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Variable selection is an important topic in linear regression analysis especially in high-dimensional 
medical data sets, The Least Absolute Shrinkage and Selection Operator (LASSO) proposed by 
Tibshirani is a popular technique for model selection and estimation in linear regression model. The 
Least Angle Regression (LAR) procedure by Efron et al. (2004) provides a method for fast 
computation of LASSO solution in regression problems. L1 penalized estimation methods shrink the 
estimates of the regression coefficients towards zero relative to the maximum likelihood estimates. 
The purpose of this shrinkage is to prevent over fit arising due to either collinearity of the covariates 
or high-dimensionality. L1 penalty tends to result in many regression coefficients shrunk exactly to 
zero and a few other regression coefficients with comparatively little shrinkage. It is important to 
note that shrinkage methods are generally not invariant to the relative scaling of the covariates. 
Variable selection for LAD regression receives much attention in recent literature.  In this paper it is 
proposed to study the variable selection for survival analysis using LASSO Vs LAD regression.  
Numerical illustrations are substantiated through real data example. 
 
 
  

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

INTRODUCTION 
 

Variable selection is an important topic in linear regression 
analysis especially in high-dimensional medical data sets, and 
has challenged many contemporary statistical problems from 
many frontiers of scientific disciplines. Over the past few 
years, many techniques have been proposed for variable 
selection in high-dimensional medical data sets. A field, in 
which such methods are applicable, is survival analysis. The 
Least Absolute Shrinkage and Selection Operator (LASSO) 
proposed by Tibshirani is a popular technique for model 
selection and estimation in linear regression model. The Least 
Angle Regression (LAR) procedure by Efron et al. (2004) 
provides a method for fast computation of LASSO solution in 
regression problems. Osborne et al. (2000) derived the 
optimality conditions associated with the LASSO solution. 
Donoho and Elad (2003) and Donoho (2004) proved some 
analytical properties of the L1 penalization approach for 
determining the sparsest solution for an under-determined 
linear system. Some statistical properties of the LASSO-based 
estimator of the regression parameter have been derived by 
Knight and Fu (2000). L1 penalized estimation methods shrink 
the estimates of the regression coefficients towards zero 
relative to the maximum likelihood estimates. The purpose of 

this shrinkage is to prevent over fit arising due to either 
collinearity of the covariates or high-dimensionality. L1 penalty 
tends to result in many regression coefficients shrunk exactly to 
zero and a few other regression coefficients with comparatively 
little shrinkage. It is important to note that shrinkage methods 
are generally not invariant to the relative scaling of the 
covariates. Variable selection for LAD regression receives 
much attention in recent literature.  In this paper it is proposed 
to study the variable selection for survival analysis using 
LASSO Vs LAD regression.  Numerical illustrations are 
substantiated through real data example. 
 

Variable Selection via Penalized Likelihood 
 

Consider the usual linear regression model    
  

 y ,                                                                     …(1)                                                                                                                         
 

where ݕ is an 1n  vector and X is an dn matrix. As in the 
traditional linear regression setup, we assume that yi's are 
conditionally independent given the design matrix. The 
ordinary least-squares estimate is given by 

yTT  1)(̂ . To attenuate possible excessive 
modeling biases, a large number of predictors are usually 
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introduced at the initial stage of modeling. To enhance 
predictability and to select significant variables, statisticians 
usually apply three standard techniques, stepwise deletion, 
subset selection and ridge regression, to improve the least-
squares estimate. However, while they are practically useful, 
these techniques are ad hoc and subjective. 
 

The selection procedures usually ignore stochastic errors 
inherited in the previous stage of variable selections. Hence, 
their theoretical properties are somewhat hard to understand. In 
an attempt to automatically and simultaneously select variables, 
Tibshirani (1996) proposed a new approach, called LASSO, 
retaining good features of both subset selection and ridge 
regression. LASSO in fact coincides with a soft-thresholding 
rule when design matrices are orthonormal. See also the bridge 
regression proposed in Frank and Friedman (1993), For a more 
detailed discussion, refer to Fan and Li (2001). 
 

Penalized Least-Squares and Variable Selection 
 

There are strong connections between thresholding rules and 
subset selection in linear regression models. In this section we 
assume that the columns of X in (1) are orthonormal. Then the 

least-squares estimate in the full model is yT̂ , a part of 
the orthogonal transform of the vector  y. 
 

Thresholding and Variable Selection 
 

Denote by yz T  and assume that  ~ ),0( 2
nIN  in 

model (1). Then z is a multivariate normal random vector with 
independent components. This allows us to consider a Gaussian 
white noise model: 
 

iiiz      with  ~ ),0( 2N for i = 1,…,d.             …(2) 
 

Suppose that the ’s in (2) are sparse so that they can 
reasonably be modelled as an i.i.d. realization from a double 
exponential distribution with a scale parameter 1 . Then the 
Bayesian estimate is the minimizer of 
 

 
 


d
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d

i
iiiz
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2)(
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 ,                                              …(3) 

 

Where 1
2 /   

Minimization of (3) is equivalent to minimizing (3) 
component-wise. 
 

 ))(sgn(ˆ  jjj zz                                                    …(4) 
 

If the L1-penalty in (3) is replaced by the Lq-penalty, it results 
in bridge regression proposed by Frank and Friedman (1993) 
and carefully studied by Fu (1998). Particularly, when q = 2, it 
leads to the usual ridge regression. Some interesting results can 
be seen in Lu and Zhang (2007) 
 

Penalized Least-Squares and Variable Selection 
 

Consider a general form of penalized least-squares: 

)()(
2
1

1 1

2 
 


d

j

d

j
jjjj pz  .                                     …(5) 

 

The penalty functions )(jp  in (5) are not necessarily the 
same for all ݆. For example, one may wish to keep important 
predictors in a parametric model and hence is not willing to 
penalize their corresponding parameters. For simplicity of 
presentation, we will assume that the penalty functions for all 
coefficients are the same, denoted by )(p Furthermore, we 

denote )(p  by )(p as )(p can be allowed to 

depend on  . Extensions to the case with different 
thresholding functions do not involve any extra difficulties. 
 

The minimization problem of (5) is equivalent to minimizing 
component wise the penalized least-squares problem: 
 

)()(
2
1 2  pz  .                                                           (6) 

 

The solution to (6) is necessarily a thresholding when the 
minimum of the function 0)(   p  is positive. This 
is because the derivative function has no zero crossing for 
small values of z . 
 

Fan observed that the penalized least-squares estimator with the 
penalty function )(2/)()(   IIp
leads to the hard-thresholding rule  
 

)(ˆ   zzI                                                                  …(7) 
 

This penalty function does not over penalize the large value of 
 .  In this response, Antoniadis (1999) improves Fan’s 
proposal by using the following hard thresholding penalty 
function: 
 

)()()( 22   Ip                                  ...(8) 
 

With the clipped L1-penalty function 
 

),min()(  p                                                      …(9) 
 

the solution is a mixture of soft and hard thresholding rule  
 

)5.1()5.1())(sgn(ˆ    zzIzIzzj  …(10) 
 

Smoothly Clipped Absolute Deviation Penalty 
 

All of penalty functions introduced so far do not satisfy both 
mathematical conditions imposed in the last paragraph for a 
continuous and thresholding rule.  The continuous 
differentiable penalty function defined by 

)(
)1(
)()()( 

 




  I
a

aIp  for some 2a  

and 0a ,                                                                       …(11) 
 

Improves the properties of the L1-penalty and the hard-
thresholding penalty function given by  

)()()( 22   Ip                               …(12) 
 

 We will call this penalty function as smoothly clipped absolute 
deviation (SCAD) penalty.  This corresponds to a quadratic 
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spine function with knots at   and a .  This penalty function 
leaves large value of  not excessively penalized and makes 
the solution continuous.  The resulting solution is given by 
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                                                      …(13) 

 

For simplicity, we will call all procedures using the SCAD 
penalty as SCAD, refer to Fan (1997).  
 

Penalized Least-Squares and Likelihood 
 

In classical linear regression models, the least-squares estimate 
is obtained via minimizing the sum of squared residual errors.  
Therefore (5) can be naturally extended to the situation in 
which design matrices are not orthonormal.  Similar to (5), a 
general form of penalized least-squares is  
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Or equivalently 
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Minimizing (14) with respect to  leads to a penalized least-
squares estimator of  . 
 

It is well known that the least-squares estimate is not robust, 
one can consider the outlier-resistant loss functions such as the 
L1-penalty or more general Huber’s  -function, refer to  
Huber(1981).  Therefore instead of minimizing (9), we 
minimize 
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With respect to  .  This results in a robust least-squares 
estimator. 
 

For generalized linear models, statistical inference are based on 
underlying likelihood functions.  The penalized maximum 
likelihood estimator can be used to select significant variables.  
Assume that the collected data ),( ii Y are independent 

samples.  Conditioning on ii Y,  has a density 

)),(( i
T
ii ygf  , where g is a known link function.  Denoted 

by ii fl log , the conditional log-likelihood of Yi.  A general 
form of penalized likelihood is  
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)()),((                             …(16) 

 To obtain a penalized maximum likelihood estimator of  , 
we minimize (16) with respect to  for some thresholding 
parameter  . 
 

Selection of thresholding parameters 
 

We need to estimate the thresholding parameters  and a  as 
discussed in the previous sections. Denote by   the tuning 
parameters to be estimated, i.e., ),( a   for the SCAD, 
while    for other thresholding.  Here we discuss two 
methods of estimating  : fivefold cross-validation and 
generalized cross-validation, as suggested by Breiman (1995), 
Tibshirani (1996) and Fu (1998). For completeness, we now 
describe the details of the cross-validation procedures. Denote 

)}(ˆ{ l  by the first term in  
 





d

j
jPnl

1

)()(                                                          ...(17) 

replacing   by its estimate ̂  obtained when the tuning 

parameters   are used. Then )}(ˆ{ l  can be regarded as a 
measure of goodness of fit. The fivefold cross-validation 
procedure is as follows: Denote the full training set by T, and 
cross-validation training and test set by TT   and T , for 

5,...,1 . For each   and  , we find the estimator )(ˆ  

of   using the training set TT  . Let )}(ˆ{ l be the 

)}(ˆ{ l for test set T .  Form the cross-validation criterion 
as 
 





5

1
)}(ˆ{)(


  lCV . 

 

We find a ̂  that minimizes )(CV . 
The second method is the generalized cross-validation. For 
linear regression models, we update the solution by 

yn TT  1
01 )}({)(   . 

 

Thus the fitted value by of ŷ  is 

yn TTT  1
0)}({  , and 

TTT nP  


1)}ˆ({)}(ˆ{    
 

can be regarded as a projection matrix. Define the number of 
effective parameters in the penalized least-squares fit as 

)}](ˆ{[)(   Ptre .  Therefore the generalized cross-
validation statistic is 

2}/)(1{
)}(ˆ{1)(
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and )}({minargˆ   GCV . Similarly the corresponding 
generalized cross-validation statistics can be de_ned for robust 
regression models and likelihood based linear models. 
 

Adaptive Lasso and its Oracle Properties 
 

Let us consider model estimation and variable selection in 
linear regression models. Suppose that T

nyyy ),...,( 1 is the 

response vector and T
njjj ),...,( 1  , j=1,…,p are the 

linearly independent predictors. Let  p ,...,1 be the 

predictor matrix. We assume that E[y|x]= pp xx    ...11 .  
Without loss of generality, we assume that the data are 
centered, so the intercept is not included in the regression 
function. Let }0:{  

jjA  and further assume that 

ppA  0 .  Thus the true model depends only on a subset 

of the predictors. Denote by )(ˆ  the coefficient estimator 
produced by a fitting procedure  . Using the language of Fan 

and Li (2001), we call  an oracle procedure if )(ˆ 
(asymptotically) has the following oracle properties:  
 

1. Identifies the right subset model, Aj j  }0:{   
2. Has the optimal estimation rate,

dAAn   ))(ˆ(  ),0( N , where  ∗ is the   
covariance matrix knowing the true subset model. 

 

 It has been argued (Fan and Li 2001; Fan and Peng 2004) that 
a good procedure should have these oracle properties. 
However, some extra conditions besides the oracle properties, 
such as continuous shrinkage, are also required in an optimal 
procedure. Ordinary least squares (OLS) gives nonzero 
estimates to all coefficients. Traditionally, statisticians use 
best-subset selection to select significant variables, but this 
procedure has two fundamental limitations. First, when the 
number of predictors is large, it is computationally infeasible to 
do subset selection. Second, subset selection is extremely 
variable because of its inherent discreteness refer to Breiman 
(1995), Fan and Li (2001). Stepwise selection is often used as a 
computational surrogate to subset selection; nevertheless, 
stepwise selection still suffers from the high variability and in 
addition is often trapped into a local optimal solution rather 
than the global optimal solution. Furthermore, these selection 
procedures ignore the stochastic errors or uncertainty in the 
variable selection stage refer to Fan and Li (2001), Shen and 
Ye (2002). The lasso is a regularization technique for 
simultaneous estimation and variable selection as suggested by 
(Tibshirani 1996). The lasso estimates are defined as 
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,         …(18) 

where λ is a nonnegative regularization parameter. The second 
term in (18) is the so-called “ 1l  penalty,” which is crucial for 
the success of the lasso. Lasso cannot be an oracle procedure, 
however, the asymptotic setup is somewhat unfair, because it 

forces the coefficients to be equally penalized in the 1l penalty.  
We can certainly assign different weights to different 
coefficients.  Let us consider the weighted lasso, 
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where w is a known weights vector. We show that if the 
weights are data-dependent and cleverly chosen, then the 
weighted lasso can have the oracle properties. The new 
methodology is called the adaptive lasso.  We now define the 
adaptive lasso. Suppose that ̂ is a root n-consistent estimator 

to  ; for example, we can use )(ˆ ols . 
 

Pick a 0 , and define the weight vector 


̂/1ˆ W . The 

adaptive lasso estimates )(ˆ n are given by 
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     …(19) 

 

Similarly, let }0ˆ:{ )(   n
jn jA  . 

 

It is worth emphasizing that (19) is a convex optimization 
problem, and thus it does not suffer from the multiple local 
minimal issue, and its global minimizer can be efficiently 
solved.  This is very different from concave oracle penalties. 
The adaptive lasso is essentially an 1l penalization method. 
 

Oracle Properties 
 

With a proper choice of n , adaptive lasso enjoys the oracle 
properties. 
 

Suppose that 0/ nn and  2/)1( nn .  Then the 
adaptive lasso estimates must satisfy the following: 
 

1. Consistency in variable selection: 
1)(lim  AAP nn  

2. Asymptotic normality: 

),0()ˆ( 1
11

2)(   CNn dA
n

A  . 
 

Variable Selection through the LAD-LASSO  
 

Consider the linear regression model, 
 

iii xy  ' .. ,,....1 ni                                                …(20) 
                                                                                                

Where ),...,( 1  ipii xxX is the p-dimensional regression co-

variate, ),...,( 1  p are the associated regression 

coefficients, and i are iid random errors with median 0. 

Moreover, assume that 0j for 0pj  and 0j for 

0pj  for some 00 p . Thus the correct model has p0 
significant and (p - p0) insignificant regression variables. 
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Usually, the unknown parameters of model (20) can be 
estimated by minimizing the OLS criterion, 

2
1

)(  


n

i ii Xy . Furthermore, to shrink unnecessary 

coefficients to 0, Tibshirani (1996) proposed the followed lasso 
criterion: 
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Where 0  is the tuning parameter. Because lasso uses the 
same tuning parameters for all regression coefficients, the 
resulting estimators may suffer an appreciable bias (Fan and Li 
2001). Hence we further consider the following modified lasso 
criterion: 
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which allows for different tuning parameters for different 
coefficients. As a result, lasso* is able to produce sparse 
solutions more effectively than lasso.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Nonetheless, it is well known that the OLS criterion used in 
lasso* is very sensitive to outliers. To obtain a robust lasso-
type estimator, we further modify the lasso* objective function 
into the following LAD-lasso criterion: 
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As can be seen, the LAD-lasso criterion combines the LAD 
criterion and the lasso penalty, and hence the resulting 
estimator is expected to be robust against outliers and also to 
enjoy a sparse representation. Computationally, it is very easy 
to find the LAD-lasso estimator. Specifically, we can consider 
an augmented dataset   **, iiy  with pni  ,...,1 , where 

   iiii yy  ,, **  for ,1 ni   

   jjjnjn eny ,0, 



  for ,1 pj  and je is a 

p-dimensional vector with the jth component equal to 1 and all 
others equal to 0. It can be easily verified that 
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Properties 
 

we decompose the regression coefficient as   ba  ,

where   01,..., pa  and    ppa  ,...,10 .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Table 1 Simulation results for double-exponential error 
 

                                                                                                             No. of zeros   
  n Method Underfitted correctly fitted overfitted Incorrect Correct Average MAPE Median MAPE 
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.159 
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0 
0 
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0 
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1.000 
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.434 
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.913 
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1.000 
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1.000 
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1.000 
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4.000 

 

1.101 
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1.013 
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Its corresponding LAD-lasso estimator is denoted by 

  ba  ˆ,ˆˆ , and the LAD-lasso objective function is 

denoted by ),()( baQQ   .  In addition, we also 

decompose the covariate ),(  ibiai with 

),...,( 01  ipiia xx and ),...,( )10(   ippiib xx . 
 

1. The error i has continuous and positive density at the 
origin. 

2. The matrix cov(X1)= exists and is positive definite. 
Note that Assumptions A and B are both very typical 
technical assumptions used extensively in the literature 
(Pollard 1991; Bloomfield and Steiger 1983; Knight 
1998). They are needed for establishing the √݊-
consistency and the asymptotic normality of the 
unpenalized LAD estimator. Furthermore, define 

 

}1,max{ 0pja jn    
and 

},max{ 0 pjpb jn  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

where λj is a function of n. For a detailed study refer to 
Tibshirani (1996), Zou (2006), Lu and Zhang (2007), Biswas, 
S. et.al.,, Tibshirani (1997), Tsiatis (1996) 
 

RESULTS 
 

We numerically compare the proposed variable selection 
methods with ordinary least-squares, ridge regression, best 
subset selection and non-negative garrotte, LASSO and LAD 
regression.  All simulations are conducted using MATLAB 
codes.  As recommended in Breiman (1995), a five-fold cross-
validation was used to estimate the tuning parameter for the 
non-negative garrote. For other model selection procedures, 
both five-fold cross-validation and generalized cross-validation 
were used for estimating thresholding parameters. However, 
their performance are similar. Therefore we only present the 
results based on the generalized cross validation.  This results 
were shown in Table 1 to Table 2 .  Some earlier results also be 
seen in Tsiatis (1996). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Real Data Example 

Table 2 Simulation results for t5 error 
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.645 

.272 

.017 
0 
 

0.674 
0.651 
0.199 
0.012 

0 
 

.081 

.101 

.178 

.227 
0 
 

.008 

.010 

.026 

.041 
0 
 

0 
0 
0 
0 
0 
 

0 
.001 
.001 
.011 

0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

2.824 
3.071 
3.500 
3.686 
4.000 

 

2.994 
3.104 
3.706 
3.802 
4.000 

 

3.050 
3.103 
3.813 
3.855 
4.000 

 

2.903 
3.188 
3.595 
3.974 
4.000 

 

2.956 
3.089 
3.699 
3.981 
4.000 

 

2.998 
3.051 
3.780 
3.986 
4.000 

 

1.051 
1.047 
1.041 
1.047 
1.006 

 

.993 

.993 

.984 

.990 

.975 
 

.970 

.970 

.965 

.968 

.962 
 

.521 

.518 

.511 

.523 

.500 
 

.498 

.497 

.492 

.494 

.488 
 

.486 

.485 

.482 

.481 

.481 
 

1.289 
1.123 
1.163 
1.072 
.989 

 

1.022 
.947 
.987 
.964 
.979 

 

1.160 
.985 
1.019 
1.058 
.906 

 

.524 

.493 

.543 

.488 

.521 
 

.545 

.474 

.492 

.523 

.508 
 

.472 

.463 

.495 

.513 

.493 
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The study involves 295 patients with primary breast 
carcinomas from the Netherlands Cancer Institute, refer to 
Chang et al., (2005).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The survival time information was extracted from the medical 
registry of the Netherlands Cancer Institute. Potential clinical 
predictors include age, tumor size, lymph node status, tumor 
grade, vascular invasion status, estrogen receptor status,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 Estimated regression coefficients and standard errors of all clinical predictors and gene signatures for the breast cancer 
data example for LAD VS LASSO 

 

                                                               LASSO                        Adaptive LASSO                    LAD 
Clinical predictors 

Age(decades) 0.123 (0.068) 0.000 (-) 0.000 (-) 
Tumor size (diameter, cm) -0.042 (0.024) -0.056 (0.033) -0.052 (0.030) 

Tumor grade 
Grade 3 versus 1 
Grade 2 versus 1 

 
-0.225 
0.000 

 
(0.082) 

(-) 

 
-0.281 
0.000 

 
(0.205) 

(-) 

 
-0.271 
0.000 

 
(0.189) 

(-) 
Vascular invasion 

1-3 vessels versus 0 vessel 
>3 vessels versus 0 vessel 

 
0.000 
-0.276 

 
(-) 

(0.104) 

 
0.000 
-0.453 

 
(-) 

(0.047) 

 
0.000 
-0.450 

 
(-) 

(0.041) 
Estrogen receptor status 

(positive versus negative) 0.000 (-) 0.000 (-) 0.000 (-) 

Mastectomy versus breast 
Conserving therapy -0.053 (0.035) 0.000 (-) 0.000 (-) 

No adjuvant versus chemo or 
Hormonal therapy 0.000 (-) 0.000 (-) 0.000 (-) 

The number of lymph nodes -0.013 (0.006) 0.000 (-) 0.000 (-) 
NIH risk status 

(high versus intermediate or low) 
Wound response 

70-gene 
Normal-like 

ErbB2 
Luminal A 
Luminal B 
Basal-like 

 
 

-1.493 
0.417 
0.561 
-0.395 
0.000 
-0.251 
0.000 

 
 

(0.371) 
(0.119) 
(0.297) 
(0.151) 

(-) 
(0.109) 

(-) 

 
 

-1.915 
0.945 
0.000 
-2.161 
-1.478 
0.000 
0.315 

 
 

(0.505) 
(0.334) 

(-) 
(0.761) 
(0.635) 

(-) 
(0.120) 

 
 

-1.901 
0.940 
0.000 
-2.141 
-1.458 
0.000 
0.305 

 
 

(0.480) 
(0.300) 

(-) 
(0.741) 
(0.615) 

(-) 
(0.100) 

 

      
 

    a LASSO                                                                              b Adaptive LASSO           

       
 

                                                        c Approximate LASSO                                                                                  d  LAD 
 



Sathish Kumar S and Elangovan R., Variable Selection For Survival Analysis Using Lasso Vs Lad Regression 
 

20703 | P a g e  

National Institutes of Health (NIH) risk grade, the use of breast 
conserving therapy, and the use of adjuvant therapy. Available 
also are gene signatures that represent distinct analytic 
strategies and have been validated in independent studies. 
Specifically, there are seven potential gene signatures: 
basallike, ErbB2, luminal A, luminal B, normal-like, a 70-gene, 
and m the wound response gene signatures. The basal-like, 
ErbB2, luminal A, luminal B, and normal-like gene signatures 
were identified by an unsupervised clustering method refer to 
Perou et al., (2000). The 70-gene signature was constructed 
based on the association between the gene expression level and 
the risk of metastasis  refer to van de Vijver et al., (2002). The 
wound response gene signature was a hypothesis-driven 
signature proposed by Chang et al. (2005). We fit the data of 
the survival time as the response variable and 18 potential 
predictors: age, tumor size (diameter, cm), the number of 
lymph nodes, tumor grade (grade 2 versus 1, grade 3 versus 1), 
vascular invasion (1-3vessels versus 0 vessel, >3 vessels versus 
0 vessel), estrogen receptorstatus (positive versus negative), 
NIH risk status (high versus intermediate or low), the use of 
breast conserving therapy (mastectomy versus breast 
conserving therapy), the use of adjuvant therapy (no adjuvant 
therapy versus chemotherapyor hormonal therapy), as well as 
the seven gene signatures. All the genetic signatures used in the 
model are continuous correlation measures. In the analysis, to 
avoid potential biases we excluded a subset of 61 patients, 
which was used to construct the 70-gene signature. Among the 
remaining 234 patients, the median follow-up time was 7.2 
years and the number of observed deaths is 55. 
 

To construct prediction models based on these 18 predictors, 
mwe considered three aforementioned estimators for β: (i) the 
standard Gehan estimator; (ii) the LASSO estimator; and (iii) 
the adaptive LASSO estimator. The entire LASSO and 
adaptive LASSO, Table 3 and Fig 1 and Fig 2 to Fig 4 
regularized paths of the proposed estimators are shown in 
Figure 2a and b. The observed proportions of p-values being 
smaller than 0.05 are 96.6%, 91.2%, and 82.2% for predictions 
based on LASSO, adaptive LASSO, and unregularized 
estimators, respectively. The entire empirical cumulative 
distribution functions of the 500 p-values for comparing the 
two risk groups identified by the LASSO, adaptive LASSO, 
and unregularized Gehan’s estimators are shown in table 3 
 

CONCLUSION 
 

For comparison purposes, the results of the full model based on 
the LAD and OLS, Penalized Least Square estimators are also 
reported. As can be seen, the MAPE  of the OLS is as large as 
.23152.  It is substantially worse than all other LAD-based 
methods, further justifying the use of the LAD methods.  Based 
on a substantially simplified model, the prediction accuracy of 
the LAD-LASSO estimator remains very satisfactory.  
According to the reported standard error of the MAPE  estimate 
(STDE), we can clearly see that such a difference cannot be 
statistically significant.  Consequently, we conclude that among 
all of the LAD-based model selection methods, LAD-LASSO 
resulted in the simplest model with a satisfactory prediction 
accuracy. The proposed regularization methods for the AFT 
model can be easily extended to incorporate other types of 
penalty functions such as the L2 or the more general elastic net 
regularization (Zou and Hastie, 2005). The entire regularization 
path with the L2 or elastic net penalty would also be piecewise 

linear and can be obtained by modifying the algorithm 
proposed by Hastie et al. (2004). The Gehan’s initial estimator 
determining the weights used in the adaptive LASSO may be 
too unstable or even not available for a high-dimensional β. For 
such settings, one may instead use the L2 regularized Gehan’s 
estimator as the initial estimator. In such cases, the root of the 
estimating equation may be obtained by an iterative algorithm, 
in which each iteration amounts to minimizing a weighted 
Gehan’s objective function refer to Jin et al., (2003). Therefore, 
a simple regularization strategy for the general rank-based 
estimating equation is to apply LASSO or adaptive LASSO 
regularization within each iteration. However, the resulting 
regularized solution may lose the simple interpretation as a 
constrained minimizer. It is important to note that while the 
proposed procedure may be carried out when p increases with 
the sample size, the asymptotical properties derived in Web 
Appendices A and B only hold when p is a fixed constant. 
Using similar arguments as given in Huang, Ma, and Zhang 
(2008), one may extend the results to the setting when p = pn 
→∞as n→∞but at a slower rate. When p is much bigger than 
the sample size, e.g., in the context of gene expression data 
analysis, operationally, the proposed regularization method can 
be performed with a large number of individual gene 
expression as covariates in the regression analysis. However, 
because the theoretical results require that the dimension of 
predictor is fixed while the sample size n → ∞, we suggest 
performing an initial screening step, in which relatively few 
covariates were selected/constructed from the original gene 
expression measurements, and then conduct the regularized 
multivariate analysis with the covariates formed in the first 
step. Note that even after the initial dimension reduction step, 
the dimension of predictors may still be not small relative to 
the sample size for performing the standard unregularized 
estimation as in the breast carcinomas example and this is 
where the proposed regularization methods are intended to be 
applied. The selection of an appropriate penalty parameter is 
crucial to the performance of regularized estimators. If the 
primary goal of the regularization is variable selection, i.e., to 
identify noninformative predictors whose true regression 
coefficients are zero, one may consider approaches different 
from optimizing a cross validated loss function. Intuitively, the 
penalty parameter should be set such that the LASSO 
estimators for most noninformative predictors are zero. One 
possible ad hoc approach to achieve this is to first augment 
existing predictors by several randomly generated noise 
variables that are independent of the survival time and then 
calculate the entire LASSO regularization path with the 
augmented predictors. In the end, one may choose the smallest 
penalty parameter such that all the LASSO regularized 
regression coefficients of those augmented noise predictors are 
zero. LAD gives better results when compared with LASSO 
based on Survival data. 
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