RESEARCH ARTICLE

PREVALENCE OF G6PD DEFICIENCY IN PATIENTS WITH CHRONIC KIDNEY DISEASE OF UNKNOWN ORIGIN IN NORTH CENTRAL REGION OF SRI LANKA: CASE CONTROL STUDY

Jayasekara JMKB, Dissanayake2 DM, Gunaratne MDN3, Sivakanesan R4, Dissanayake DMTS

1Department of Pathology, Faculty of Medicine, University of Peradeniya, Sri Lanka
2Department of Pathology, Faculty of Medicine, University of Peradeniya, Sri Lanka
3Department of Mathematics, Faculty of Engineering, University of Moratuwa, Sri Lanka
4Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Sri Lanka
5SACTRC, Faculty of Medicine, University of Peradeniya, Sri Lanka

ARTICLE INFO

Article History:
Received 10th, February, 2013
Received in revised form 14th, March, 2013
Accepted 27th, March, 2013
Published online 30th, April, 2013

Key words:
G6PD deficiency, chronic kidney disease, unknown etiology, malaria, genetic factors

ABSTRACT

The study was initiated with the objective to identify the role of G6PD deficiency in chronic kidney disease patients with unknown etiology (CKD-U) in North Central Region (NCR) of Sri Lanka. 104 recently diagnosed, biopsy proven CKD-U patients (cases) and 208 age and sex matched controls were selected from same areas.

Demographic information were collected and G6PD activities were determined in both cases and controls. The severity of G6PD deficiency was interpreted. Collected information were analyzed by using two-way ANOVA experimental design model and mean separation. The mean G6PD activity of the case group was significantly lower (p <0.001) than the control group. Twenty percent (20%) of the patients had G6PD deficiency whereas only 2% in control group. Smoking, histories of malaria, alcohol consumption were significantly contributed for the disease. Prevalence of G6PD deficiency was high among CKD-U patients and which may play a major role in the pathogenesis of disease.

INTRODUCTION

Glucose-6-phosphate Dehydrogenase (G6PD) deficiency is the commonest enzymopathy in the world (Sarkar et al., 1993). The enzyme G6PD catalyzes the entry step of G6P into the Pentose Phosphate Shunt that is the only source for NADPH, which is required to maintain an effective redox potential protecting red cell membrane against oxidative stress and injury. The highest prevalence rates (with gene frequencies from 5-25%) of glucose-6-phosphatase dehydrogenase (G6PD) deficiency are found in tropical Africa, the Middle East, tropical and subtropical Asia, some areas of the Mediterranean, and Papua New Guinea (Luzzatto et al., 1969). The severity of glucose-6-phosphatase dehydrogenase (G6PD) deficiency varies significantly among racial groups because of different variants of the enzyme. Severe deficiency variants primarily occur in the Mediterranean population (Gray, 1973; Beutler, 1990). However the prevalence of G6PD deficiency in Sri Lankan population is still unidentified.

Individuals with G6PD deficiency can present with a spectrum of disorders including acute massive haemolysis due to drugs, haemolysis complicating illness such as viral hepatitis, Favism, herb and chemical induced haemolysis, neonatal jaundice and congenital non spherocytic haemolytic anaemia. Deaths due to acute renal failure are well documented in patients with massive haemolysis due to tubular necrosis, especially in those with underlying diseases of the liver such as hepatitis (Vives-Corrons et al., 1982). In G6PD deficient individuals, their tissue G6PD enzyme levels are also lower than normal in leucocytes, platelets, liver, kidneys and adrenals. However there are alternate pathways in nucleated cells for the generation of NADPH, most of these subjects do not suffer from any other cellular dysfunction or disease. In some variants of G6PD deficiency with absence of leucocyte G6PD, there may be abnormal leucocytes function and such subjects present with proneness to infection, similar to chronic granulomatous disease (Gray, 1973).

Another study reported that patients with viral hepatitis and thyrotrophic periodic paralysis (TPP) have a disproportionately high incidence of G6PD deficiency. Severe jaundice in G6PD subjects with viral hepatitis results in an increased admission rate into hospital. Although TPP patients are usually males and there have been reports of familial tendency. It would seem that the genetic predisposition to TPP is linked to the G6PD deficient gene in the Southern Chinese (McFadzean and Yeung, 1969). The distribution of G6PD deficiency is similar to thalassaemia and is thought to be due to the selective advantage of these phenotypes against endemic malaria infection in the past. Luzzatto et al 1969; have shown that G6PD-deficient cells are protective against malaria and both homozygous female and hemizygous males should also be
protected and has a survival advantage against malaria endemics. Twenty years ago health researchers in Sri Lanka have observed high incidence of new form of chronic kidney disease of unknown etiology (CKD-U) has emerged in high malaria endemic areas in past. CKD-U was identified as interstitial nephritis which suggested a toxic etiology (Wanigasuriya et al., 2007) and common etiologies such as diabetes and hypertension were not contributed. Though the population at risk is scattered in the North Central Region (NCR), large number of patients have been detected in Medawachchiya, Padaviya and Girandurukotte, Medirigiriya and Nikawewa areas which are high endemic areas for malaria from 1900s. Moreover the epidemics occurred in 1906, 1911, 1914, 1919, 1928, 1934/35, 1936-1946, 1968/1969 and 1987 and large number of deaths due to malaria were also reported. Thus remained population after epidemics was more susceptible for G6PD deficiency because G6PD deficiency patients had more survival advantage than others during the malaria endemics in this region (Report of anti malaria campaign-2007).

The survey carried out by Abeyrathna et al in 1976 reported that, 20.7% had G6PD deficiency in ancient villages in North Central Region of the country where CKD-U is prevalent now. Over 3% were noticed among resettled areas in NCR and over 5% were noticed among school children. However the etiology of the CKD-U in North Central Region of Sri Lanka still remains a mystery (Herath et al., 2005). According to the studies carried out by scientist in Sri Lanka, high groundwater fluoride content, bleeding of heavy metals such as cadmium from chemical fertilizers into water sources, usage of aluminum vessels to store drinking water were postulated as risk factors for CKD-U and some studies clearly indicate that the disease is affecting mainly the male farming community in some parts of the North Central Region(NCR) of Sri Lanka and familial occurrence also significantly contributed for the disease (Chandrajith et al., 2010). Previous studies have shown that a significant number of CKD patients have family members with the same disease and no further investigations were carried out to find whether it is due to a genetic factor or due to the exposure to the same etiological factor. One such possibility is Glucose-6-phosphate Dehydrogenase (G6PD) deficiency which is the commonest enzyme deficiency in the world and also identified high in CKD-U high prevalence areas. The literature showed that G6PD deficiency is so far related only to acute renal failure and no association with chronic renal failure was found (Sakhuja et al., 1999.). Hence existing study was initiated with the objective to identify the role of G6PD deficiency in CKD patients with unknown etiology in the areas of NCR.

MATERIALS AND METHODS

The ethical clearance for the study was taken from the Ethical review committee, Faculty of Medicine, University of Peradeniya and informed consent was taken from each individual who participated in the study. List of biopsy proven CKD-U patients (600 patients) were traced from renal clinics in NCR (Medawachchiya, Padaviya and Girandurukotte clinics) for the study and one hundred and four (104) recently diagnosed patients were selected randomly by using random number table. Two hundred and eight (208) age and sex matched healthy individuals were selected as controls from the adjacent house of each CKD-U patient. CKD due to hypertension, diabetes or any other identifiable cause was excluded. Patients who had blood transfusions during last two months were excluded. The diagnostic criteria used for CKD-U includes absence of diabetes mellitus, hypertension, urinary tract infections or other renal diseases in the history, presence of proteinuria on two occasions ,decreased GFR , presence of radiological and pathological evidence for interstitial nephritis (Biopsy proven). Healthy individuals(absent of any chronic disorder) were selected after two consecutive urine samples showed absence of proteinuria by using urine protein turbidimetric assay (urine protein < 15 mg/dl, detection limit 4-200mg/dl, sensitivity 4mg/dl).

The demographic data (Age, sex, occupation) and history of haematuria, malaria, snake bite, use of Indigenous medicine (Ayrurvedha treatment with duration, type etc) were collected from both cases and controls by using interviewer administered questionnaire. Family history of CKD-U from both cases and controls were also collected with pedigrees for three or more generations. Three (3) ml of blood was collected into EDTA tubes for G6PD assay and assays were done on both cases and control groups. The G6PD enzyme activity was determined by measurement of the absorbance change at 340 nm due to the reduction of NADP in peripheral blood samples. Full blood counts of all blood samples were carried out by using Mindray fully automated (5500-series) Hematology analyzer. G6PD activity was expressed as mU per 10^9 Red blood cells and laboratory mean G6PD activity was established by using 40 healthy individuals (20 males and 20 females) from CKD-U low prevalence areas. The severity of G6PD deficiency was interpreted according to the laboratory mean. Comparison of G6PD levels and other collected information between case and control group were analyzed by using two-way ANOVA experimental design model and mean separation with LSD (Least Significant Different) method.

RESULTS

One hundred and four (104) patients selected randomly included 80 male and 24 female. The age ranged from 9 to 64 years and mean age was 44 ±10 years. One hundred and sixty (160) male and 48 female healthy individuals included as control group with mean age of 43±9 years. Mean G6PD activity (LSD) of both cases and controls were analyzed and compared. The mean G6PD activity of the case group (185.78 mU/10^9 RBC) was significantly lower (p <0.001) than the control group (215.71 mU/10^9 RBC). The following differences were noticed in both male and females in cases and controls respectively however no significant difference was noticed between two female groups and between male and female in control group (Table 1).

<table>
<thead>
<tr>
<th>Case / control</th>
<th>Sex</th>
<th>Mean G6PD activity (LSD) mU/10^9 RBC</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>Male(80)</td>
<td>175.31*</td>
<td>p<0.01</td>
</tr>
<tr>
<td>Control</td>
<td>Female(24)</td>
<td>196.25*</td>
<td>p<0.01</td>
</tr>
<tr>
<td></td>
<td>Male(160)</td>
<td>222.38*</td>
<td>p<0.01</td>
</tr>
<tr>
<td></td>
<td>Female(48)</td>
<td>209.03*</td>
<td>p<0.01</td>
</tr>
</tbody>
</table>

*<b a, b, c,d, e, different G6PD activities

Table 1 Difference of G6PD levels among male and female in both case and control groups

456
Normal G6PD activity for the laboratory was established as 225±16 mU/10⁶ RBC by analyzing 40 healthy individuals selected from CKD-U non affected area (20 males and 20 females) and G6PD activities of patients and controls of the study were compared using the above laboratory mean. Prevalence of G6PD deficiency among CKD-U patients and controls were estimated separately and G6PD activity less than 10% of the laboratory mean who considered as severe deficiency, 10-40% as moderate, 40-60% as mild and over 60% as normal activity (Ruwende, 1998; Gregg, 2000). (Figure1).

Four (4%) percent of CKD-U patients had severe G6PD deficiency and 6% and 10% moderate and mild deficiency respectively (total 20%). However the control group showed only 2% of both moderate and mild deficiency. The demographic data (Age, sex, occupation) and history of haematuria, malaria, snake bite, usage of Indigenous medicine (Aryurvedha treatment with duration, type etc) were collected from both cases and controls and analyzed. The following table showed comparison of above parameters. Table 2-Odds ratios of other risk factors

The familial occurrence of the disease is also evidenced in the pedigree analysis with no indication of clear Mendelian inheritance could be due to exposure of the siblings to the etiological agent rather than direct genetic/inherited background for the disease and G6PD mutations needs to be identified in future in both CKD-U patients and healthy individuals to confirm the findings of the current study. Finally we can conclude that G6PD deficiency may play a considerable role in the pathogenesis of chronic kidney disease due to unknown origin.

References

Report of anti malaria campaign-2007
