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INTRODUCTION 
 

We consider only finite, undirected and simple graphs in this 
paper. The vertex set and the edge set of a graph 
by �(�) and �(�) respectively. For standard terminology and 
notations, we follow Harary (1) and for graph labeling, we refer 
to Gallian (2). 
 

In this paper, a Near skolem difference mean graph 
investigated and a new parameter ��	is introduced to find the 
minimum number of edges that should be 
convert the non- near skolem difference mean graph 
near skolem difference mean graph	�∗. 
 

Definition: The fan graph ��(� ≥ 2)	is obtained by joining all 
vertices of �� (Path of n vertices) to a further vertex
center and contains (� + 1) vertices and	(2�
is, ��= �� +��. 
 

Definition: The shadow graph ��(�) of a connected graph 
constructed by taking two copies of � say �
vertex �′ in �′ to the neighbours of the corresponding vertex 
in �". 
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Let	�	be a (�,�) graph and �:�(�) → {1,2,… ,� + � − 1,� +
= ��,	the induced edge labeling �∗is defined as follows: 

Then � is called Near Skolem difference mean labeling if �∗(�)	are all distinct and are from 
graph that admits a Near Skolem difference mean labeling is called a Near Skolem difference mean graph. 
paper, a new parameter �� is introduced and verified for some graphs. 
  

  

  

 

We consider only finite, undirected and simple graphs in this 
paper. The vertex set and the edge set of a graph � are denoted 

For standard terminology and 
notations, we follow Harary (1) and for graph labeling, we refer 

In this paper, a Near skolem difference mean graph � is 
is introduced to find the 

 deleted from	� to 
near skolem difference mean graph � into a 

is obtained by joining all 
(Path of n vertices) to a further vertex called the 

� − 1) edges. That 

of a connected graph � is 
�′ and �". Join each 

to the neighbours of the corresponding vertex �" 

Definition:  For a graph �, the splitting graph which is denoted 
by ���(�) is obtained by adding to each vertex 
�′ such that �′ is adjacent to every vertex that is adjacent
in �. 
 

Definition: The Jewel ��	is the graph with vertex set 
{�,�,�,�,��:1 ≤ � ≤ �} 
�(��) = {��,��,��,��,��,��
 

MAIN RESULT 
 

Definition: A graph � = (�,
said to have  Nearly skolem  difference mean labeling if  it is  
possible to label the vertices 
from {1,2,… ..,� + � − 1,� +

edge e= uv , is labeled as 

 is even and  

 is odd. The resulting labels of the edges are 

distinct and are from {1,2,…
Near skolem difference mean labeling is called a Near skolem 
difference mean graph. 
 

| ( ) ( ) |f u f v

| ( ) ( ) |f u f v
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+ � + 2} be an injection. For each edge 

 

are all distinct and are from {1,2,3,… .�}. A 
graph that admits a Near Skolem difference mean labeling is called a Near Skolem difference mean graph. In this 

 

  

, the splitting graph which is denoted 
is obtained by adding to each vertex �, a new vertex 

is adjacent to every vertex that is adjacent to � 

is the graph with vertex set �(��) =
 and edge set 

���,���,1 ≤ � ≤ �}. 

�) with  �vertices and �edges  is  
said to have  Nearly skolem  difference mean labeling if  it is  
possible to label the vertices xÎV	with  distinct elements �(�) 

+ � + 2} in such a way that each 

, is labeled as �∗(e) =
|�(�)��(�)|

�
  if  

is even and  �∗(e) =
|�(�)��(�)|��

�
  if  

is odd. The resulting labels of the edges are 

… … .,�}.  A graph that admits a 
Near skolem difference mean labeling is called a Near skolem 
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Definition:  Let � be a non-near skolem difference mean 
graph. Then the parameter ��of a graph �
minimum number of edges to be deleted from a G, so that the 
resulting graph is Near skolem difference mean.
 

Proposition: Let G be a non-Near skolem difference mean 
graph.  
 

Then � = ��(�) ≥ 	� − � − 2, (where	� 
edges to be removed from G to make it Near skolem difference 
mean graph). 
 

Proof:  Let �∗ be the graph obtained from G, by removing k 
edges of G. 
 

Then,	|�(�∗)	|	= 	|�(�)|	= � and		|�(�∗)	
	� − �. 
 

Let  � be a Near skolem difference mean labeling of 
that 
 

�:�(�∗) ⟶ {1,2,..,� + � − � − 1,� + � −
Let �� ∈ �(�∗) such that  �∗(��) = � − �. 
 

Then, 
|�(�)��(�)|��

�
 = �	–	�. 

This implies |�(�) − �(�)|= 2� − 2� − 1. 
This implies �(�) = 2� − 2� − 1 + �(�). 
  ≥ 2� − 2� 
But, �(�) ≤ � + � − � + 2. 
This implies 2� − 2� ≤ �(�) ≤ � + � − � +
This implies � − � ≤ � + 2 
And hence � ≥ � − � − 2. 
 

This is true even if, 
|�(�)��(�)|

�
 = q – k. 

 

Hence in both cases, ��(�) ≥ 	� − � − 2. 
 

Theorem:�����(��)� = � − � − 2 = 2� −
 

Proof: By Preposition, �����(��)� ≥ � − �
 

Let �∗be the graph defined by 
 

�∗ = ��(��) − {������,������/	3 ≤ � ≤ � −
where �(�∗) = {��,��/	1 ≤ � ≤ �} and 
														�(�∗) = {������,������/1 ≤ � ≤
� − 1}⋃ {����,����,����,����}. 
Then |�(�∗)|= 2� and |�(�∗)|= 2� + 2. 
Let �:�(�∗) → {1,2,… ,4� + 1,4� + 4} be defined as follows:
�(��) = 1 
�(��) = 4� + 4 

�(��) = �
� − 1. � ≡ 1(���2),3 ≤ �

4� + 5 − �, � ≡ 0(���2),3 ≤ �

�(��) = �
2� + 5 − �, � ≡ 1(���2),1 ≤ �

2� + 4 + �, � ≡ 0(���2),1 ≤ �
Let �∗ be the induced edge labeling of �. Then,
�∗(������) = 2� + 3 − �,						1 ≤ � ≤ � − 1. 
�∗(�����) = �,																										1 ≤ � ≤ � − 1. 
�∗(����) = � + 3 
�∗(����) = � + 1 
�∗(����) = � 
�∗(����) = � + 2 
 

The induced edge labeling are all distinct and are 
2}. 
 

Then �∗ is a Near Skolem Difference Mean graph.

enbaga Devi S and Nagarajan A., On Changing Behavior of Edges of Some Special Classes of Graphs II

 
near skolem difference mean 

� is defined as the 
minimum number of edges to be deleted from a G, so that the 
resulting graph is Near skolem difference mean. 

Near skolem difference mean 

 is the number of 
edges to be removed from G to make it Near skolem difference 

be the graph obtained from G, by removing k 

	|= |�(�)|− 	�	 =

be a Near skolem difference mean labeling of �∗, such 

− � + 2}. 
 

 

+ 2. 

6  for � ≥ 4. 

� − 2 = 2� − 6. 

− 1}. 

 
be defined as follows: 

≤ �

≤ �
�. 

≤ �

≤ �
� 

. Then, 
 
 

The induced edge labeling are all distinct and are {1,2,… ,2� +

is a Near Skolem Difference Mean graph. 

Hence, �����(��)� = 2� − 6
 

Example: Near skolem difference mean labeling of edge 
deleted graphs obtained from 
fig 1 and fig 2 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Theorem:��(�) ≥ � − � − 2
the Jewel graph. 
 

Proof: By Preposition, ��(�)

 

�(�) = 2� + 12 
�(�) = 2� + 9 
�(�)=1 
�(�) = 3 
�(��) = 2� + 9 − 2�,1 ≤ �
�(����) = 9 
�(��) = 5 
Let �∗ be the induced edge labeling of
�∗(��) = � + 6 
�∗(��) = � + 4 
�∗(��) = � + 5 
�∗(��) = � + 3 
�∗(�����) = 4 
�∗(���) = 2 
�∗(���) = � + 3 − �,				1 ≤ �
�∗(�����) = 3 
�∗(���) = 1 
The induced edge labeling of 
{1,2,… ,� + 6}. 
Hence, ��(�) = � − 2,	for �
Therefore �∗ a is Near Skolem Difference Mean graph.
 

Example: Near skolem difference mean labeling of the edge 
deleted graphs �∗ obtained from the Jewel graph for 
� = 6 are given in fig 3 and fig 4 respectively.
 
 
 

 1 33 36 2 

20 22 18 24 

 37 1 40 2 

22 24 20 26 
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6 for � ≥ 4. 

Near skolem difference mean labeling of edge 
deleted graphs obtained from ��(��)and ��(��) are given in 

2 = � − 2 for   � ≥ 3, where � is 

( ) ≥ � − � − 2 = � − 2. 

 

≤ � − 2. 

be the induced edge labeling of	�. Then, 

≤ � − 2 

The induced edge labeling of �∗ are all distinct and are 

≥ 3. 
a is Near Skolem Difference Mean graph. 

Near skolem difference mean labeling of the edge 
obtained from the Jewel graph for � = 5 and   

are given in fig 3 and fig 4 respectively. 

 
Fig 1 

 
Fig 2 

 

 4 31 6 29 

 16 26 14 28 

14 

8 4 35 6 33 

18 28 16 30 
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Theorem:��(�) = � − � − 2 = � − 4 for 	� ≥ 5 where � is 
the graph ���(��,�). 
 

Proof: By Preposition,  ��(�) ≥ � − 4. 
 

Let �∗be the graph defined by 
Let �∗ = � − {����/						1 ≤ � ≤ � − 4} where  
Let �(�∗) = {�,��,��,��

�	/	1 ≤ � ≤ �} and 
�(�∗) = {���,���

�,����/		1 ≤ � ≤ �,� − 3 ≤ � ≤ �}. 

Then |�(�∗)|= 2� + 2 and |�(�∗)|= 2� + 4. 
 
Let �:�(�∗) → {1,2,… ,4� + 5,4� + 8} be defined as follows: 
 
�(�) = 4� + 8. 
�(��) = 2� − 1,			1 ≤ � ≤ �. 
�(��) = 2�. 
�(��

�) = 2� − 1 + 2�,1 ≤ � ≤ �. 
Let �∗ be the induced edge labeling of �. Then, 
�∗(���) = 2� + 5 − �,					1 ≤ � ≤ �. 
�∗(���

�) = � + 5 − �,							1 ≤ � ≤ �. 
�∗(����) = � + 1 − �,								� − 3 ≤ � ≤ �. 
 

The induced edge labels are all distinct and are {1,2,… ,2� +
4}. 
 

Then the edge deleted graph �∗ is Near skolem difference 
mean for � ≥ 5. 
Hence, ��(�) = � − 4. 
 

Example: Near Skolem Difference Mean labeling of the graph 
�∗is given below in fig 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Theorem: The graph 
 

 ��(�� + ��) = �

� − � − 2 = � − 4,� ≥ 7
1	��	� = 2,3
2	��	� = 4,5

3	��	� = 6

� for � ≥ 5. 

Proof: By Preposition,	��(�� + ��) ≥ � − 4. 
Let �∗ be the graph obtained from �� + ��		���ℎ�(�∗) =
{�,��/1 ≤ � ≤ �}.  
and �(�∗) = {������,���,���,���,���/			1 ≤ � ≤ � − 1}. 
Then  |�(�∗)|= � + 1 and |�(�∗)|= � + 3. 
 

For � = 2,4,6, the Near Skolem Difference Mean labeling of 
�∗ for � = 2,4,6 are as shown in fig 6, fig 7 and fig 8 
respectively. 
 

Similarly, the Near Skolem Difference Mean labeling of �∗ for 
� = 3,5 are as shown in fig 9, and fig 10 respectively. 
Let � ≥ 7. 
 

Let �:�(�∗) → {1,2,… ,2� + 3,2� + 6} be defined as follows: 
�(�) = 1 

�(��) =  �
2� + 8 − 2�	���	� ≡ 1(���2),1 ≤ � ≤ �			

2� − 3	���		� ≡ 0(���2)	,1 ≤ � ≤ �
� 

Let �∗ be the induced edge labeling of �.Then, 
�∗(���) = � + 3 − �,					���	� = 1,3,5,7. 
Case(i): When � is odd � ≥ 7 

�∗(������) = �
� + 5 − 2�,				1 ≤ � ≤

���

�

2� − � − 4,
���

�
+ 1 ≤ � ≤ � − 1

�. 

Case (ii)When � is even � ≥ 8 

�∗(������) = �
� + 6 − 2�, 1 ≤ � ≤

� + 4

2

2� − � − 4,									
� + 4

2
+ 1 ≤ � ≤ � − 1

� 

The induced edge labels are all distinct and are	{1,2,… ,� + 3}. 
Hence, ��(�� + ��) = � − 4 for � ≥ 7. 
 
 
 
 

 
Fig 3 

 
Fig 4 
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17 
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13 
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5 

24 

9 

13 

15 

17 
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Fig 5 

 

32 

13 

1 3 5 

15 17 19 21 
23 
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Example: The Near skolem difference mean labeling of the 
edge deleted graphs �∗ obtained from	(��� + ��) and (�� +
��) are given in fig 11 and fig 12 respectively. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Theorem:��(��@2��) ≥ � − � − 2 = � − 4 for � ≥ 5. 
 

Proof: By Preposition, ��(��@2��) ≥ � − 4. 
 

Let �∗ = ��	@	2�� − 	{���,5 ≤ � ≤ �}, where 
�(�∗) = {�,��,��,��/		1 ≤ � ≤ �,1 ≤ � ≤ � − 1}. 

and �(�∗) = {���/1 ≤ � ≤ 4}∪ {������/1 ≤ � ≤ � − 1}∪
{����,������/1 ≤ � ≤ � − 2}∪	{���,������/1 ≤ � ≤ � −

2}. 
Then |�(�∗)|= � + 2� − 1 and |�(�∗)|= � + 2� + 1 
Define �:�(�∗) → {1,2,… ,2� + 4� − 1,2� + 4� + 2}. 
 

Case (i)� is odd 
 

�(�����) = �
� + 1, 0 ≤ � ≤ 1

2� + 2� + 4 − 2�, 2 ≤ � ≤
���

�

�. 

�(���) = �
8 − 2�, 1 ≤ � ≤ 2

1 + 2�, 3 ≤ � ≤
���

�

�. 

�(�����) = � + 2 + 2�,										
0 ≤ � ≤

� − 3

2
,�ℎ��	�	��	���.

0 ≤ � ≤
� − 2

2
,�ℎ��	�	��	����

 

�(���) = � + 2� + 5 − 2�,
	1 ≤ � ≤

� − 1

2
,�ℎ��	�	��	���.

1 ≤ � ≤
� − 2

2
,�ℎ��	�	��	����

 

 
�(�) = 2� + 4� + 2. 

�(�����) = 8 + 2�,												
	0 ≤ � ≤

� − 3

2
,�ℎ��	�	��	���.

0 ≤ � ≤
� − 2

2
,�ℎ��	�	��	����

 

�(���) = 2� + 4� + 1

− 2�,											
1 ≤ � ≤

� − 1

2
,�ℎ��	�	��	���.

1 ≤ � ≤
� − 2

2
,�ℎ��	�	��	����

 

 

 
Fig 6 

 
Fig 7 

 
Fig 8 

 
Fig 9 

 
Fig 10 
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Case (ii)�is even 
 

�(�����) = �
� + 1, 0 ≤ � ≤ 1

2� + 2� + 4 − 2�, 2 ≤ � ≤
���

�

�. 

�(���) = �
8 − 2�, 1 ≤ � ≤ 2

1 + 2�, 3 ≤ � ≤
�

�

�. 

�(�����) = � + 2� + 4

− 2�,				
0 ≤ � ≤

� − 3

2
,�ℎ��	�	��	���.

0 ≤ � ≤
� − 2

2
,�ℎ��	�	��	����

 

�(���) = � + 1 + 2�,				
1 ≤ � ≤

� − 1

2
,�ℎ��	�	��	���.

1 ≤ � ≤
� − 2

2
,�ℎ��	�	��	����

 

 

�(�) = 2� + 4� + 2 

�(�����) = 8 + 2�,											
0 ≤ � ≤

� − 3

2
,�ℎ��	�	��	���.

0 ≤ � ≤
� − 2

2
,�ℎ��	�	��	����

 

�(���) = 2� + 4� + 1

− 2�,								
	1 ≤ � ≤

� − 1

2
,�ℎ��	�	��	���.

1 ≤ � ≤
� − 2

2
,�ℎ��	�	��	����

 

 
Let �∗ be the induced edge labeling of �. Then, 
�∗(������) = � + 2� + 1 − �,														0 ≤ � ≤ 1 
�∗(����) = � + 2� − 3 + �,																			1 ≤ � ≤ 2 

�∗(������) = �
4 − �, 1 ≤ � ≤ 3

� + � + 2 − �, 4 ≤ � ≤ � − 1
�. 

�∗(����) = � + 2 

�∗�������� = � + 2 − �,																	1 ≤ � ≤ � − 2 

�∗(���) = � + 2� − 3 

�∗�������� = � + 2� − 3 − �,							1 ≤ � ≤ � − 2 

The induced edge labels are all distinct and are {1,2,… ,� +
2� + 1}. 
 

Example: The Near skolem difference mean labeling of the 
edge deleted graph �∗ obtained from 
(��	@2��),(��@2��),(��	@2��) and (��@	2��) are given fig 
13, fig 14,  fig 15 and fig 16 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

CONCLUSION 
 

In this paper, we investigated a non-Near skolem difference 
mean graph G and introduced a new parameter to check 
whether removal of minimum number of edges from	� 
converts it into a Near skolem difference mean graph. We have 
planned to investigate this property for some more cases of 
graphs in our next paper. 
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