

Available Online at http://www.recentscientific.com

CODEN: IJRSFP (USA)

International Journal of Recent Scientific Research Vol. 9, Issue, 3(J), pp. 25334-25339, March, 2018 International Journal of Recent Scientific Rerearch

DOI: 10.24327/IJRSR

Research Article

ON CHANGING BEHAVIOR OF EDGES OF SOME SPECIAL CLASSES OF GRAPHS II

Shenbaga Devi S1* and Nagarajan A²

¹Aditanar College of Arts and Science, Tiruchendur 628 215 Tamil Nadu, India ²V.O.C. College, Thoothukudi 628 008 Tamil Nadu, India

DOI: http://dx.doi.org/10.24327/ijrsr.2018.0903.1840

e = uv, the induced edge labeling f^* is defined as follows:

ARTICLE INFO

ABSTRACT

Article History: Received 24th December, 2017 Received in revised form 13th January, 2018 Accepted 8th February, 2018 Published online 28th March, 2018

Key Words:

Fan graph, Shadow graph, Jewel graph, splitting graphs, Near Skolem Difference Mean graphs, Near Skolem Difference Mean labeling.

$$f^{*}(e) = \begin{cases} \frac{|f(u) - f(v)|}{2} & \text{if } |f(u) - f(v)| \text{ is even} \\ \frac{|f(u) - f(v)| + 1}{2} & \text{if } |f(u) - f(v)| \text{ is odd} \end{cases}$$

Let G be a (p,q) graph and $f: V(G) \rightarrow \{1,2, \dots, p+q-1, p+q+2\}$ be an injection. For each edge

Then *f* is called Near Skolem difference mean labeling if $f^*(e)$ are all distinct and are from {1,2,3, ..., *q*}. A graph that admits a Near Skolem difference mean labeling is called a Near Skolem difference mean graph. In this paper, a new parameter E^- is introduced and verified for some graphs.

Copyright © Shenbaga Devi S and Nagarajan A, 2018, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

We consider only finite, undirected and simple graphs in this paper. The vertex set and the edge set of a graph G are denoted by V(G) and E(G) respectively. For standard terminology and notations, we follow Harary (1) and for graph labeling, we refer to Gallian (2).

In this paper, a Near skolem difference mean graph G is investigated and a new parameter E^- is introduced to find the minimum number of edges that should be deleted from G to convert the non- near skolem difference mean graph G into a near skolem difference mean graph G^* .

Definition: The fan graph $F_n (n \ge 2)$ is obtained by joining all vertices of P_n (Path of n vertices) to a further vertex called the center and contains (n + 1) vertices and (2n - 1) edges. That is, $F_n = P_n + K_1$.

Definition: The shadow graph $D_2(G)$ of a connected graph G is constructed by taking two copies of G say G' and G". Join each vertex u' in G' to the neighbours of the corresponding vertex u'' in G".

Definition: For a graph G, the splitting graph which is denoted by spl(G) is obtained by adding to each vertex v, a new vertex v' such that v' is adjacent to every vertex that is adjacent to v in G.

Definition: The Jewel J_n is the graph with vertex set $V(J_n) = \{u, v, x, y, u_i: 1 \le i \le n\}$ and edge set $E(J_n) = \{ux, uy, xy, xv, yv, uu_i, vv_i, 1 \le i \le n\}.$

MAIN RESULT

Definition: A graph G = (V, E) with *p*vertices and *q*edges is said to have Nearly skolem difference mean labeling if it is possible to label the vertices $x \in V$ with distinct elements f(x) from $\{1, 2, ..., p + q - 1, p + q + 2\}$ in such a way that each edge e = uv, is labeled as $f^*(e) = \frac{|f(u) - f(v)|}{2}$ if |f(u) - f(v)| is even and $f^*(e) = \frac{|f(u) - f(v)| + 1}{2}$ if |f(u) - f(v)| is odd. The resulting labels of the edges are distinct and are from $\{1, 2, ..., q\}$. A graph that admits a Near skolem difference mean labeling is called a Near skolem difference mean graph.

^{*}Corresponding author: Shenbaga Devi S

Aditanar College of Arts and Science, Tiruchendur 628 215 Tamil Nadu, India

Definition: Let G be a non-near skolem difference mean graph. Then the parameter E^- of a graph G is defined as the minimum number of edges to be deleted from a G, so that the resulting graph is Near skolem difference mean.

Proposition: Let G be a non-Near skolem difference mean graph.

Then $k = E^{-}(G) \ge q - p - 2$, (where k is the number of edges to be removed from G to make it Near skolem difference mean graph).

Proof: Let G^* be the graph obtained from G, by removing k edges of G.

Then, $|V(G^*)| = |V(G)| = p$ and $|E(G^*)| = |E(G)| - k = q - k$.

Let f be a Near skolem difference mean labeling of G^* , such that

 $f: V(G^*) \rightarrow \{1, 2, \dots, p+q-k-1, p+q-k+2\}.$ Let $uv \in E(G^*)$ such that $f^*(uv) = q - k$. Then, $\frac{|f(u)-f(v)|+1}{2} = q - k.$ This implies |f(u) - f(v)| = 2q - 2k - 1. This implies f(u) = 2q - 2k - 1 + f(v). $\geq 2q - 2k$ But, $f(u) \leq p + q - k + 2$. This implies $2q - 2k \le f(u) \le p + q - k + 2$. This implies $q - k \le p + 2$ And hence $k \ge q - p - 2$. This is true even if, $\frac{|f(u)-f(v)|}{2} = q - k$. Hence in both cases, $E^{-}(G) \ge q - p - 2$. *Theorem*: $E^{-}(D_2(P_n)) = q - p - 2 = 2n - 6$ for $n \ge 4$. **Proof:** By Preposition, $E^{-}(D_2(P_n)) \ge q - p - 2 = 2n - 6$. Let G^* be the graph defined by $G^* = D_2(P_n) - \{u_i v_{i+1}, v_i u_{i+1} / 3 \le i \le n - 1\}.$ where $V(G^*) = \{u_i, v_i / 1 \le i \le n\}$ and $E(G^*) = \{u_i u_{i+1}, v_i v_{i+1}/1 \le i \le$ n-1}U{ $u_1v_2, u_2v_3, v_1u_2, v_2u_3$ }. Then $|V(G^*)| = 2n$ and $|E(G^*)| = 2n + 2$. Let $f: V(G^*) \rightarrow \{1, 2, \dots, 4n + 1, 4n + 4\}$ be defined as follows: $f(u_1) = 1$ $f(u_2) = 4n + 4$ $f(u_i) = \begin{cases} i - 1, & i \equiv 1 \pmod{2}, 3 \le i \le n \\ 4n + 5 - i, & i \equiv 0 \pmod{2}, 3 \le i \le n \end{cases}$ $f(v_i) = \begin{cases} 2n + 5 - i, & i \equiv 1 \pmod{2}, 1 \le i \le n \\ 2n + 4 + i, & i \equiv 0 \pmod{2}, 1 \le i \le n \end{cases}$ Let f^* be the induced edge labeling of f. Then, $f^*(u_i u_{i+1}) = 2n + 3 - i, \quad 1 \le i \le n - 1.$ $f^*(v_i v_{+1}) = i$, $1 \leq i \leq n-1$. $f^*(u_1v_2) = n + 3$ $f^*(u_2v_3) = n + 1$ $f^*(v_1u_2) = n$ $f^*(v_2u_3) = n + 2$

The induced edge labeling are all distinct and are $\{1, 2, ..., 2n + 2\}$.

Then G^* is a Near Skolem Difference Mean graph.

Hence, $E^{-}(D_2(P_n)) = 2n - 6$ for $n \ge 4$.

Example: Near skolem difference mean labeling of edge deleted graphs obtained from $D_2(P_8)$ and $D_2(P_9)$ are given in fig 1 and fig 2 respectively.

Theorem: $E^-(G) \ge q - p - 2 = n - 2$ for $n \ge 3$, where G is the Jewel graph.

Proof: By Preposition, $E^-(G) \ge q - p - 2 = n - 2$. Let G^* be the graph defined by $G^* = G - \{uw_i, 1 \le i \le n - 2\}$, where $V(G^*) = \{u, v, x, y, w_i / 1 \le i \le n\}$ and $E(G^*) = \{ux, uy, vx, vy, uw_{n-1}, uw_n, vw_i / 1 \le i \le n\}.$ Then $|V(G^*)| = n + 4$ and $|E(G^*)| = n + 6$. Let $f: V(G^*) \rightarrow \{1, 2, \dots, 2n + 9, 2n + 12\}$ be defined as follows: f(x) = 2n + 12f(y) = 2n + 9f(u)=1f(v) = 3 $f(w_i) = 2n + 9 - 2i, \ 1 \le i \le n - 2.$ $f(w_{n-1}) = 9$ $f(w_n) = 5$ Let f^* be the induced edge labeling of f. Then, $f^*(ux) = n + 6$ $f^{*}(uy) = n + 4$ $f^*(vx) = n + 5$ $f^*(vy) = n + 3$ $f^*(uw_{n-1}) = 4$ $f^*(uw_n) = 2$ $f^*(vw_i) = n + 3 - i, \quad 1 \le i \le n - 2$ $f^*(vw_{n-1}) = 3$ $f^{*}(vw_{n}) = 1$ The induced edge labeling of G^* are all distinct and are $\{1, 2, \dots, n+6\}.$ Hence, $E^-(G) = n - 2$, for $n \ge 3$. Therefore G^* a is Near Skolem Difference Mean graph.

Example: Near skolem difference mean labeling of the edge deleted graphs G^* obtained from the Jewel graph for n = 5 and n = 6 are given in fig 3 and fig 4 respectively.

Theorem: $E^-(G) = q - p - 2 = n - 4$ for $n \ge 5$ where G is the graph $spl(K_{1,n})$.

Proof: By Preposition, $E^-(G) \ge n - 4$.

Let *G*^{*} be the graph defined by Let $G^* = G - \{v'v_i/ \ 1 \le i \le n - 4\}$ where Let $V(G^*) = \{v, v', v_i, v'_i/1 \le i \le n\}$ and $E(G^*) = \{vv_i, vv'_i, v'v_j/1 \le i \le n, \ n - 3 \le j \le n\}$. Then $|V(G^*)| = 2n + 2$ and $|E(G^*)| = 2n + 4$.

Let $f: V(G^*) \rightarrow \{1, 2, \dots, 4n + 5, 4n + 8\}$ be defined as follows:

$$\begin{split} f(v) &= 4n + 8. \\ f(v_i) &= 2i - 1, \ 1 \le i \le n. \\ f(v'_i) &= 2n. \\ f(v'_i) &= 2n - 1 + 2i, \ 1 \le i \le n. \\ \text{Let } f^* \text{ be the induced edge labeling of } f. \text{ Then,} \\ f^*(vv_i) &= 2n + 5 - i, \ 1 \le i \le n. \\ f^*(vv'_i) &= n + 5 - i, \ 1 \le i \le n. \\ f^*(vv_i) &= n + 1 - i, \ n - 3 \le i \le n. \\ \end{split}$$

The induced edge labels are all distinct and are $\{1, 2, ..., 2n + 4\}$.

Then the edge deleted graph G^* is Near skolem difference mean for $n \ge 5$.

Hence, $E^{-}(G) = n - 4$.

Example: Near Skolem Difference Mean labeling of the graph G^* is given below in fig 5

Theorem: The graph

$$E^{-}(P_n + K_1) = \begin{cases} q - p - 2 = n - 4, n \ge 7 \\ 1 \text{ if } n = 2, 3 \\ 2 \text{ if } n = 4, 5 \\ 3 \text{ if } n = 6 \end{cases} \text{ for } n \ge 5.$$

Proof: By Preposition, $E^{-}(P_{n} + K_{1}) \ge n - 4$. Let G^{*} be the graph obtained from $P_{n} + K_{1}$ with $V(G^{*}) = \{v, u_{i}/1 \le i \le n\}$. and $E(G^{*}) = \{u_{i}u_{i+1}, u_{1}v, u_{3}v, u_{5}v, u_{7}v/1 \le i \le n - 1\}$. Then $|V(G^{*})| = n + 1$ and $|E(G^{*})| = n + 3$.

For n = 2,4,6, the Near Skolem Difference Mean labeling of G^* for n = 2,4,6 are as shown in fig 6, fig 7 and fig 8 respectively.

Similarly, the Near Skolem Difference Mean labeling of G^* for n = 3, 5 are as shown in fig 9, and fig 10 respectively. Let $n \ge 7$.

Let
$$f: V(G^*) \to \{1, 2, ..., 2n + 3, 2n + 6\}$$
 be defined as follows:
 $f(v) = 1$
 $f(u_i) = \begin{cases} 2n + 8 - 2i \text{ for } i \equiv 1 \pmod{2}, 1 \le i \le n \\ 2i - 3 \text{ for } i \equiv 0 \pmod{2}, 1 \le i \le n \end{cases}$
Let f^* be the induced edge labeling of f . Then,
 $f^*(vu_i) = n + 3 - i, \text{ for } i = 1, 3, 5, 7.$
Case(i): When n is odd $n \ge 7$
 $f^*(u_i u_{i+1}) = \begin{cases} n + 5 - 2i, 1 \le i \le \frac{n+3}{2} \\ 2i - n - 4, \frac{n+3}{2} + 1 \le i \le n - 1 \end{cases}$
Case (ii) When n is even $n \ge 8$
 $f^*(u_i u_{i+1}) = \begin{cases} n + 6 - 2i, 1 \le i \le \frac{n+4}{2} \\ 2i - n - 4, \frac{n+4}{2} + 1 \le i \le n - 1 \end{cases}$
The induced edge labels are all distinct and are $\{1, 2, ..., n+3\}$

The induced edge labels are all distinct and are $\{1, 2, ..., n + 3\}$. Hence, $E^-(P_n + K_1) = n - 4$ for $n \ge 7$.

Example: The Near skolem difference mean labeling of the edge deleted graphs G^* obtained from $(P_{10} + K_1)$ and $(P_9 + K_1)$ are given in fig 11 and fig 12 respectively.

Theorem: $E^{-}(F_{m}@2P_{n}) \ge q - p - 2 = m - 4$ for $n \ge 5$.

Proof: By Preposition, $E^-(F_m@2P_n) \ge m - 4$.

Let $G^* = F_m @ 2P_n - \{uv_i, 5 \le i \le n\}$, where $V(G^*) = \{u, v_i, u_j, w_j / 1 \le i \le m, 1 \le j \le n - 1\}$. and $E(G^*) = \{uv_i / 1 \le i \le 4\} \cup \{v_i v_{i+1} / 1 \le i \le m - 1\} \cup \{v_m w_1, w_j w_{j+1} / 1 \le j \le n - 2\} \cup \{uu_1, u_j u_{j+1} / 1 \le j \le n - 2\}$.

Then $|V(G^*)| = m + 2n - 1$ and $|E(G^*)| = m + 2n + 1$ Define $f: V(G^*) \to \{1, 2, \dots, 2m + 4n - 1, 2m + 4n + 2\}$.

Case (i)m is odd

$$f(v_{2i+1}) = \begin{cases} i+1, & 0 \le i \le 1\\ 2m+2n+4-2i, & 2 \le i \le \frac{m-1}{2} \end{cases}$$

$$f(v_{2i}) = \begin{cases} 8-2i, & 1 \le i \le 2\\ 1+2i, & 3 \le i \le \frac{m-1}{2} \end{cases}$$

$$0 \le i \le \frac{n-3}{2}, \text{ when } n \text{ is odd.}$$

$$0 \le i \le \frac{n-2}{2}, \text{ when } n \text{ is even}$$

$$1 \le i \le \frac{n-1}{2}, \text{ when } n \text{ is odd.}$$

$$1 \le i \le \frac{n-2}{2}, \text{ when } n \text{ is odd.}$$

$$1 \le i \le \frac{n-2}{2}, \text{ when } n \text{ is odd.}$$

$$f(u) = 2m + 4n + 2.$$

$$f(u_{2i+1}) = 8 + 2i,$$

$$0 \le i \le \frac{n-3}{2}, \text{ when } n \text{ is odd.}$$

$$0 \le i \le \frac{n-2}{2}, \text{ when } n \text{ is even}$$

$$1 \le i \le \frac{n-1}{2}, \text{ when } n \text{ is odd.}$$

$$1 \le i \le \frac{n-2}{2}, \text{ when } n \text{ is odd.}$$

$$1 \le i \le \frac{n-2}{2}, \text{ when } n \text{ is odd.}$$

Case (ii)mis even

$$f(v_{2i+1}) = \begin{cases} i+1, & 0 \le i \le 1\\ 2m+2n+4-2i, & 2 \le i \le \frac{m-2}{2} \end{cases}$$

$$f(v_{2i}) = \begin{cases} 8-2i, & 1 \le i \le 2\\ 1+2i, & 3 \le i \le \frac{m}{2} \end{cases}$$

$$f(w_{2i+1}) = m+2n+4$$

$$0 \le i \le \frac{n-3}{2}, \text{ when } n \text{ is odd.}$$

$$0 \le i \le \frac{n-2}{2}, \text{ when } n \text{ is oven}$$

$$1 \le i \le \frac{n-1}{2}, \text{ when } n \text{ is odd.}$$

$$1 \le i \le \frac{n-2}{2}, \text{ when } n \text{ is odd.}$$

$$1 \le i \le \frac{n-2}{2}, \text{ when } n \text{ is odd.}$$

$$1 \le i \le \frac{n-2}{2}, \text{ when } n \text{ is odd.}$$

$$1 \le i \le \frac{n-2}{2}, \text{ when } n \text{ is odd.}$$

$$1 \le i \le \frac{n-2}{2}, \text{ when } n \text{ is odd.}$$

$$1 \le i \le \frac{n-2}{2}, \text{ when } n \text{ is odd.}$$

$$1 \le i \le \frac{n-2}{2}, \text{ when } n \text{ is odd.}$$

$$1 \le i \le \frac{n-3}{2}, \text{ when } n \text{ is odd.}$$

 $0 \le i \le \frac{n-2}{2}, when n is even$ $f(u_{2i}) = 2m + 4n + 1$

$$1 \le i \le \frac{n-1}{2}, \text{ when } n \text{ is odd.}$$

$$1 \le i \le \frac{n-2}{2}, \text{ when } n \text{ is even}$$

Let f^* be the induced edge labeling of f. Then,

 $f^{*}(uv_{2i+1}) = m + 2n + 1 - i, \qquad 0 \le i \le 1$ $f^{*}(uv_{2i}) = m + 2n - 3 + i, \qquad 1 \le i \le 2$ $f^{*}(v_{i}v_{i+1}) = \begin{cases} 4 - i, \qquad 1 \le i \le 3 \\ m + n + 2 - i, \qquad 4 \le i \le m - 1 \end{cases}$ $f^{*}(v_{m}w_{1}) = n + 2$ $f^{*}(w_{j}w_{j+1}) = n + 2 - j, \qquad 1 \le j \le n - 2$ $f^{*}(uu_{1}) = m + 2n - 3$ $f^{*}(u_{j}u_{j+1}) = m + 2n - 3 - j, \qquad 1 \le j \le n - 2$

The induced edge labels are all distinct and are $\{1, 2, ..., m + 2n + 1\}$.

Example: The Near skolem difference mean labeling of the edge deleted graph G^* obtained from $(F_9 @2P_6), (F_5 @2P_9), (F_8 @2P_5)$ and $(F_8 @2P_6)$ are given fig 13, fig 14, fig 15 and fig 16 respectively.

CONCLUSION

In this paper, we investigated a non-Near skolem difference mean graph G and introduced a new parameter to check whether removal of minimum number of edges from G converts it into a Near skolem difference mean graph. We have planned to investigate this property for some more cases of graphs in our next paper.

References

- 1. Harary. F, *Graph Theory*, Narosa Publishing House, New Delhi, (2001).
- Gallian. J. A., A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 15(2008), #DS6.
- Shenbaga Devi. S, Nagarajan. A, Near Skolem Difference Mean Labeling of cycle related Graphs, International Journal for Science and Advance Research in Technology, December 2017, Volume 3 Issue 12, pages 1037-1042.
- 4. Shenbaga Devi. S, Nagarajan. A, *Near Skolem Difference Mean labeling of some special types of trees*, International Journal of Mathematics Trends and Technology, December 2017, Volume 52 Number 7, pages 474-478.
- Shenbaga Devi. S, Nagarajan. A, On Changing behavior of vertices of some graphs, International Journal of Scientific Research in Science, Engineering and Technology, January 2018, Volume 4 Issue 1, pages 400-405.
- Shenbaga Devi. S, Nagarajan. A, On Near Skolem Difference Mean Graphs, International Journal of Mathematical Archieve, February-2018, Volume 9, Issue 2, pages 29-36.
- Shenbaga Devi. S, Nagarajan. A, Further results on Near Skolem Difference Mean graphs, Journal of Computer and Mathematical Sciences, February 2018, Volume 9, Issue 2.
- Shenbaga Devi. S, Nagarajan. A, On Changing behavior of edges of some graphs I, International Journal for Science and Advance Research in Technology, January 2018 Volume 4 Issue 1, pages 941-945.
- Shenbaga Devi. S, Nagarajan. A, Some Results on Duplication of Near Skolem Difference Mean graph C_n. (Communicated)

- Shenbaga Devi. S, Nagarajan. A, Near Skolem Difference Mean Labeling of some Subdivided graphs. (Communicated)
- 11. Shenbaga Devi. S, Nagarajan. A, On Duplication of Near Skolem Difference Mean graph P_n . (Communicated)

How to cite this article:

Shenbaga Devi S and Nagarajan A.2018, On Changing Behavior of Edges of Some Special Classes of Graphs II. *Int J Recent Sci Res.* 9(3), pp. 25334-25339. DOI: http://dx.doi.org/10.24327/ijrsr.2018.0903.1840
