
 
*Corresponding author: Linga Murthy S.B  
Department of Electrical Engineering, AU College of Engineering (A) Andhra University, Visakhapatnam-530003, AP, India 

   

 
 
 
 

ISSN: 0976-3031 

Research Article 
 

SOLVING DYNAMIC OPTIMAL POWER FLOW PROBLEMS USING PSO AND DE ALGORITHMS 
 

Linga Murthy S.B and Vaisakh K 
 

Department of Electrical Engineering, AU College of Engineering (A) Andhra University, 
Visakhapatnam-530003, AP, India 

 
DOI: http://dx.doi.org/10.24327/ijrsr.2017.0809.0841 

 
ARTICLE INFO                                      ABSTRACT                                    

 
 
 

 
 
 

 

This paper proposes two population based computing techniques such as particle swarm 
optimization and differential algorithm to solve the dynamic optimal power flow (DOPF) problem 
with the prohibited zones, valve-point effects, ramp rates and security constraints. In the static 
optimal power flow, the system total load is constant and the problem is solved for just one period, 
but in the proposed approach, the multi-period OPF which is termed as dynamic OPF is considered. 
The, nonlinear characteristics of the alternative current power flow as well as technical constraints, 
such as valve-point effect and transmission constraints, are all considered for the realistic operation, 
and they further complicate the proposed problem. These features make the DOPF as a complicated 
nonlinear and non-convex optimization problem. This paper proposes two population based 
computing techniques such as particle swarm optimization and differential evolution algorithm to 
solve the DOPF problem. The IEEE 30-bus test system is implemented to illustrate the application 
of the proposed modeling framework. The results obtained on the IEEE 30-bus system are also 
compared with the results reported in the literature.  
 

 
 
  

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

INTRODUCTION 
 

Optimal power flow (OPF) is one of the key tools for optimal 
operation and planning of present day power systems [1]. The 
usefulness of OPF is progressively being recognized, and it has 
become the most important tool used by the system operator in 
power systems operation and planning[2]. In the literature 
number of OPF models have been developed and have been 
used to formulate different kinds of OPF problems, objectives, 
and constraint types [3]. 
 

The OPF is as an optimization problem which aims to obtain 
control variables for optimizing a predefined objective function 
while satisfying operational equality and inequality constraints. 
However, the traditional OPF is mainly concerned with the 
minimization of total generating cost. Nowadays, increase in 
electricity consumption forces the power systems to operate 
closer to their secure limits because of economical reasons. 
Also the OPF mathematical formulation has the capability to 
integrate the economic and security aspects of the concerned 
system and has become an attractive tool for many researchers 
[4].  
 

In the present day power system operation, the power demand 
is continually changed during the entire day, therefore, it has 

become necessary to solve the OPF problem in each hour 
considering economic and security aspects and is termed as 
dynamic optimal power flow (DOPF). The DOPF is actually 
the extended formulations of the original OPF problem and it is 
more difficult to solve because of its large dimensionality[5].  
 

Several classical (deterministic) optimization techniques were 
employed successfully to solve the OPF problem [6]. Surveys 
of various traditional methods used to solve the OPF problem 
are given in [7-9]. The classical methods rely on some 
assumptions such as convexity, smoothness, continuity and 
differentiability. The classical techniques such as linear 
programming (LP), quadratic programming (QP), and non-
linear programming (NLP), have been developed to solve the 
OPF problems with the theoretical assumptions, like convexity, 
differentiability, and continuity, which are difficult to 
incorporate in the actual OPF formulations. In addition, the 
convergence to the global optimal solution is highly dependent 
on the selected initial guess[10]. Moreover, continuous LP, QP, 
and NLP formulations cannot accurately model discrete control 
variables, such as transformer tap ratios or switched capacitor 
banks.  
 

Due to the high complexity in OPF formulation with 
continuous and discrete control variables, modern heuristic 
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optimization algorithms have been widely used for solving the 
OPF problems with different constraints. To overcome these 
drawbacks, heuristic optimization algorithms such as genetic 
algorithm (GA)[11], evolutionary programming (EP)[12], 
simulated annealing (SA)[13], tabu search (TS)[14], harmony 
search algorithm [15], and enhanced genetic algorithm [16], 
particle swarm optimization (PSO)[17], differential evolution 
(DE)[18], etc., have been employed for the solution of the OPF 
problem.  
 

Currently, powerful evolutionary algorithm such as PSO has 
been applied in many power system optimization problems. 
The major advantages of the PSO algorithm compared with 
classical and many mathematical algorithms and other 
evolutionary optimization techniques are simple concept, easy 
implementation mechanism, and minimal storage requirements. 
 

In the recent past, the DE approach, proposed in 1995 [19]  is a 
population-based method and is generally considered a parallel 
stochastic direct search optimizer that is simple yet powerful 
algorithm. It is a stochastic population based optimization 
algorithm with real parameters and real-valued functions. In 
comparisons to most other heuristic optimization algorithms, 
the DE algorithm is much simpler and more straightforward to 
implement.  
 

The main body of the differential evolution algorithm takes few 
lines of code in any programming language. Despite its 
simplicity and the gross performance of DE in terms of 
accuracy, convergence rate and robustness, its an attractive 
algorithm for applications to various real-world optimization 
problems [20-22],. The spatial complexity of DE is less than 
that of some highly competitive real parameter optimization 
techniques. This feature helps in extending DE to handle 
expensive and large-scale optimization problems. 
 

Therefore, the differential evolution is a best algorithm to solve 
DOPF, which is a complicated problem and has a lot of local 
optima. The remainder of this paper is organized as follows: 
Section 2 describes the formulation of DOPF problems. Section 
3 explains the PSO and differential algorithms, Section 4 gives 
the implementation steps of both PSO and differential 
evolution algorithm and Section 6 gives the numerical 
examples of solving the DOPF problem. Finally Section 6 
explains the conclusions.  
 

Problem formulation of dynamic optimal power flow 
 

The main objective function of the DOPF is the minimization 
of the total fuel cost over total time horizon. The adjustable 
system quantities such as controllable real power generations, 
controllable voltage magnitudes, and transformer tap ratios are 
taken as control variables in the proposed scheme. 
Accordingly, the objective function of the DOPF problem can 
be written as follows: 

1 1
( ) ( ) (

T N

it it
t i

Min F F P
 
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where ( )F X  is the total generating cost over the whole 
dispatch period, T  is the number of intervals in the scheduled 
horizon, N  is the number of generating units, and ( )it GitF P is 

the fuel cost in terms of its real power output GitP  in 
megawatts at time t .  
 

Considering the valve-point effects, the fuel cost function of 
thi  thermal generating unit is expressed as the sum of a 

quadratic and a sinusoidal function in the following form 
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where  

ia , ib  and ic  are cost coefficients,  

ie  and if  are constants from the valve point effect of the thi  
generating unit.  
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This objective function minimizes the total system generation 
cost, where ( )F X is the total generation cost, X is the control 

vector of the presented problem, GP is a vector related to the 

power generation of all generator except slack generator. Gi,tP  

is the real power generation of thi  unit at tht  interval, GV is a 
vector related to the voltage of generator bus (PV buses), and 

Gi,tV is the voltage magnitude of thi generator at tht  interval, 

TPT  is a vector related to the tap of transformers and TPi,tT is 

the tap of thi transformer at tht interval, which is a discrete 
control variable, meanwhile, it is considered as continuous 
variable in this paper.  
 

Similarly, Ng is the total number of generation units, NT is the 
number of tap transformers, and T is the number of intervals, 
respectively. NV is the number of control variable in the 
proposed optimization problem. 
 

The minimization of the generation cost is subjected to the 
following equality and inequality constraints: 
 

Prohibited operating zones. Units can have prohibited 
operation regions due to faults in the machines themselves or 
the associated auxiliaries, such as boilers, feed pumps etc.  
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Generators ramp rate:  The ramp rate is the amount of load 
you can add to the turbine per unit of time.  
 

Real power balance constraint: The total generation should be 
able to satisfy the given load demand at any interval. 
 

AC power flow equalities: The power flow constraints are 
satisfied by running the load flow solution techniques.  
 

The inequality constraints: For the safety purposes of the 
generating units as well as the stable operation of the system, 
all the generating units are firmly limited to operate within their 
minimum and maximum generation capacity;  
 

System spinning reserve constraint: A minimum system 
spinning reserve is required to be considered to satisfy the 
system load demand and be responsible for any frequency 
changes due to load fluctuations in real-time systems 
 

Security constraints: The OPF security constraints ensure that 
the optimal solution is secure, preventively secure or 
correctively secure with respect to the steady operational state 
of the power system.  
 

Overview of optimization algorithms 
 

The proposed solution methodology comprises the application 
of PSO and DE algorithms. Firstly, the DOPF problem is 
solved separately through the PSO algorithm and DE 
algorithm. 
 

Particle swarm optimization algorithm 
 

Particle swarm optimization is is modeled by social behavior of 
birds flocking or fish schooling [23,24] and is a population-
based optimization tool, where the initialization is carried out 
with a population of random particles and it searches for 
optima by updating generations. This algorithm maintains a 
swarm of candidate solutions, referred to as particles with each 
particle being attracted towards the best solution found by the 
particle’s neighborhood and the best solution found by the 
particle. During this iterative process, the agent position is 
realized by the position and velocity information. The position 
and velocity of each particle are updated, as follows: 
 

 (11) 
 

1 1k k k
e e eX X V                                                                (12) 

 

where k
eV  is the velocity of eth particle at kth iteration, 1k

eV  is 
the velocity of eth particle at k+1th iteration, o is an inertia 
weight, C1 and C2 are positive coefficients between 0 and 2 
such that C1 + C2≤4, and rand1() and rand2() are random 
numbers selected between 0 and 1. k

bestP  and k
bestG  best are 

the personal best and global best experiences of eth particle at 
kth iteration, respectively. k

eX and 1k
eX  are the control 

vectors of eth particle at kth and k+1th iteration, respectively. 
 

Differential evolution algorithm 
 

DE uses mutation and crossover to generate new individuals. 
One population consists of NP individuals. One individual 

,i GX consists of D variables which are constrained by search 
range. The initial individuals are randomly determined, then 

mutation and crossover are used to generate the new 
individuals and selection is applied to determine whether the 
new individual or the original one will survive into the next 
generation[25]. 
 

Mutation: According to the strategy DE/rand/1/bin, the 
mutation vector , 1, (1, 2,3,..., ),i Gv i NP  is generated by 

using three randomly chosen target vectors 1, 2, 3,, ,r G r G r Gx x x
and a mutation parameter F . The formula is represented as: 
 

, 1 1, 2, 3,( ), 1 2 3i G r G r G r Gv x F x x r r r i           (13) 
 

From the formula above, we can see that it contains 4 vectors, 
so the number of population (NP) must be at least 4. F > 0 is a 
mutation control parameter which affects the disturbance added 
by two individuals. 
 

Crossover: Crossover means to swap the dimensions between 
the target vectors and its offspring mutant vector controlled by 
crossover parameter CR. Usually the binomial crossover is 
accepted, which is described as: 
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where , 1
j

i Gu  means the jth number of trial vector , 1i Gu  , ( )r j  

is a random number between [0, 1], and jn is a randomly 
generated dimension to make sure that at least one dimension 
of the trial vector is closed from the mutant vector.  
 

Selection: The operation of selection determines whether the 
trail vector or the target vector survives into the next generation 
on the basis of the vectors’ fitness. Greedy selection is used: 
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where , 1( )i Gf u  and ,( )i Gf u  are the objectives of ,i Gu  and 

,i Gx  and , 1 ,( ) ( )i G i Gf u f x   is used to solve minimization 
problems. 
 

Implementation steps of PSO and DE algorithms on DOPF 
problem 
 

In this section, the application of PSO and DE on the DOPF 
problem is presented step by step. 
 

PSO Algorithm: The implementation steps of the proposed 
PSO based algorithm can be written as follows;  
 

Step 1: Input the system data for load flow analysis  
Step 2: Run the power flow  
Step 3: At the generation Gen =0; set the simulation 

parameters of PSO parameters and randomly initialize k 
individuals within respective limits and save them in the 
archive.  

Step 4: For each individual in the archive, run power flow to 
determine load bus voltages, angles, generator reactive 
power outputs and calculate line power flows.  
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Step 5: Evaluate the penalty functions  
Step 6: Evaluate the objective function values and the 

corresponding fitness values for each  individual.  
Step 7: Find the generation local best xlocal and global best 

xglobal and store them.  
Step 8: Increase the generation counter Gen = Gen+1.  
Step 9: Apply the PSO operators to generate new k 

individuals  
Step 10: For each new individual in the archive, run power 

flow to determine load bus voltages,  angles, 
generator reactive power outputs and calculate line 
power flows.  

Step 11: Evaluate the penalty functions  
Step12: Evaluate the objective function values and the 

corresponding fitness values for each  new 
individual.  

Step 13: Apply the selection operator of PSO and update the 
individuals.  

Step 14: Update the generation local best xlocal and global 
best xglobal and store them.  

Step 15: If stopping criterion have not been met, repeat steps 
4-15. Else go to step 16  

Step 16: Print the results  
 

DE Algorithm: The details of the DE based optimization 
algorithm are as follows  
 

Step. 1 Generate an initial population randomly within the 
control variable bounds.  

Step. 2 For each individual in the population, run power flow 
algorithm such as Newton Raphson  method, to 
find the operating points.  

Step. 3 Evaluate the fitness of the individuals  
Step. 4 Perform differentiation (mutation) and cross over to 

create offspring from parents.  
Step. 5 Perform Selection between parent and offspring. 

While using the penalty method of  constraint 
handling the following criteria are enforced while 
selecting the individuals for  the next generation.  
Any feasible solution is preferred to any infeasible 
solution.  Among  two feasible solutions, the one 
having better objective function value is preferred.   

Step. 6 Store the best individual of the current generation.  
Step. 7 Repeat steps 2 to 6 till the termination criteria is met 

(maximum number of generations). 
 

Simulation results 
 

IEEE 30-bus system results 
 

To demonstrate the performance of the proposed PSO and DE 
algorithms, these methods have been applied on the IEEE 30-
bus test system. Detailed data about 30-bus IEEE test system 
can be obtained from [25]. The IEEE 30-bus system consists of 
six generators connected at buses 1, 2, 5, 8, 11, and 13, where 
the bus 1 is treated as the slack bus. The lower and upper 
voltage magnitude limits of all buses are set to 0.95 and 1.1 p.u. 
respectively. The system’s single-line diagram is shown in 
Figure 1. This test system has two shunt compensator 
capacitors installed at buses 10 and 24.. Also, this system has 
four tap changing transformers connected between the buses 6-
9, 6-10, 4-12, and 27-28, and their lower and upper limits are 
set to 0.9 and 1.1 p.u. respectively. All generators’ cost 

coefficients, power generation limit, ramp rates, and prohibited 
zones are taken from [5] for the IEEE 30-bus test system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this paper, MATLAB programming codes for both the PSO 
and the DE dynamic optimal power flow algorithms are 
developed and incorporated together for the simulation 
purposes. In the implementation of the algorithms, several 
parameters have been tuned for optimal search process and 
have been extracted from many computer experiments. The 
settings of the proposed algorithm are as follows: Number of 
populations is set to 100 and the maximum number of iteration 
is 300 for the test system.  
 

In this case, all the constraints such as the valve-point effect, 
ramp rate, and prohibited zones are considered simultaneously. 
Fig. 2 shows the variation of fitness function against the 
number of generations during the PSO and DE evolutionary 
process. From this figure it is clearly seen that the convergence 
property of the DE method is better than those achieved by the 
PSO algorithm. Fig. 3 gives the best real power generation 
levels of each generator during each period.  The results of 
implementing DOPF over the IEEE 30-bus test system using 
the proposed PSO and DE algorithms along with the other 
methods are presented in Tables 1. The results show the 
superiority of the proposed method over other methods. The 
cost obtained by the proposed technique is found to be less than 
the existing results while satisfying all the equality and 
inequality constraints. From Table 1, it can be inferred that the 
proposed algorithms can converge to the better solution, which 
proves the ability of the proposed algorithm for solving the 
complex DOPF problems.  
 

Figure 4 compares the real power loss obtained after 
optimization with the proposed DE and IMDE methods on the 
30-bus test system. According to Fig.4, the real power loss of 
the system in each period with the proposed IMDE algorithm is 
higher than DE due the further reduction in the cost of 
generation. 
 

 

 
 

Figure 1 Single-line diagram of IEEE 30-bus test system. 
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CONCLUSION 
 

This paper has been proposed two population based techniques 
to solve the dynamic optimal power flow problems. The 
simulation results have shown the superiority of the proposed  
algorithms over the previous methods reported in the literature. 
The proposed DOPF which, is a complex, non-convex, non-
smooth, and nonlinear optimization problem with constraints 
like ramp rate, prohibited zones, and valve-point effect has 
been formulated and solved effectively. Despite the 
complicated structure of the DOPF problem, the results prove 
the applicability and validity of the proposed techniques as 

efficient tools for solving complicated problems such as DOPF. 
The results have been compared with those obtained by other 
evolutionary algorithms reported in the literature. It is seen 
from the comparisons that the proposed methods such as 
particle swarm optimization and differential evolution 
algorithms provide better solutions.  
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