iv) $(\mathrm{XA})^{*}=\mathrm{XA}$. [2] Recently,

Hill and Waters [3] have developed a theory for k-real and khermitian matrices. Ann Lee [1] has initiated the study of Secondary symmetric matrices, that is matrices whose entries are symmetric about the (Skew) Secondary diagonal. Ann Lee has shown that for complex matrix A, the usual transpose A^{T} and Secondary transpose A^{S} are related as $A^{S}=V A^{T} V$ where ' V ' is the permutation matrix with units in the secondary diagonal. The concept of s-normal matrices is introduced by S.Krishnamoorthy \& R.Vijayakumar [6] and the concept of k -normal matrices introduced by S.Krishnamoorthy and R.Subhash [7]. In this paper characterization of s-k normal matrices are discussed.

2. Preliminaries and Notations

Let Cnxn be the space of nxn complex matrices of order n.
For $A \in C_{n x n}$, let $A^{T}, \bar{A}, A^{*}, A^{S}$ and A^{θ} denote the transpose, Conjugate, Conjugate transpose secondary transpose and conjugate secondary transpose of matrix A respectively. Throughout, let ' k ' be a fixed product of disjoint transpositions in S_{n} the set of all permutations on $\{1,2,3, \ldots n\}$ and K be the
associated permutation matrix with units in the secondary diagonal. ' K ' and ' V ' clearly satisfies the following properties.
$\overline{\mathrm{K}}=\mathrm{K}^{\mathrm{T}}=\mathrm{K}^{\mathrm{S}}=\mathrm{K}^{*}=\overline{\mathrm{K}^{\mathrm{S}}}=\mathrm{K} ; \quad \mathrm{K}^{2}=\mathrm{I}$
$\overline{\mathrm{V}}=\mathrm{V}^{\mathrm{T}}=\mathrm{V}^{\mathrm{S}}=\mathrm{V}^{*}=\overline{\mathrm{V}^{\mathrm{S}}}=\mathrm{V} ; \quad \mathrm{V}^{2}=\mathrm{I}$
Definition (2.1): [4]
A matrix $A \in C_{n \times n}$ is said to be secondary normal (snormal) if $\mathrm{AA}^{\theta}=\mathrm{A}^{\theta} \mathrm{A}$, that is an s-normal matrix is one which commutes with its conjugate secondary transpose.
Definition (2.2): [5]
A matrix $\mathrm{A} \in C_{n \mathrm{x} n} n^{\text {is }}$ said to be k-normal if $\mathrm{AA}^{*} \mathrm{~K}=\mathrm{KA}^{*} \mathrm{~A}$.

3. s-k normal matrices

In this section, the concept of s-k normal matrices is introduced.
Definition (3.1):
A matrix $\mathrm{A} \in C_{n \mathrm{x} n}$ is said to secondary k-normal (s-knormal) matrix if

$$
\mathrm{A}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A} .
$$

Example (3.2):
$A=\left(\begin{array}{ccc}0 & i & i \\ i & 0 & i \\ i & i & 0\end{array}\right)$ is a s-k normal matrix.

[^0]Remark (3.3):
The concept of s-k normal matrices is analogous to that of normal matrices
Theorem (3.4):
(i) The transpose of an s-k normal matrix is s-k normal.
(ii) The secondary transpose of an s-k normal matrix is $\mathrm{s}-\mathrm{k}$ normal.
(iii) The conjugate of an s-k normal matrix is $s-k$ normal.
Proof:
Let $\mathrm{A} \in C_{n \mathrm{X} n}$.
(i) Since A is s-k normal, $\mathrm{A}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}$

$$
\left(\mathrm{A}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)\right)^{\mathrm{T}}=\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)^{\mathrm{T}}
$$

$\left(\mathrm{KV}\left(\mathrm{A}^{*}\right)^{\mathrm{T}} \mathrm{VK}\right) \mathrm{A}^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}\left(\mathrm{KV}\left(\mathrm{A}^{*}\right)^{\mathrm{T}} \mathrm{VK}\right)$

$$
\mathrm{KV}\left(\mathrm{~A}^{\mathrm{T}}\right)^{*} \mathrm{VKA}^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}} \mathrm{KV}\left(\mathrm{~A}^{\mathrm{T}}\right)^{*} \mathrm{VK}
$$

Therefore A^{T} is s-k normal
(ii)
$\mathrm{A}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}$

$$
\left(\mathrm{A}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)\right)^{\mathrm{s}}=\left(\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}\right)^{\mathrm{s}}
$$

$$
\left(\mathrm{KV}\left(\mathrm{~A}^{\mathrm{s}}\right)^{*} \mathrm{VK}\right) \mathrm{A}^{\mathrm{s}}=\mathrm{A}^{\mathrm{s}}\left(\mathrm{KV}\left(\mathrm{~A}^{\mathrm{s}}\right)^{*} \mathrm{VK}\right)
$$ Thus A^{s} is s-k normal.

(iii)

$$
\frac{\mathrm{A}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)}{\mathrm{A}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)}=\frac{\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}}{\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}}
$$

$$
\overline{\mathrm{A}}\left(\mathrm{KV}(\overline{\mathrm{~A}})^{*} \mathrm{VK}\right) \mathrm{A}=\left(\mathrm{KV}(\overline{\mathrm{~A}})^{*} \mathrm{VK}\right) \overline{\mathrm{A}}
$$

Hence $\overline{\mathrm{A}}$ is s-k normal
Theorem (3.5):
(i) Real secondary k-symmetric matrices are s-k normal.
(ii) Real secondary k-skew symmetric matrices are sk normal.
(iii) Real secondary k-orthogonal matrices are s-k normal
(iv) secondary k -hermitian matrices are s - k normal.
(v) secondary k-skew hermitian matrices are s-k normal

Proof

Let $\mathrm{A} \in C_{n \mathrm{X} n}$.
(i) Let A be a real s-k symmetric matrix

$$
\text { Thus } \mathrm{A}=\mathrm{KVA}^{\mathrm{T}} \mathrm{VK}=\mathrm{KVA}^{*} \mathrm{VK}
$$

$\mathrm{A}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}$
Therefore A is s-k normal
(ii) If A is a real s-k skew symmetric matrix then
$A=-\left(K V A^{T} V K\right)=-\left(K V A^{*} V K\right)$
$\mathrm{A}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}$.
Hence A is s-k normal.
(iii) Let A be a real s-k orthogonal matrix Then
$\mathrm{A}\left(\mathrm{KVA}^{\mathrm{T}} \mathrm{VK}\right)=\left(\mathrm{KVA}^{\mathrm{T}} \mathrm{VK}\right) \mathrm{A}=\mathrm{I}$ which leads to $\mathrm{A}^{-1}=\mathrm{KVA}^{\mathrm{T}} \mathrm{VK}$.
Since A is real,
$\mathrm{A}\left(\mathrm{KVA}^{\mathrm{T}} \mathrm{VK}\right)=\mathrm{AA}^{-1}=\mathrm{I}$ and $\left(\mathrm{KVA}^{\mathrm{T}} \mathrm{VK}\right) \mathrm{A}=\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}$
Thus A is s-k normal.
(iv) If A is an s-k hermitian matrix, then
$\mathrm{KVA}^{*} \mathrm{VK}=\mathrm{A}$ which implies
$A\left(K V A^{*} V K\right)=A^{2}$
Also $\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}=\mathrm{A}^{2}$
Therefore

$$
\begin{aligned}
& \mathrm{A}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A} \\
& \text { Hence A is s-k normal. } \\
& \text { (v) Let A be an s-k skew hermitian matrix } \\
& \text { By definition, } \mathrm{KVA}^{*} \mathrm{VK}=-\mathrm{A} \\
& \Rightarrow \mathrm{~A}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=-\mathrm{A}^{2} \\
& \text { Also }\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}=-\mathrm{A}^{2} \\
& \Rightarrow
\end{aligned}
$$

$\mathrm{A}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)=\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}$.
$\Rightarrow \mathrm{A}$ is s-k normal.

Lemma: (3.6):

Let $\mathrm{A}, \mathrm{N} \in C_{n \mathrm{x} n}$. If N is s-k normal such that $\mathrm{AN}=\mathrm{NA}$ and $\mathrm{KVNVK}=\mathrm{N}$

$$
\text { then } \mathrm{A}\left(\mathrm{KVN}^{*} \mathrm{VK}\right)=\left(\mathrm{KVN}^{*} \mathrm{VK}\right) \mathrm{A}
$$

Proof:

Let $\mathrm{A}, \mathrm{N} \in C_{n \mathrm{x}} n$ and N be s-k normal.
Let $A N=N A$ and $K V N V K=N$. Since N commutes with A and $\mathrm{KVN}^{*} \mathrm{VK}$, it must commute with A $\left(\mathrm{KVN}^{*} \mathrm{VK}\right)-\left(\mathrm{KVN}^{*} \mathrm{VK}\right) \mathrm{A}$. For
$\mathrm{N}\left(\mathrm{A}\left(\mathrm{KVN} \mathrm{N}^{*} \mathrm{VK}\right)-\left(\mathrm{KVN} \mathrm{N}^{*} \mathrm{VK}\right) \mathrm{A}\right)=\mathrm{NA}\left(\mathrm{KVN} \mathrm{N}^{*} \mathrm{VK}\right)-\mathrm{N}\left(\mathrm{KVN} \mathrm{N}^{*} \mathrm{VK}\right) \mathrm{A}$

$$
\begin{aligned}
& =\mathrm{AN}\left(\mathrm{KVN}^{*} \mathrm{VK}\right)-\left(\mathrm{KVN}^{*} \mathrm{VK}\right) \mathrm{NA} \\
& =A\left(K V N^{*} V K\right) N-\left(K V N^{*} V K\right) A N \\
& \underset{\text { Now }}{\mathrm{N}\left(\mathrm{~A}\left(\mathrm{KVN}{ }^{*} \mathrm{VK}\right)-\left(\mathrm{KVN}{ }^{*} \mathrm{VK}\right) \mathrm{A}=\left(\mathrm{A}\left(\mathrm{KVN}{ }^{*} \mathrm{VK}\right)-\left(\mathrm{KVN}{ }^{*} \mathrm{VK}\right) \mathrm{A}\right) \mathrm{N}\right.} \text { let } \\
& \mathrm{X}=\mathrm{A}\left(\mathrm{KVN}^{*} \mathrm{VK}\right)-\left(\mathrm{KVN}^{*} \mathrm{VK}\right) \mathrm{A} \\
& X X^{*}=\left(A\left(K V N^{*} V K\right)-\left(K V N^{*} V K\right) A\right)\left(A\left(K V N^{*} V K\right)-\left(K V N^{*} V K\right) A\right)^{*} \\
& =\left(\mathrm{A}\left(\mathrm{KVN}^{*} \mathrm{VK}\right)-\left(\mathrm{KVN}^{*} \mathrm{VK}\right) \mathrm{A}\right)\left((\mathrm{KVNVK}) \mathrm{A}^{*}\right) \\
& \left(\mathrm{A}\left(\mathrm{KVN}^{*} \mathrm{VK}\right)-\left(\mathrm{KVN}^{*} \mathrm{VK}\right) \mathrm{A}\right)\left(\mathrm{A}^{*}(\mathrm{KVNVK})\right) \\
& \left.=\operatorname{KVNVK}\left(A\left(\mathrm{KVN}^{*} \mathrm{VK}\right)-\left(\mathrm{KVN}^{*} \mathrm{VK}\right) \mathrm{A}\right) \mathrm{A}^{*}\right)- \\
& \left(\mathrm{A}\left(\mathrm{KVN}^{*} \mathrm{VK}\right)-\left(\mathrm{KVN}^{*} \mathrm{VK}\right) \mathrm{A}\right)\left(\mathrm{A}^{*}(\mathrm{KVNVK})\right. \\
& =N\left(A\left(K V N^{*} V K\right)-\left(K V N^{*} V K\right) A\right) A^{*} \\
& \left.-\left(\mathrm{A}\left(\mathrm{KVN}^{*} \mathrm{VK}\right)-\left(\mathrm{KVN}^{*} \mathrm{VK}\right) \mathrm{A}\right) \mathrm{A}^{*}\right) \mathrm{N} \\
& X X^{*}=N B-B N \text { where } \\
& \left.\mathrm{B}=\left(\mathrm{A}\left(\mathrm{KVN}^{*} \mathrm{VK}\right)-\left(\mathrm{KVN}^{*} \mathrm{VK}\right) \mathrm{A}\right) \mathrm{A}^{*}\right) \\
& \begin{aligned}
& \Rightarrow \operatorname{tr}\left(\mathrm{XX}^{*}\right)= \operatorname{tr}(\mathrm{NB}-\mathrm{BN}) \\
&=\operatorname{tr}(\mathrm{NB})-\operatorname{tr}(\mathrm{BN}) \\
& \Rightarrow \operatorname{tr}\left(\mathrm{XX}^{*}\right)=0 \\
& \mathrm{X}=0 .
\end{aligned} \\
& \text { Hence } \\
& \mathrm{A}\left(\mathrm{KVN}^{*} \mathrm{VK}\right)=\left(\mathrm{KVN}^{*} \mathrm{VK}\right) \mathrm{A}
\end{aligned}
$$

Theorem (3.7):
If A and B are two $\mathrm{s}-\mathrm{k}$ normal matrices such that AB = BA,
$\mathrm{A}\left(\mathrm{KVB}^{*} \mathrm{VK}\right)=\left(\mathrm{KVB}^{*} \mathrm{VK}\right) \mathrm{A}$ and
$\left(K^{\prime} A^{*} V K\right) B=B\left(K V A^{*} V K\right)$ then $A+B$ and $A B$ are also s -k normal matrices.

Proof:

$$
\text { Let } \mathrm{A}, \mathrm{~B} \in C_{n \mathrm{x} n}
$$

Let A and B be $\mathrm{s}-\mathrm{k}$ normal matrices such that $\mathrm{AB}=$ BA.

Then by lemma (3.6) $\mathrm{A}\left(\mathrm{KVB}^{*} \mathrm{VK}\right)=\left(\mathrm{KVB}^{*} \mathrm{VK}\right) \mathrm{A}$

$$
\text { and }\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{B}=\mathrm{B}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)
$$

Now,
$(\mathrm{A}+\mathrm{B})\left(\mathrm{KV}(\mathrm{A}+\mathrm{B})^{*} \mathrm{VK}\right)=(\mathrm{A}+\mathrm{B})\left(\mathrm{KV}\left(\mathrm{A}^{*}+\mathrm{B}^{*}\right) \mathrm{VK}\right)$

$$
=\left(\mathrm{KV}(\mathrm{~A}+\mathrm{B})^{*} \mathrm{VK}\right)=(\mathrm{A}+\mathrm{B})\left(\mathrm{KV}\left(\mathrm{~A}^{*}+\mathrm{B}^{*}\right) \mathrm{VK}\right)
$$

$$
=\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{A}+\left(\mathrm{KVB}^{*} \mathrm{VK}\right) \mathrm{A}+\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{B}+\left(\mathrm{KVB}{ }^{*} \mathrm{VK}\right) \mathrm{B}
$$

$$
=\left(\mathrm{KV}\left(\mathrm{~A}^{*}+\mathrm{B}^{*}\right) \mathrm{VK}\right) \mathrm{A}+\left(\mathrm{KV}\left(\mathrm{~A}^{*}+\mathrm{B}^{*}\right) \mathrm{VK}\right) \mathrm{B}
$$

$$
=\left(\mathrm{KV}\left(\mathrm{~A}^{*}+\mathrm{B}^{*}\right) \mathrm{VK}\right)(\mathrm{A}+\mathrm{B})
$$

$$
=\left(\mathrm{KV}(\mathrm{~A}+\mathrm{B})^{*} \mathrm{VK}\right)(\mathrm{A}+\mathrm{B})
$$

$$
\Rightarrow \mathrm{A}+\mathrm{B} \text { is } \mathrm{s}-\mathrm{k} \text { normal. }
$$

Now,
$(\mathrm{AB})\left(\mathrm{KV}(\mathrm{AB})^{*} \mathrm{VK}\right)=\mathrm{AB}\left(\mathrm{KVB}^{*} \mathrm{~A}^{*} \mathrm{VK}\right)$
$=A B\left(\mathrm{KVB}^{*} \mathrm{VK}\right)\left(\mathrm{KVA}^{*} \mathrm{VK}\right)$
$=\mathrm{A}\left(\mathrm{KVB}^{*} \mathrm{VK}\right) \mathrm{B}\left(\mathrm{KVA}^{*} \mathrm{VK}\right)$
$=\left(K^{*} B^{*} V K\right) A\left(K V A^{*} V K\right) B$.
$=\left(\mathrm{KVB}^{*} \mathrm{VK}\right)\left(\mathrm{KVA}^{*} \mathrm{VK}\right) \mathrm{AB}$.
$=\left(\mathrm{KVB}^{*} \mathrm{~A}^{*} \mathrm{VK}\right) \mathrm{AB}$
$(\mathrm{AB})\left(\mathrm{KV}(\mathrm{AB})^{*} \mathrm{VK}\right)=\left(\mathrm{KV}(\mathrm{AB})^{*} \mathrm{VK}\right) \mathrm{AB}$.
Hence the theorem.

References

1. Ann Lee: Secondary symmetric, secondary skew symmetric, secondary orthogonal matrices; Period Math. Hungary 7, 63-76 (1976).
2. Ben-Israel, A., TNE Greville Generalized inverses Theory and Application John Wiley \& Sons, New York (1973).
3. Hill, R.D., Water, S.R., On k-real and k-hermitian matrices, Linear Alg. Appl., 169(1992), 17-29.
4. Krishnamoorthy. S., Vijayakumar. R., On s-normal matrices, journal of Analysis and Computation, Vol 5, No. 2 (2009), in press.
5. Krishnamoorthy. S., and Subash. R., 2011 "On k-normal matrices" international J. of Math. Sci \& Engg. Appls., Vol.5, no.II, PP 119-130.
6. Tian, Y., G.P.H. Styan, Some rank equalities for idempotent and involutory matrices Linear algebra Appl.335, 101-117 (2001).

[^0]: * Corresponding author: + +91

 Email: bhuvaneswaribharathi@gmail.com

