

Available Online at http://www.recentscientific.com

CODEN: IJRSFP (USA)

International Journal of Recent Scientific Research Vol. 8, Issue, 9, pp. 20280-20282, September, 2017 International Journal of Recent Scientific Research

DOI: 10.24327/IJRSR

Research Article

INTERPOLATION PROCESS BY g-SPLINES

Srivastava R

Department of Mathmathics & Astronomy Lucknow University, Lucknow (India)

DOI: http://dx.doi.org/10.24327/ijrsr.2017.0809.0864

ABSTRACT

ARTICLE INFO

Article History:

Received 15th June, 2017 Received in revised form 25th July, 2017 Accepted 23rd August, 2017 Published online 28th September, 2017 Th. Fauzi constructed special kinds of lacunary quintic g-splines and proved that for functions $f \in C^{((4))}$ the methods converges faster than that investigated by A.K. Verma and for functions $\in C^{((5))}$ the order of approximation is the same as the best order of approximation using quintic g-splines. In this paper, we construct quintic lacunary g-splines which are solutions of (0,1,4)-Interpolation problem and obtain their local approximations with functions belonging to $C^{((4))}$ (I) and $C^{((5))}$ (I). Our methods are of lower degree having better convergence property than the earlier investigations.

Key Words:

g- spline, piecewise polynomial, Taylor's expansion, Explicit form. Lacunary, interpolation

Copyright © **Srivastava R, 2017**, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Let

$$\Delta: \ 0 = x_0 < x_1 < \dots < x_{n-1} < x_n = 1 \tag{1}$$

Be a partition of the interval I = [0,1] with $X_{k+1} - x_k = h_k$, k = o(1)n - 1. Th. Fauzi [3] constructed special kinds of lacunary quintile g-splines and proved that for functions $f \in C^{(4)}$ the methods converge faster than that investigated by A.K. Varma [1] and for functions $f \in C^{(5)}$ the order of approximation is the same as the best order of approximation using quintic g-splines. J. Gyorvari [4] considered local methods of degree six of class C[I], which settles the problem of (0, 2, 3) and (0, 2, 4)-interpolations offering better approximation than the interpolants investigated by R. S. Misra and first author [2]. By varying continuity class and nature of the spline functions R.B. Saxena and H.C. Tripathi [5,6] obtained for functions $f \in C^{(6)}$ in the case of uniform partition the estimates of $|\tilde{s}^{(q)} - \tilde{f}^{(q)}|$ and $|\tilde{s}^{(q)} - \tilde{f}^{(q)}|$ Where \tilde{s}_{Δ} and s_{Δ} each of degree six interpolate the data (0, 1, 3) and (0, 2, 4), q = 0 (1) 5 choosing suitable initial and boundary conditions respectively.

In this paper, we construct quintic lacunary g-splines, which are solutions of (0, 1, 4) – Interpolation problems and obtain their local approximations with functions belonging to $C^{(4)}(I)$ and $C^{(5)}(I)$. Our methods are of lower degree having

better convergence property than the earlier investigations made in [[1], [2], [4], [5], [6], [7], [8], [9]]. More over, our results have no counterpart in polynomial approximation theory. § 2. Is devoted to the study of quintic spline interpolant (0, 1, 4) for $C^{(4)}(I)$.

Spline Interpolant (0, 1, 4) for $f \in C^{(5)}(I)$

Let $s_{1,\Delta}$ be a piecewise polynomial of degree $\in 5$. The spline interpolant (0, 1, 4) for functions $\in C^{(5)}(I)$ is given by :

$$s_{1,\Delta}(x) = s_{1,k}(x) = \sum_{j=0}^{5} \frac{s_{k,j}^{(1)}}{j!} (x - x_k)^j, x_k \le x \le x_{k+1}, k = 0(1)n - 1,$$
(2)

Where $s_{k,j}^{(1)}$, s are explicitly given below in terms of the prescribed data $\{f_k^{(j)}\}$, j = 0, 1, 4; K = 0(1)n, viz for k = 0(1)n-1,

$$s_{k,j}^{(1)} = f_k^{(j)}$$
, j = 0, 1, 4. (3)

For
$$j = 2, 3, 5$$
, we have

$$s_{k,5}^{(1)} = \frac{1}{h} \left[f_{k+1}^{(4)} - f_k^{(4)} \right], \tag{4}$$

$$s_{k,3}^{(1)} = -\frac{12}{h^3} \left[(f_{k+1} - f_k - hf_k^{(1)} - \frac{h^2}{4!} f_k^{(4)}) - \frac{h}{2} \left(f_{k+1}^{(1)} - f_k^{(1)} - \frac{h^3}{3!} f_k^{(4)} \right) + \frac{h^s}{80} s_{k,5}^{(1)} \right]$$
(5)

and

Department of Mathmathics & Astronomy Lucknow University, Lucknow (India)

^{*}Corresponding author: Srivastava R

$$s_{k,2}^{(1)} = \frac{2}{h^2} \left[f_{k+1} - f_k - h f_k^{(1)} - \frac{h^4}{4!} f_k^{(4)} - \frac{h^3}{3!} s_{k,3}^{(1)} - \frac{h^5}{5!} s_{k,5}^{(1)} \right]$$
(6)

The coefficients $s_{k,j}^{(1)}$, j = 2, 3, 5 have been so chosen That

$$D_L^{(p)} s_{1,k} (x_{k+1}) = D_R^{(p)} S_{1,k+1} (x_{k+1}), p = 0, 1, 4; k = 0(1) n - 1$$

Thus

 $s_{1,\Delta} \epsilon C^{(0.1,4)}[I] = \{f: f^{(p)} \in C(I), p = 0, 1, 4\}.$

Is a unique quintic piecewise polynomial satisfying interpolator conditions (2).

If $f \in C^{(5)}$ [I], then owing to (3) – (5) and using Taylor 's expansion, we have

$$\left| s_{k,j}^{(1)} - f_k^{(j)} \right| \le C_{k,j}^{(1)} h^{5-j} \omega(f^{(5)}; h), \quad j = 2, 3, 5; \quad k = 0 \\ 0(1)n - 1$$
 (7)

Where the constant $C_{k,j}^{(1)}$ are given by:

$$C_{k,2}^{(1)} = \frac{1}{10}$$
, $C_{k,3}^{(1)} = \frac{1}{4}$ and $C_{k,5}^{(1)} = 1$.

Using (1) - (7) and a little computation gives:

Theorem

Let $f \in C^{(5)}$ [I] and $s_{1,\Delta} \in C^{(0.1,4)}$ (I) be the unique spline interpolant (0, 1, 4) given in (8) - (12),

then

Where the constants $c_{1,k}^{j}$, s are given by:

(1)

 $c_{1,k}^0 = \frac{1}{10}, \quad c_{1,k}^1 = \frac{4}{15}, \quad c_{1,k}^2 = \frac{31}{60}, \quad c_{1,k}^3 = \frac{3}{4}, \quad c_{1,k}^4 = c_{1,k}^5 = 1$

Almost Quartic Spline Interpolant $(0, 1, 4) * \text{for} \quad f \in C^{(4)}$ (I).

Almost quartic spline interpolant $(0, 1, 4)^*$ is a piecewise polynomial of degree 4 in each subinterval except in the last one, where it is a polynomial of degree 5. In this case, we have

$$S_{1,\Delta}^{*}(x) = S_{1,k}^{*}(x) = \sum_{j=0}^{4} \frac{S_{k,j}^{*(k)}}{j!} (x - x_{k})^{j}, \quad x_{k} \leq x \leq x_{k+1}, k = 0(1)n - 2 \qquad (9)$$
$$= \sum_{j=0}^{5} \frac{S_{n-1,j}^{*(1)}}{j!} (x - x_{n-1})^{j}, \quad x_{n-1} \leq x \leq x_{n}, \quad k = n - 1$$

The coefficients $S_{k,j}^{*(1)}$ are explicitly given in terms of the data. In particular, for K=O(1) n-1, we prescribe

$$S_{k,j}^{*(1)} = f_k^{(j)}$$
, j = 0, 1, 4. (10)

For k = 0(1)n-2 and $j = 2, 3, S_{k,j}^{*(1)}$ are given by

$$S_{k,2}^{*(1)} = \frac{6}{h^2} \left[(f_{k+1} - f_k - hf'_k - \frac{h^4}{4!} f^{(4)}_k) - \frac{h}{3} (f'_{k+1} - f'_k - \frac{h^3}{3!} f^{(4)}_k) \right] \quad (11)$$
and

$$S_{k,3}^{*(1)} = -\frac{12}{h^3} \left[(f_{k+1} - f_k - hf'_k - \frac{h^4}{4!} f^{(4)}_k) - \frac{h}{2} (f'_{k+1} - f'_k - \frac{h^3}{3!} f^{(4)}_k) \right] (12)$$

For k=n-1 and j=2, 3 and 5, we have

$$S_{n-1,5}^{*(1)} = \frac{1}{h} (f_n^{(4)} - f_{n-1}^{(4)})$$
(13)

$$S_{n-1,3}^{*(1)} = -\frac{12}{h^3} \left[(f_n - f_{n-1} - hf'_{n-1} - \frac{h^4}{4!} f_{n-1}^{(4)}) - \frac{h}{2} (f'_n - f'_{n-1} - \frac{h^3}{3!} f_{n-1}^{(4)}) + \frac{h^5}{80} S_{n-1,5}^{*(1)} \right]$$
(14)

and

$$S_{n-1,2}^{*(1)} = -\frac{2}{h^2} \left[(f_n - f_{n-1} - hf_{n-1}' - \frac{h^3}{3!} S_{n-1,3}^{*(1)} - \frac{h^4}{4!} f_{n-1}^{(4)} - \frac{h^5}{5!} S_{n-1}^{*(1)} \right]$$
(15)

(11) and (12) are obtained from the condition.

$$S_{1,\Delta}^* \in C^{(1)}[I],$$
 (16)

While (13)-(15) are determined from conditions (8) for k = n-1 in (8).

Analogous to (7) for $\in C^{(4)}$ [I], one can establish

$$|S_{k,j}^{*(1)} - f_{k}^{(j)}| \leq C_{k,j}^{*(1)} h^{4-j} \omega(f^{(4)}, h),$$
(17)

Where the constants $C_{k,j}^{*^{(1)}}$ are given by

$$C_{k,j}^{*(1)} = \begin{cases} \frac{1}{3} & j = 2 \\ 1 & j = 3 \end{cases}$$

$$C_{k,j}^{*(1)} = \begin{cases} \frac{2}{3} & j = 2 \\ \frac{17}{10} & j = 3 \end{cases}$$

$$k=0(1)n-2$$

$$k=0(1)n-2$$

$$k=n-1$$

Finally, similar to theorem 2.1, we have

Theorem

Let $f \in C^{(4)}$ [I] and $S_{1,\Delta}^*$ be the unique almost quartic spline interpolant $(0, 1, 4)^*$, given by (8), then (18)

$$\|D^{(j)}(f - S^*_{1,\Delta})\| L_{\infty}[x_{k}, x_{k+1}] \leq C^{*(j)}_{1,k} h^{4-j} \omega(f^{(4)}, h),$$

Where the constants $C_{1,k}^{*(j)}$ are given by:

	$C_{1,k}^{*^{(0)}}$	$C_{1,k}^{*^{(1)}}$	$C_{1,k}^{*^{(2)}}$	$C_{1,k}^{*^{(3)}}$	$C_{1,k}^{*^{(4)}}$
k=0(1)n-2	3 8	1	$\frac{11}{6}$	2	1
K=n-1	77 120	197 120	$\frac{14}{5}$	53 20	1

References

- 1. A.K. Varma: Lacunary interpolation by splines-II Acta Math. Acad. Sci. Hungar., 31(1978), pp. 193-203.
- R. S. Misra & K.K. Mathur: Lacunary interpolation by splines (0; 0, 2, 3) and (0; 0, 2, 4) cases, Acta Math. Acad. Sci. Hungar, 36 (3-4) (1980), pp. 251-260.
- Th. Fawzy: (0, 1, 3) Lacunary interpolation by Gsplines, Annales Univ. Sci., Budapest, Section Maths. XXXIX (1986), pp.63-67.
- J. GYORVARI: Lacunary interpolation spline functionen, Acta Math. Acad. Sci. Hungar, 42(1-2) (1983), pp. 25-33.
- R.B. SAXENA & H.C. TRIPATHI: (0, 2, 3) and (0, 1, 3) – interpolation through splines, Acta Math. Hungar., 50(1-2) (1987), pp. 63-69.
- R.B. SAXENA & H.C. TRIPATHI: (0, 2, 3) and (0, 1, 3)- interpolation by six degree splines, *Jour. Of computational and applied Maths.*, 18 (1987), pp. 395-101.
- 7. Abbas Y. Albayati, Rostam K.S., Faraidun K. Hamasalh: Consturction of Lacunary Sixtic spline

function Interpolation and their Applications. Mosul University, J. Edu. And Sci., 23(3)(2010).

 F. Lang and X. Xu: "A new cubic B-spline method for linear fifth order boundary value problems". *Journal of Applied Mathematics and computing*, vol. 36, no. 1-2, pp-110-116, 2011.

How to cite this article:

Srivastava R., Interpolation Process By g-Splines. *Int J Recent Sci Res.* 8(9), pp. 20280-20282. DOI: http://dx.doi.org/10.24327/ijrsr.2017.0809.0764

 Ambrish Kumar Pandey, Q S Ahmad, Kulbhushan Singh: Lacunary Interpolation (0, 2; 3) problem and some comparison from Quartic splines: *American journal of Applied Mathematics and statistics* 2013, 1(6), pp- 117-120.