NORMAL, REGULARITY AND NEIGHBOURHOOD IN GENERALISED β^* CLOSED MAPS

Palanimani, P.G and Parimelazhagan, R

Karpagam University, Coimbatore
Department of Science and Humanities, Karpagam college of Engineering Coimbatore

ARTICLE INFO

Article History:
Received 28th September, 2012
Received in revised form 10th, October, 2012
Accepted 15th October, 2012
Published online 29th November, 2012

Key Words:
m-Structure, beta* set, beta* continous, g-closed to be corrected

INTRODUCTION

Levine [9] introduced the concept of g-closed sets and studied their properties. A subset A of a space X is g-closed if and only if $cl(A) \subseteq O$ whenever $A \subseteq O$ and O is open. Hence every closed set is a g-closed set. The union and intersection of two g-closed set is g-closed set. Regular open sets and stronger regular open sets have been introduced and investigated by Stone [19] and Tang [21] respectively. Complements of regular open sets and strong regular open sets are called regular closed sets and strong regular closed sets. Andrijevic[1], Arya and Nour[2], Bhattacharya and Lahiri[5,Levine[9],[10],Masbour et al[13] and Njastad[17] introduced and investigated semi-preopen sets, generalized semi open sets, semi generalized open sets, generalized open sets, semi-open sets, pre-open sets, generalized open set, semi-open sets pre-open sets and α-open sets which are some of the weak forms of open sets and the complement of these sets are called the same types of closed sets respectively. Ganster and Reilly [8] have introduced locally closed sets which are weaker than both open and closed sets. Cameron [6] has introduced regular semi-open sets which are weaker than regular open sets. β^* open sets and β^* continuous functions were already introduced by Palanimani and Parimelazhagan, further the closed maps were studied.

PRELIMINARIES

In this section we begin by recalling some definitions and properties Let (X, τ) be a topological spaces and A be a subset. The closure of A and interior of A are denoted by $cl(A)$ and $int(A)$ respectively. We recall some generalized open sets.

Definition [9] 2.1: A subset A of a space X is g-closed if and only if $cl(A) \subseteq G$ whenever $A \subseteq G$ and G is open.

Definition [20]2.2: A map $f : X \rightarrow Y$ is called g-closed if each closed set F of X, $f(F)$ is g-closed in Y.

Definition [18]2.3: A map $f : X \rightarrow Y$ is called semi-closed if each closed set F of X, $f(F)$ is semi-closed in Y.

Definition [15] 2.4 : A map $f : X \rightarrow Y$ is called α-open if each open set F of X, $f(F)$ is α-set in Y.

Definition [7]2.5 : A map $f : X \rightarrow Y$ is called pre-closed if for each closed map F of X, $f(F)$ is pre-closed in Y.

Definition [12]2.6: A map $f : X \rightarrow Y$ is called regular-closed if for each set F of X, $f(F)$ is regular closed in Y.

Definition (11)2.7: A map $f : X \rightarrow Y$ is said to be strongly continuous if $f^{-1}(V)$ is both open and closed in X for each subset V of Y.

Definition [4] 2.8: A map f: X → Y is said to be generalized continuous if $f^{-1}(V)$ is g-open in X for each subset V of Y.

Definition [15] 2.9: A subset A of a topological space X is said to be β^* closed set in X if $cl(int(A))$ contained in U whenever U is G-open.

Remark 2.11: The following implications were well known...
3. Properties of β^*-closed sets

In this section we study some of the properties of β^*-closed set.

Definition 3.1: A map $f: X \to Y$ is called β^*-closed map if for each closed set F of X, $f(F)$ is β^*-closed set.

Remark 3.2: Every g-closed map is a β^*-closed map and the converse is need not be true from the following example.

Example 3.3: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$, $\tau^c = \{\phi, X, \{b, c\}, \{c\}\}$ be topologies on X. $f: X \to Y$ each closed set $f(F)$ is g-closed. Here $\{a, c\}$ is g-closed but not β^*-closed.

Theorem 3.4: A map $f: X \to Y$ is β^*-closed if and only if for each subset S of Y and for each open set U containing $f^{-1}(S)$ there is a β^*-open set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof: Suppose f is β^*-closed. Let S be a subset of Y and U is an open set of X such that $f^{-1}(S) \subseteq U$, then $V = Y \setminus f^{-1}(X \setminus U)$ is a β^*-open set of V of Y such that $S \subseteq V$ such that $f^{-1}(V) \subseteq U$.

For the converse suppose that f is a closed set of X. Then $f^{-1}(Y \setminus f(F)) \subseteq X \setminus F$ and $X \setminus F$ is open. By hypothesis there is β^*-open set V of Y such that $Y \setminus f(F) \subseteq V$ and $f^{-1}(V) \subseteq X \setminus F$. Therefore $F \subseteq X \setminus f^{-1}(V) \subseteq \text{int}(f^{-1}(V)) \subseteq Y \setminus V$ which implies $f(F) = Y \setminus V$. Since $Y \setminus V$ is β^*-closed if $f(F)$ is β^*-closed and thus f is a β^*-closed map.

Theorem 3.5: If $f: X \to Y$ is continuous and β^*-closed and A is a β^*-closed set of X then $f(A)$ is β^*-closed.

Proof: Let A be a β^*-closed set of X. Since f is g-continuous, $f^{-1}(O)$ is an open set containing A. Hence $\text{cl}(\text{int}(A)) \subseteq f^{-1}(O)$ is an β^*-closed set. Since f is β^*-closed, $f(\text{cl}(\text{int}(A)))$ is a β^*-closed set contained in the open set O which implies that $\text{cl}(\text{int}(f(\text{cl}(\text{int}(A))))) \subseteq O$ and hence $\text{cl}(\text{int}(f(\text{cl}(\text{int}(A))))) \subseteq O\cdot f$ is a β^*-closed set.

Corollary 3.6: If $f: X \to Y$ is g-continuous and closed and A is β^*-closed set of X the $f(A)$ is β^*-closed.

Corollary 3.7: If $f: X \to Y$ is β^*-closed and continuous and A is β^*-closed set of X then $f(A): A \to Y$ is β^*-closed.

Proof: Let F be a closed set of A then F is β^*-closed set of X. From above theorem 3.5 follows that $f_0(F) = f(F)$ is β^*-closed set of Y. Here f_0 is β^*-closed and continuous.

Theorem 3.8: If a map $f: X \to Y$ is closed and a map $g: Y \to Z$ is β^*-closed then $f: X \to Z$ is β^*-closed.

Proof: Let H be a closed set in X. Then $f(H)$ is closed and $(g \circ f)(H) = g(f(H))$ is β^*-closed as g is β^*-closed. Thus $g \circ f$ is β^*-closed.

Theorem 3.9: If $f: X \to Y$ is continuous and β^*-closed and A is a β^*-closed set of X then $f_A: A \to Y$ is continuous and β^*-closed.

Proof: If F is a closed set of A then F is a β^*-closed set of X. From Theorem 3.4, it follows that $f_0(F) = f(F)$ is a β^*-closed set of Y. Hence f_A is β^*-closed. Also f_A is continuous.

Theorem 4.1: If $f: X \to Y$ is β^*-closed and $A = f^{-1}(B)$ for some closed set B of Y then $f_0(A \to Y)$ is β^*-closed.

Proof: Let F be a closed set in A. Then there is a closed set H in X such that $F = A \cap H$. Then $f_0(F) = f(A \cap H) = f(H) \cap f(B)$. Since f is β^*-closed, $f(H)$ is β^*-closed in Y. So $f(H) \cap f(B)$ is β^*-closed in Y. Since the intersection of a β^*-closed and a closed set is a β^*-closed set. Hence f_A is β^*-closed.

Remark 3.11: If B is not closed in Y then the above theorem does not hold from the following example.

Example 3.12: Take $B = \{b,c\}$. Then $A = f^{-1}(B) = \{b, c\}$ and $\{c\}$ is closed in A but $f_0(\{b\}) = \{b\}$ is not β^*-closed in Y. $\{a\}$ is also not β^*-closed in B.

4. Normal and Regularity

In this section we introduce the new class of β^*-regular and studied some of its properties.

Theorem 4.1: If $f: X \to Y$ is continuous, β^*-closed map from a normal space X onto a space Y then Y is normal.

Proof: Let A, B be disjoint closed sets in Y. Then $f^{-1}(A), f^{-1}(B)$ are disjoint closed sets of X. Since X is normal, there are disjoint open sets U, V in X such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. Since f is β^*-closed by theorem 3.4, there are β^*-open sets G, H in Y such that $A \subseteq G, B \subseteq H$ and $f^{-1}(G) \subseteq U$ and $f^{-1}(H) \subseteq V$. Since U, V are disjoint, $\text{int} G, \text{int} H$ are disjoint open sets. Since G is β^*-open, A is closed and $A \subseteq G \subseteq \text{cl}(\text{int}(G))$. Similarly $B \subseteq \text{cl}(\text{int}(H))$. Hence Y is normal.

Theorem 4.2: If $f: X \to Y$ is an open continuous β^*-closed surjection, where X is regular then Y is regular.

Proof: Let U be an open set containing a point P in Y. Let X be a point of X such that $f(X) = P$. Since X is regular and f is continuous there is an open set U such that $x \in V \subseteq \text{cl}(V) \subseteq f^{-1}(V)$. Hence $P \in f(V) \subseteq f(\text{cl}(V)) \subseteq U$. Since f is β^* closed, $f(\text{cl}(V))$ is β^*-
closed set contained in the open set U. It follows that cl(int(f(cl(int(V)))))) ∈ U and hence p ∈ cl(V) ∩ cl(int(V)) ⊆ U and f(V) is open. Since f is open. Hence Y is regular.

Remark 4.3: The normality is preserved under regular closed, continuous and surjective.

Example 4.4: In the example 3.12. It is shown that f is a β*-closed [b,c] is a regular closed set in (X, τ₁) and it is not closed in (X, τ₂). Hence f is not regular closed.

Example 4.5: Let τᵢ be the countable complement topology on the real line R and τ₂ be the usual topology on R and f : (R, τ₁) → (R, τ₂) be the identity map. Then f is closed by the remark immediately after the above example. But f is not β*-closed. If A = {1/n, n ∈ N} then A is closed in (R, τ₁) and f(A) = A is not β*-closed as f(A) ⊆ (0, 2) and (0, 2) is open in (R, τ₂). But cl(int(f(A))) ⊆ (0, 2).

Theorem 4.6: If A is a β*-closed set of a space X then Ind A ≤ Ind X

Proof: It suffices to show that if Ind X ≤ n and A is a β*-closed set of X then Ind A ≤ n. We prove this theorem by induction. The result holds trivially for n = 1. Assume that for every β*-closed set A of X, ind X ≤ n − 1 ⇒ Ind A ≤ n − 1.

Let X be space with Ind ≤ n. Let A be a β*-closed set of X. Let E be a closed set of A and G be an open set of A such that E ⊆ G. Then there exist a closed set F of X and an open set H of X such that F = A ∩ F and G = A ∩ H. Since E is closed in A and A is β*-closed. Since Ind X ≤ n, there is an open set V of X such that cl(int(E)) ⊆ V ⊆ H and Indbd(V) ≤ n − 1. Then V ∩ A is an open set of A such that E ⊆ V ∩ A ⊆ G and bd(J ∩ A) ⊆ bd(V). Now bd(J ∩ A) is a β*-closed set of bd(V). By induction hypothesis and Indbd(β) ∩ A) ≤ n − 1. Hence Ind A ≤ n.

Theorem 4.7: If A is a β*-closed set of a space X then dim A ≤ dim X.

Proof: If dim X = 0 then dim A ≤ 0 = dim X. Hence dim A ≤ dim X. If dim X = 0 then dim X = 0, where n is an integer greater than or equal to -1. If n = -1 dim X = -1 which implies that X = φ and hence A = φ and dim A = -1 = dim X and thus dim A ≤ dim X.

Next suppose dim X = n where n ≥ -1 and let A be a β*-closed set of X. Let {u₁, u₂, u₃, ..., uₖ} be a finite open cover of A. Then for i = 1, 2, 3, ...K there exist open sets V_i of X such that u_i = A ∩ V_i. Since A is a β*-closed and U_{β} = V_i is an open set containing A, cl(int(A)) ⊆ U_{β} = V_i. Since cl(int(A)) is a closed set, dim cl(int(A)) ≤ n, so the finite open cover {cl(int(A ∩ V_i) i = 1, 2, 3, ...k} cl(int(A)) has a refinement cl(int(A)) ⊆ w_i, i = 1, 2, 3, ...k or order at most n + 1, where each w_i is open in X and cl(int(A)) ∩ w_i ⊆ cl(int(A)) ∩ V_i for each i. Then {A ∩ V_i : i = 1, 2, ...} is an open cover of A refining {u_i, i = 1, 2, 3, ...k} and of order not exceeding n + 1. Hence dim A ≤ n which implies that dim A ≤ dim X.

Theorem 4.8: If A is a β*-closed set of a space X then Dind A ≤ Dind X.

Proof: Let X be a space such that Dind X = n and A be a β*-closed set of X. By using the notations of the above theorem, cl(int(A)) ⊆ U_i. Since cl(int(A)) is a closed set, Dind A ≤ n. Hence for every open cover V_i ∩ cl(int(A)), i = 1, 2, 3, ...k there is a disjoint family W_i, j = 1, 2, 3, ...k of open sets cl(int(A)) refining V_i ∩ cl(int(A)), i = 1, 2, 3, ...k and such that Dind(cl(int(A)) - U_{β} = V_i) ≤ n. But A - U_{β} = V_i ⊆ cl(int(A)) - U_{β} = V_i and A - U_{β} = V_i = A ∩ (cl(int(A)) - U_{β} = V_i) is a β*-closed set of (cl(int(A)) - U_{β} = V_i) as the intersection of β*-closed sets. By induction hypothesis Dind(A) - U_{β} = V_i ≤ n - 1. Also W_i ∩ A, j = 1, 2, 3, ...k is a disjoint family of open sets of A refining u_1, u_2, u_3, ..., u_k. Thus Dind A ≤ n and the theorem is proved.

5. β*-Open sets and β*-Neighborhoods

In this section we introduce β*-neighborhoods (β*-nbhd) topological spaces by using the notion of β*-open sets and study some properties.

Definition 5.1: Let X be the point in topological space X, then the set of all β*-neighborhood of a X is called β*-nbhd system of X which is denoted by β*-N(X).

Theorem 5.2: Let X be the topological space and each x ∈ X. Let β*-N(x,τ) be the collection of all β*-nbhd of X then we have the following results

(i) ∀ x ∈ X, β*- N(X) ≠ φ
(ii) N ∈ β*- N(X) ⇒ x ∈ N
(iii) N ∈ β*- N(X), M ⊆ N ⇒ M ∈ β*- N(X)
(iv) N ∈ β*- N(X) ⇒ ∃ M ∈ β*- N(X) such that M ⊆ N and M ∈ β*- N(Y), ∀ Y ∈ M

Proof: (i) Since X is β*-open set, it is β*-nbhd of every x ∈ X, Hence there exists at least one β*-nbhd (namely X) for each x ∈ X. Hence ∀ x ∈ X, β*- N(X) ≠ φ

(ii) if N ∈ β*- N(X), then N is a β*-nbhd of x, then by definition β*-nbhd(x) ∈ N
(iii) Let $N \in \beta^*-\text{nbd}$ and $M \supseteq N$, then there is a
β^*-open set U such that $x \in U \subseteq N$

Since $N \subseteq M$, $x \in U \subseteq M$ and M is β^*-nbd of X.

Hence $M \in \beta^* - N(X)$

(iv) If $N \in \beta^* - N(X)$, then there exists a β^*-open set such that $x \in M \subseteq N$, since M is a β^*-open set, it is β^*-nbd of each of its points.

Therefore $M \in \beta^* - N(Y)$ for every $Y \in M$

Theorem 5.3. Let X be a nonempty set, for each $x \in X$, let $\beta^*-N(x)$ be nonempty collection of subsets of X satisfying following conditions.

(i) $N \in \beta^*-N(X, \tau) \Rightarrow x \in N$.

(ii) Let τ consists of the empty set and all those non-empty subsets of U of X having the property that $x \in U$ implies that there exists an $N \subseteq \beta^*-N(X)$ such that $x \in N \subseteq U$. Then τ is a topology for X.

Proof: (i) $\phi \in \tau$ by definition. We now show that $x \in \tau$.

Let x be any arbitrary element of X. Since $\beta^*-N(x)$ is non-empty, there is an $N \in \beta^*-N(x)$ and so $x \in N$.

Since N is a subset of X, we have $x \in N \subseteq X$.

Hence $X \in \tau$.

(ii) Let $U_{\lambda} \in \tau$ for every $\lambda \in \Lambda$. If $x \in U \{U_{\lambda} : \lambda \in \Lambda \}$, then $x \in U_{\lambda x}$ for some $\lambda x \in \Lambda$.

Since $U_{\lambda x} \in \tau$, there exists an $N \in \beta^*-N(x)$ such that $x \in N \subseteq U_{\lambda x}$ and consequently $x \in N \subseteq U \{U_{\lambda} : \lambda \in \Lambda \}$. Hence $U \{U_{\lambda} : \lambda \in \Lambda \} \in \tau$. It follows that τ is topology for X.

References

