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In this paper the research deals with appropriate methods of estimation and the important of using 
techniques estimating the parameter of nonlinear regression of linear regression with nonlinear 
regression models using robust methods .The possible of non-normal distribution and infinite 
variance in particular, has led to development of alternative estimation methods to the least square. 
Provided that one knows the generating distribution a well established procedure is the method of 
maximum likelihood, which has several optimal properties. Robust methods are known as resistant 
of abnormal values and other valuation of models assumption and appropriate for aboard category of 
distributor. A large number of other estimation methods aimed at achieving robustness have been 
suggested and a considerable body of literature has also been developed. Gonin and Money (1987), 
and the reference therein. Generally the robust estimators in the literature can be classified as M- 
estimators, L-estimators, or R- estimators. Probably most attention has been paid to the lestimators 
for other type estimators see judge et.al (1985) in the recent past.  In this paper least absolute 
deviation  methods using nonlinear with robust regression models has be studied Numerical 
illustration are also provided. 
 

 
 

  
 
 

 
 
 
 
 
 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 
 
 
 
 
 
 

 
  

 
 

 

 

INTRODUCTION  
 

The least squares regression is optimal and in the maximum 
likelihood estimators of the unknown parameters of the model 
if the errors are independent and follow a normal distribution 
with mean zero and a common (though unknown) variance . 
The least squares regression is very far from the optimal in 
many non-Gaussian situations, especially when the errors 
follow distributions with longer tails. For the regression 
problems Huber (1973)  stated “just a single grossly outlying 
observation may spoil the least squares estimate, and, 
moreover, outliers are much harder to spot in the regression 
than in the simple location case”. The outliers occurring with 
extreme values of the regressor variables can be especially 
disruptive. Andrews (1974)  noted that even when the errors 
follow a normal distribution, alternatives to least squares may 
be required; especially if the form of the model is not exactly 
known. Further, least squares are not 2σ  very satisfactory if the 
quadraticloss function is not a satisfactory measure of the loss. 
Loss denotes the seriousness of the nonzero prediction error to 
the investigator, where prediction error is the difference 
between the predicted and the observed value of the response 
variable. Meyer & Glauber (1964) [9] stated that for at least 
certain economic problems absolute error may be amore 

satisfactory measure of loss than the squared error. The least 
absolute deviation errors regression (or for brevity, absolute 
errors regression) overcomes the aforementioned drawbacks of 
the least squares regression and provides an attractive 
alternative. It is less sensitive than least squares regression to 
the extreme errors and assumes absolute error loss function. 
Because of its resistance to outliers, it provides a better starting 
point than the least squares regression for certain robust 
regression procedures. Unlike, other robust regression 
procedures, it does not require (a rejection parameter). It may 
be noted that the absolute errors estimates are maximum 
likelihood and hence asymptotically efficient when the errors 
follow the Laplace distribution. The model formulation and 
computation, some desired assumptions such as normality of 
the response variable are made on the regression structure. Out 
of many possible regression techniques for fitting the model, 
the ordinary least squares (OLS) method has been traditionally 
adopted due to the ease of computation. However, there is 
presently a widespread awareness of the dangers posed by the 
occurrence of outliers in the OLS estimates (Rousseuw and 
Leroy, 2003). 
 

Robust estimation refers to the ability of a procedure to 
produce highly insensitive estimates to model 
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misspecifications. Hence, robust estimates should be good 
under wide range of possible data generating distributions. In 
the regression context, under normality with identically and 
independently distributed errors, the least squares  is the most 
efficient among the unbiased estimation methods. However, 
when one gives up the normality assumption it is frequently 
possible to find estimation methods that are more efficient than 
the traditional least squares. Specifically this is true when the 
data generating process has fat tails resulting to several outliers 
compared to the normal distribution. In these cases the least 
squares becomes highly unstable and sample dependent 
because of the quadratic weighting, which makes the procedure 
very sensitive to outlying observations. For example in finance 
and accounting research the idea is not at all uncommon that 
the underlying distributions could have infinite variances. For 
example, it has been for long observed that speculative price 
series tend to have volatility clusterings resulting to kurtic and 
thick tailed unconditional distributions [see e.g., Mandelbrot 
(1967), Fama and Roll (1968)]. If so then the least squares 
approach becomes totally inappropriate, for it minimizes the 
squared deviations that heavily weight the outlying 
observations, typical to thick tailed distributions. A Finnish 
example of the application of the LAD estimation for growth 
estimation in long-run IRR assessment is Luoma (1983). Also 
Luoma and Pynnönen (1993) have found the LAD method 
useful in certain applications of firm' s steady state growth 
estimation. The possibility of non-normal distributions, and 
infinite variance in particular, has led to development of 
alternative estimation methods to the least squares. Provided 
that one knows the generating distribution, a well established 
procedure is the method of maximum likelihood, which has 
several optimal properties. However, this method strongly 
relies on the knowledge of the distributional form, and hence 
by construction is not necessarily a robust method, except for 
the case where the underlying distribution itself is robust.A 
large number of other estimation methods aimed at achieving 
robustness have been suggested and a considerable body of 
literature has developed. See for example, Gonin and Money 
(1989), Dodge (1987) and the references therein. Generally the 
robust estimators in the literature can be classified as M-
estimators, L-estimators, or R-estimators. Probably most 
attention has been paid to the Lestimators. For other type 
estimators, see e.g. Judge et al. (1985). 
 

Nonlinear Regression Models  
 

The basic idea of nonlinear regression, namely to relate a 
response Y to a vector of Predictor variable X=(x1, x2, ….. , xk 

)T (See linear models). Nonlinear regression is characterized by 
the fact that the prediction equation depends nonlinearly on one 
or more unknown parameters. Whereas linear regression is 
often used for building a purely empirical models, nonlinear 
regression usually arises when there are physical reasons for 
believing that the relationship between the response and the 
predictors follows a particular functional form.    
 

A nonlinear regression models has the form 
 

�� = �(��, �) + 	��									 i= 1,2 …. N                                  … (1) 
 
Where �� are response f is a known function of the   covariate 
vector Xi =(X; 1, … , Xik)

T and the parameter vector � =
(��, … … , ��)

�  , and ��	are random error . The ��	 are usually 

assumed to be uncorrelation with mean zero and constant 
Variance.  
 

Common models  
 

The functional relationship of Y and X of the following form  
 

�� = �(��, �) + 	��	 
 

�� = ���
���� + ���

���� + 	��	 																																															… (1) 
 

Is not linear in the unknown parameters  �� and ��. We will use 
the symbol � to represent a parameter in a nonlinear model 
where � is p× 1	vector of unknown parameter. We can 
liinearize the expectation function by taking logarithms  
 

In E(	��  ) = In��+ In��+��� + ��� … … . 
 

Tempting to consider rewriting models  
 

In��	 = In��+ In��+���� + ���� + 	��	 
��, ��	and  ��	 are multiple linear regression to estimate to find 
��, ��	and  ��	 form [��, ��] i=1,2,…,n is called the estimation 
of the parameter  
 

�� + ���� + ���� + ��																																																																				… (2) 
Using multiple linear regression to estimate ��, ��	and  ��	. The 
linear least square of the parameter in equ.(2) will not in 
general be equivalent to the nonlinear parameter estimates in 
the original model equ.(1) the error structure is additive the 
model in equ.(2).If the error structure is multiplicative  
 

�� = ���
����	�� + ���

����	�� 
 

Taking log on both sides  
In Yi = In�� + 	In��	+ In ε 
�	is normal distribution. 
 

Models Michaelis menton  
 

�� =
����

�� +	��
+	

����
�� +	��

+ �� 																																												… (3) 

 

Expectation function can be linearized  
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Linear models  
	�� = 			�� + ���� + ���� + ��																				 

Where Y= 
�

�
       X= 

�

�
  

 

	�� = 			�� + ���� + ���� + ��																				 																																			… (4) 
�� = 	 �� �� ���� ����	 
 

1.1 Minimizing Sum of Square Deviation Estimate the 
Parameters 
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� =�[�� �� ���� ����]
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To estimate ��, ��	and ��	must satisfies and partially 

differentiate ∑��
� with respect ���,	���	and ���	and set these 

partial deviation equal to zero . 
 

∑�� = ���� +	���	 ∑ �� + ��� ∑��									                                                                      
… (5) 

∑�� �� = ��� ∑ �� + ���	 ∑ ��
�
+ ���	 ∑ �� ∑ ��									                                                                

… (6) 

∑�� �� = ��� ∑ �� + ���	 ∑ �� ∑ �� + ���	 ∑ ��
�
                                                                      

… (7) 

Now solving equ.,(5) we get ��� = �	� -	���	�̅1 - ���	�̅� 

��� =
∑��		�	� ∑ ��

�
	∑ ���� ∑ ��	��

∑ ��
� ∑ ��

�
	 (∑ �� ∑ ��)

�
 

��� =
∑��	�	� ∑ ��

�
	∑ ���� ∑ ��	��

∑��
� ∑ ��

�
	 (∑ �� ∑ ��)

�
 

 

Least Square or L2-norm Method (OLS)  
 

Utilizing the Ordinary Least Squares (OLS) method, the 
estimators found by minimizing the sum of squared residuals: 
 

Min ��  ∑ (��)
��

���                where  �� = �� ���  
 

This gives the OLS estimator for (β) as 
 

������ = (� ′�)��� ′�                                                         
  
 

The OLS estimate is optimal when the error distribution is 
assumed to be normal (Hampel 1974 [6] and Mosteller & 
Tukey, 1977 [10]) in the presence of influential observations, 
robust regression is a suitable alternative to the OLS , Robust 
procedures have been the focus of many studies recently, all of 
which triggered by the ideas of Hampel (1974) 
 

2.1 Mean Square Error for Model 
 

(MSE) OLS =(�
�)OLS 

SST-SSR = �′� (�)′� ′� 

=
∑ ��

��
���

�.�(�����)
                                                                        … (2.1) 

 

Mean Square Error for Estimator 
 

MSE (���)OLS = (��)OLS tr (�
′�)��                                 … (2.2) 

 

Mean Absolute Error 
 

MAE=
∑ |��|
�
���

�
                                                                   … (2.3) 

 

Least Absolute Deviation (or L1-norm) Method (LAD)  
 

This estimator obtains a higher efficiency than OLS through 
minimizing the sum of the absolute errors: 
 

Min��  ∑ |��|
�
���  

 

Once LAD estimation is justified and its edge over the OLS 
estimation (in an appropriate condition) is established, an 
efficient algorithm to obtain LAD estimates has a practical 
significance. A progress in this direction was made by 
Abdelmalek (1971, 1974) Fair (1974), Schlossmacher (1973)  
and Spyropoulos, Kiountouzis & Young (1973), They also 
proposed an improved algorithm for L1 estimation that is very 
similar to iterative weighted least squares. Even though 
calculus cannot be used to obtain an explicit formula for the 
solution to the L1-regression problem, Robert (2001), it can be 
used to obtain an iterative procedure when properly initialized, 

converges to the solution of the L1-regression problem. The 
resulting iterative process is called iteratively Reweighted least 
squares. In this section, we briefly discuss this method. We 
start by considering the objective function for L1-regression, 
Robert (2001) 
 

�(�) = 	‖� ��‖																																																																… (1.1) 
 

�(�) =���� ������

�

���

�

�

���

																																																	… (1.2) 

 

Differentiating this objective function is a problem, since it 
involves absolute values However, the absolute value function: 
 

�(�) = |�| 
is differentiable everywhere except at one point: z = 0. 
Furthermore, we can use the following simple formula for the 
derivative, where it exists 
 

�′(�) =
�

|�|
 

 

Using this formula to differentiate f with respect to each 
variable, and setting the derivatives to zero, we get the 
following equations for critical points. 
 

��

���
=�

�� ∑ �����
�
���

��� ∑ �����
�
��� �

	(– ���)	

�

���

= 0																										 … (1.3) 

 

Where r= 1,2,….,m 
Can rewrite (5.3) 
 

�
�����

��

�

���

= 	��
��������

��

�

���

�

���

																																															… (1.4) 

 

Let �denote the diagonal matrix, DasGupta & Mishra (2004) 
where 

��� =
1

|��|
																							���	� = � 

��� = 0																									���	�	 ≠ � 
 

We can write these equations in matrix notation as follows: 
(� ′��) = 	� ′��� 
 

This equation can’t be solved for x as we were able to do in L2-
regression because of the dependence of the diagonal matrix on 
(�). But let us rearrange this system of equations by 
multiplying both sides by of: 
 

(� ′��)��	 

�� = (� ′��)��	� ′��																																																										 … (1.5) 
 

3.1 Iteration Weighted Least Square  
 

Let ��(�) denote the approximation at the kth iteration, the 
formula can be expressed as: 
 

��(�)
�����

	= (� ′�)��� ′��																																														 … (3.1)	  

 
Mean Square Error For Model 
 
(���)	����� = (��)�����			                                          … (3.2) 
 

SST-SSR  = �′�� �� ′� ′��                                         … (3.3) 
 



Eakambaram, S., Salomi M and Elangovan R., least Absolute Deviation Methods Using Nonlinear With Robust  Regression models 

 

13861 | P a g e  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Mean Square Error for Estimation  
 

MSE  

����
�����	

= (��)�����		��	(�
′��)�� 																												… (2.4) 

 

Mean Absolute Error  
 

MAE=	
∑ |��|
�
���

�
                                                                   … (2.5) 

 

The Simulation Study  
 

The following model are used  
 

�� = �� + ���� + ���� + �� 
 

Where distribution of the error Normal distribution, Weibull 
distribution, Laplace distribution. The size of the random   n= 
50,100, 150 and 200.   
 

CONCLUSION 
 
It is observed that the iterative weighted least square methods 
provides Robust estimator comparing to OLS. From the table 
it’s observed that for the heavy tailed distribution gives better 
estimates then the Normal and Laplace distribution. The 
estimates are provided in this paper are not only Robust but 
gives consistent results.    
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Table 1 
Distribution 

Of error 
Estimator OLS IRWLS 

 
 

Normal 
Distribution 

 n = 50 n =100 n =150 n = 200 n = 50 n =100 n =150 n = 200 

��� 1.2532 1.0886 1.2976 1.0658 0.8672 0.3651 1.8324 0.9652 

��� 0.9672 1.0444 0.8965 1.2346 1.1660 1.1671 0.8751 1.1023 

��� 1.2432 0.4536 0.9674 1.3343 1.2346 1.2346 1.5674 1.3248 
MSE 1.3789 2.3467 0.763 0.5986 0.6899 1.9823 1.5899 0.5688 

MSE (��) 1.0392 0.9688 1.0000 0.9876 1.324 1.321 0.5834 0.8664 
MAE 0.7684 0.4647 0.7608 0.8743 0.7807 0.9801 0.8231 1.3248 

 
 

Contaminated 
Distribution 

��� 14.432 2.0781 10.00 -0.8119 2.8107 0.6576 1.3579 1.1870 

��� 1.0993 -2.131 -3.413 -0.3524 -2.312 1.2120 0.819 0.5938 

��� 0.8765 0.8402 0.8161 0.9859 0.8743 1.4435 1.0987 0.2367 
MSE 643.2 924.5 923.3 2.4365 7,0665 6.5832 8.4256 17.56 

MSE (��) 14.653 92.621 32.891 21.4816 0.3312 0.3312 0.0587 0.0165 
MAE 3.2435 9.3320 9.5142 8.4186 2.2160 5.7910 6.814 8.2669 

 
Laplace 

Distribution 

��� 1.2345 1.9290 1.9380 0.8263 1.2346 1.9823 1.9360 0.8523 

��� 0.3876 0.1876 0.2347 0.4532 0.1887 1.2356 0.3456 0.5647 

��� 1.9837 12.384 1.8437 1.8938 1.9860 13.766 1.7654 1.8895 
MSE 0.2987 12.344 0.8829 0.2934 0.9876 12.458 0.9858 0.3456 

MSE (��) 13.567 19.332 14.736 14.244 19.567 19.567 15.456 14.660 
MAE 678.08 84.234 56.344 682.00 685.00 85.432 57.765 691.00 

 

******* 


