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Th. Fauzi constructed special kinds of lacunary quintic g-splines and proved that for functions
feCn((4)) the methods converges faster than that investigated by A.K. Verma and for functions
€CN((5)) the order of approximation is the same as the best order of approximation using quintic g-
splines. In this paper, we construct quintic lacunary g-splines which are solutions of (0,1,4 )-
Interpolation problem and obtain their local approximations with functions belonging to C*((4) ) (1)
and CA((5) ) (I). Our methods are of lower degree having better convergence property than the
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INTRODUCTION
Let

At 0=xy<x;<... <xpq4 <2x, =1 (1)

Be a partition of the interval | = [0,1] with X, —x, = hy ,
k=o0()n—1. Th. Fauzi [3] constructed special kinds of
lacunary quintile g-splines and proved that for functions
f € C™® the methods converge faster than that investigated by
AK. Varma [1] and for functions f € C® the order of
approximation is the same as the best order of approximation
using quintic g-splines.  J. Gyorvari [4] considered local
methods of degree six of class C[I] , which settles the problem
of (0, 2, 3 ) and ( 0, 2, 4 )-interpolations offering better
approximation than the interpolants investigated by R. S. Misra
and first author [2] . By varying continuity class and nature of
the spline functions R.B. Saxena and H.C. Tripathi
[5,6] obtained for functions f € C® in the case of uniform
partition the estimates of | s@ - @ | and |s@ - f@ |
Where s, and s, each of degree six interpolate the data (0, 1,
3)and (0,2, 4), q=0(1) 5 choosing suitable initial and
boundary conditions respectively.

In this paper, we construct quintic lacunary g-splines, which
are solutions of ( 0, 1, 4 ) — Interpolation problems and obtain
their local approximations with functions belonging to
C®(1) and ¢S (I) . Our methods are of lower degree having

*Corresponding author: Srivastava R

better convergence property than the earlier investigations
made in [ [1], [2], [4], [5], [6], [7], [8].[9] ]. More over, our
results have no counterpart in polynomial approximation
theory. 8 2. Is devoted to the study of quintic spline interpolant
(0,1,4) for CW().

Spline Interpolant (0, 1, 4 ) for f € C® (1)

Let s, be a piecewise polynomial of degree € 5. The spline
interpolant ( 0, 1, 4 ) for functions € C)(I) is given by :

s )
S1.4(%) =51 (0) = 2?:0% (X=X ) Xk S X < Xy .k = 0N~ 1, )

Where S,Sj) , s are explicitly given below in terms of the

prescribed data {fk(j)} ,§J=0,1, 4, K=0()n, viz for k =
0(1)n-1,

s = £ =014, ®)

For j = 2,3,5, wehave

 _ 1 (4) (4)
Sks =5 Ui —f 1 @)

W_ 12 L _ r* @ h( (1)
k3= T 3 [(fe+r = fie = Wi = ol )73 ( k+1
@ _ R @),k @
AR A R (5)

and
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(1 _2 W _rt @ r @_h @
Sk.2 —ﬁ[fkﬂ_ fe = Wi = o kT T 5 Sk T 5 Sks

(6)
The coefficients s,ﬁ?, j =2, 3, 5 have been so chosen

That
DP 54 Gtrr) = D Sy per Ges) p=0,1,4; k=0(1)n—1

Thus
Sia €COWIIT= {f: f® ec),p=0,1,4}.
Is a unique quintic piecewise polynomial satisfying interpolator
conditions (2).
If fe C® [I], then owing to (3) - (5) and using Taylor * s
expansion, we have
s = 1P < ¢ s w(F®;h), j =235 k=
o()n-1 7
Where the constant C,Sylj) are given by:

1 1

o —  — @ _

Ck,z = o Ck,3 =3 and Ck,s = 1
Using (1) - (7) and a little computation gives:
Theorem

Let feC®[] and s, €C@1¥ (1) be the unique spline

interpolant (0, 1,4 ) givenin 8) - (12),

then

[1DD (£ S30) || Ly Ky, 1S ¢ B57 @ (F9, h)
j=0(1)5; k=0(1)n-1 (8)

Where the constants cfyk , S are given by:

0 1 1 -4 2 - 31 3 -3 4 _— .5 —
Cle= 1 Sk~ 50 Cik= g Cie=gr Cik=Cri=1

fec® ().

Almost quartic spline interpolant ( 0, 1, 4 )* is a piecewise

polynomial of degree 4 in each subinterval except in the last

one, where it is a polynomial of degree 5. In this case, we have
L(1)

Sialx) = 57, (x) = Z?:OS’(J_{ (x—x) , x < x < x40, k=01)n -2 9)

Almost Quartic Spline Interpolant (0, 1, 4) * for

«(1)
= T (x=xy_y) xp < x<x, , k=n-1
j =0 IT n-1 n-1 n

The coefficients S,;S-l) are explicitly given in terms of the data.
In particular, for K=O(1) n-1, we prescribe

i = 9, i=014. (10)
For k =0(1)n-2and j=2,3, S,;(jl) are given by

L _ 6 . Rt R, . R
Stz =z [fiers - fi - i - 0 -5 (Frean - -5, £0) 1 (1)
and

«(1 _

12 + h* h ' + h3
Sea =22 [ - fi - i - ) -5 (Frean - fre - 5 £0) 1 (12)

For k=n-1 and j=2,3 and 5, we have

W 1) @)
n-1s = (- il (13)

e = 2 L farhfac - SO R (- oS
JACDEEEE R, (14)
and

R (A PIRE  GPR. L P A R
Sicil (15)
(11) and (12) are obtained from the condition.

Sia €€, (16)

While (13)-(15) are determined from conditions (8) for k = n-
lin (8).

Analogous to (7) for € €™ [1], one can establish
I A I A} a7)

Where the constants C,;(jl) are given by

1 .
o _ (3 j=2 _
G = {31 | jop k=0(1)n-2
2 .
o _ |3 j=2
Cei’ = {3 . k=n-1
kj i_; , j= 3

Finally, similar to theorem 2.1, we have
Theorem

Let feCW] and S;, be the unique almost quartic
spline interpolant (0, 1, 4 )*, given by (8) , then
(18)

DO = SiDN| L [t x4l < €% BT 0(F9, 1),

Where the constants Cl*y(kj) are given by:

«(0) (1) «(2) +(3) «(4)

Cik Cik Cik Cik Cik
k=0(1)n-2 : 1 Z 2 1
_ 77 197 14 53
K=n-1 20 20 5 2 1
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