AvailadeOnlineat http://www.recentsientificcorr CODEN: IJRSFP (USA)

Intemational J oumal of Recent Soientific Research
Vd. 8, I ssue, 9, pp. 19808-19811, Septenber, 2017
International Journal of
Recent Scientific

Case Report
HERON MEAN LABELING OF GRAPHS

${ }^{1}$ Research \& Development Centre, Bharathiar University, Coimbatore, Tamilnadu, Department of Mathematics, R N S Institute of Technology, Uttarahalli-Kengeri
Main Road, R R Nagar post, Bengaluru-98
${ }^{2}$ Department of Mathematics, R N S Institute of Technology, Uttarahalli-Kengeri
Main Road, R R Nagar post, Bengaluru-98
${ }^{3}$ Department of Mathematics, J.S.S. Academy of Technical Education, Uttarahalli-Kengeri
Main Road, Bengaluru, Karnataka India
DOI: http://dx.doi.org/10.24327/ijrsr.2017.0809.0763

ARTICLE INFO

Article History:

Received $18^{\text {th }}$ June, 2017
Received in revised form $10^{\text {th }}$
July, 2017
Accepted $06^{\text {th }}$ August, 2017
Published online $28^{\text {th }}$ September, 2017

Key Words:

Graph, Heron mean graph, Union of graphs, square of a graph, crown.

Abstract

A (p, q) graph G is said to be a Heron mean graph if there exist a bijection $f: V \rightarrow\{1,2,3, \cdots, p\}$ such that induced function $f^{*}: E(G) \rightarrow N$ given by $f^{*}(u v)=\left\lceil\frac{u+v+\sqrt{u v}}{3}\right\rceil$ or $f^{*}(u v)=\left\lfloor\frac{u+v+\sqrt{u v}}{3}\right\rfloor$ for every $u v \in E(G)$ are all distinct. In this paper the Heron mean labeling of path, cycle $C_{n}, K_{1, n}$ if and only if $n<3, C_{m} \cup P_{n}, C_{m} \cup C_{n}, n K_{3}, n K_{3} \cup P_{m}, \quad n K_{3} \cup C_{m}, m C_{4}$, crown $C_{n} \Theta K_{1}$, Dragons $\mathrm{C}_{\mathrm{n}} @ \mathrm{P}_{\mathrm{m}}$,Square graph of path $\mathrm{P}_{\mathrm{n}}^{2}$ polygonal chain $\mathrm{G}_{\mathrm{m}, \mathrm{n}}$ are discussed.

Copyright © Sampath Kumar R., Narasimhan G and Nagaraja K M, 2017, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Abundant literature exists as of today, concerning the structure of graphs admitting a variety of functions assigning real numbers to their elements so that given conditions are satisfied. Here we are interested the study of vertex functions $f: V(G) \rightarrow$ $A, A \subseteq N$ for which the induced edge function $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$ is defined as $f^{*}(u v)=\left\lceil\frac{u+v+\sqrt{u v}}{3}\right\rceil$ or $f^{*}(u v)=\left\lfloor\frac{u+v+\sqrt{u v}}{3}\right\rfloor$ for every $u v \in E(G)$ are all distinct. As we know that the notion of mean labeling was introduced in a paper by Somasundaram and Ponraj [1].
A graph G with p vertices and q edges is called a mean graph if there is an injective function f from the vertices of G to $\{0,1,2,3,4 \ldots \mathrm{q}\}$ such that when each edge $u v$ is labeled with $(\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})) / 2$, if $\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})$ is even, and $(\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})+1) / 2$ if $f(u)+f(v)$ is odd, then the resulting edge labels are distinct. We introduce Heron mean labeling of some standard graphs.

We begin with simple, finite and undirected graph $G=(V, E)$ with p vertices and q edges. For all other terminology and notations we follow Harary [2]. The Cardinality of its edge set is called the size of G. The graph $\mathrm{G}-\mathrm{e}$ is obtained from G by deleting an edge e. The Sum $G_{1}+G_{2}$ of two graphs G_{1} and G_{2} has vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and the edge set $E\left(G_{1}+G_{2}\right)=$ $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u \in V\left(G_{1}\right)\right.$ and $\left.v \in V\left(G_{2}\right)\right\}$. The Union of two graphs G_{1} and G_{2} is a graph $G_{1} \cup G_{2}$ with vertex set $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup$ $\mathrm{E}\left(\mathrm{G}_{2}\right)$. The square G^{2} of the graph G has $\mathrm{V}\left(G^{2}\right)$ with u, v adjacent in G^{2} Whenever $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 2$ in the graph G. For detailed survey on graph labeling we refer to Gallian [3]. According to Beineke and Hegde[1],[4],[8] graph labeling serves as a frontier between number theory and structure of graphs. The definitions which are useful for the present investigation are given below.
Definition: If the vertices are assigned values subject to certain conditions then it is known as graph labeling.

[^0]Definition: A Graph G with p vertices and q edges is called a Heron mean graph if it possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1,2,3,4, \cdots, p$ in such a way that when each edge $e=\{u, v\}$ is labeled with $f^{*}(u v)=\left\lceil\frac{u+v+\sqrt{u v}}{3}\right\rceil$ or $f^{*}(u v)=\left\lfloor\frac{u+v+\sqrt{u v}}{3}\right\rfloor$ are distinct. In this case f is called Heron Mean labeling of G.

MAIN RESULTS

Theorem: Any Path P_{n} is Heron mean graph.
Proof: Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \cdots, \mathrm{v}_{\mathrm{n}}$ be the vertices of the path P_{n} of length $\mathrm{n}-1$.
Let us define $\mathrm{f}: \mathrm{V} \rightarrow\{1,2,3, \cdots, \mathrm{p}\}$ by $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$, such that the induced function $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2,3, \cdots, \mathrm{q}\}$ given by $f^{*}(u v)=\left\lfloor\frac{u+v+\sqrt{u v}}{3}\right\rfloor$ for every $u, v \in V(G)$ are all distinct. Hence path P_{n} is Heron mean graph.
Illustration: Consider the path of length 5 . The labeling is as shown in figure.

Theorem: Any cycle $\mathrm{C}_{\mathrm{n}} \mathrm{n} \geq 3$, is a Heron mean graph.
Proof: Let C_{n} be the cycle with vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \cdots, \mathrm{v}_{\mathrm{n}}$.
Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right) \rightarrow\{1,2,3, \cdots, \mathrm{p}\}$ by $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}, 1 \leq$ $\mathrm{i} \leq \mathrm{n}, \quad$ here $\mathrm{f} \quad$ is an increasing function on $\mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right)$, so f^{*} is also an increasing function on $E\left(C_{n}\right)-\left\{v_{n} v_{1}\right\}$.
for every edge in $E\left(C_{n}\right)-\left\{v_{n} v_{1}\right\}$ we assign the label $f^{*}\left(v_{i} v_{j}\right)=\left\lceil\frac{v_{i}+v_{j}+\sqrt{v_{i} v_{j}}}{3}\right\rceil$ where $v_{i} v_{j} \in V\left(C_{n}\right)$ and $f^{*}\left(v_{n} v_{1}\right)=$ 1. Hence $\mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{i}}\right) \neq \mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}\right), \mathrm{i} \neq \mathrm{j}$ there fore f^{*} is injective and f is a Heron mean labeling on C_{n}. So C_{n} is a Heron mean graph.
Illustration: Consider the cycle of length $4 \& 5$. The labeling is as shown in figure.

Theorem: The Complete graph K_{n} is a Heron mean graph for $\mathrm{n} \leq 3$.

Proof: The Heron mean labeling of the complete graph K_{n} for $\mathrm{n} \leq 3$ is given in figure below.

Let $\mathrm{K}_{\mathrm{n}}, \mathrm{n} \leq 3$ and $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3, \cdots, \mathrm{n}\}$ be a vertex function which induces a function
f^{*} given by $f^{*}\left(v_{i} v_{j}\right)=\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)+\sqrt{f\left(v_{\mathbf{i}}\right) f\left(v_{j}\right)}}{3}\right\rceil$ for every
$\mathrm{e}=\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}} \in \mathrm{E}(\mathrm{G})-\left\{\mathrm{v}_{3} \mathrm{v}_{1}\right\}$ and
$\mathrm{f}^{*}\left(\mathrm{v}_{3} \mathrm{v}_{1}\right)=1$. Assume $\mathrm{n} \geq 4$ and since the graph is a complete graph we get two edges e_{1} and e_{2} such that $f^{*}\left(e_{1}=34\right)=$ $\left\lceil\frac{3+4+\sqrt{12}}{3}\right\rceil=\lceil 3.48803\rceil=4 \quad$ and $\quad \mathrm{f}^{*}\left(\mathrm{e}_{2}=24\right)=\left\lceil\frac{2+4+\sqrt{8}}{3}\right\rceil=$ $\lceil 3.33\rceil=4$ are same, so we conclude that when. $n \geq 4, f^{*}$ is not injective. Hence $K_{n}, n \geq 4$ is not a Heron mean graph.

Theorem: Star graph $\mathrm{K}_{1, \mathrm{n}}$ is Heron mean graph for $\mathrm{n} \leq 4$.
Proof: If we label any one pendent vertex with 1 and the common vertex by 2 remaining vertices of unit degree in a one to one manner, we get a Heron mean labeling. If $\mathrm{n}=5$, for two different edges joining the vertices $(2,5)$ and $(2,6)$ the Heron mean is $\lceil 3.38\rceil$ and $\lceil 3.82\rceil$ respectively which are same. Hence $K_{1, n}$ for $n \geq 5$ is not a Heron mean graph.

Theorem: The graph mK_{2} consists of m pair wise disjoint edges is a Heron mean graph.

Proof: Let $\mathrm{V}\left(\mathrm{mK}_{2}\right)=\left\{\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{a}_{2}, \mathrm{~b}_{2}, \cdots \mathrm{a}_{\mathrm{m}}, \mathrm{b}_{\mathrm{m}}\right\}, \mathrm{E}\left(\mathrm{mK}_{2}\right)=$ $\left\{\mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{m}\right\}$.
Define $\mathrm{f}: \mathrm{V}\left(\mathrm{mK}_{2}\right) \rightarrow\{1,2,3, \cdots, \mathrm{p}\}$ as follows $\mathrm{f}\left(\mathrm{a}_{\mathrm{i}}\right)=2 \mathrm{i}-$ $1,1 \leq \mathrm{i} \leq \mathrm{m}$ and
$\mathrm{f}\left(\mathrm{b}_{\mathrm{i}}\right)=2 \mathrm{i}, \quad 1 \leq \mathrm{i} \leq \mathrm{m}$
So that $\mathrm{f}^{*}\left(\mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}\right)=\left\lfloor\frac{(2 \mathrm{i}-1)+(2 \mathrm{i})+\sqrt{(2 \mathrm{i}-1)(2 \mathrm{i})}}{3}\right\rfloor 1 \leq \mathrm{i} \leq \mathrm{m}$, moreover, f is an increasing function on $V(G)$ and so $f^{*}\left(a_{i} b_{i}\right) \neq f^{*}\left(a_{j} b_{j}\right), i \neq j \quad 1 \leq i, j \leq m$. Since these numbers forms an increasing sequence of natural numbers. Hence f^{*} is injective and mK_{2} is a Heron mean graph.

Illustration: consider a graph $6 \mathrm{~K}_{2}$ The labeling is as shown in figure.

Theorem: mK_{3} consists of m disjoint triangles is a Contra Harmonic mean graph.

Proof: Let the vertex set of $m K_{3}$ be $V=V_{1} \cup V_{2} \cup \cdots \cup V_{m}$, where $V_{i}=\left\{V_{i}^{1}, V_{i}^{2}, V_{i}^{3}\right\}$.
we define $\mathrm{f}: \mathrm{V}\left(\mathrm{mK}_{3}\right) \rightarrow\{1,2,3, \cdots, \mathrm{p}\}$ by $\mathrm{f}\left(\mathrm{V}_{\mathrm{i}}^{\mathrm{j}}\right)=3(\mathrm{i}-1)+$ j $1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq 3$
are injective function. So that the graph with vertices labels 1 , 2,3 of first copy of K_{3} the edge joining the vertices 1 and 2 assign 2, For the edge joining the vertices 2 and 3 assign 3.and for the edge joining the vertices 1 and 3 assign 1 . Similarly second copy of K_{3} the vertices are labeled by $4,5,6$, for edge joining the vertices 4 and 5 assign 5, For the edge joining the vertices 5 and 6 assign 6 and for the edge joining the vertices 4 and 6 assign 4 . Similarly in the $i^{\text {th }}$ copy of K_{3} the vertices are labeled with $3 i-2,3 i-1$ and $3 i$. For the edge joining the
vertices $3 \mathrm{i}-2,3 \mathrm{i}-1$ and $3 \mathrm{i}-1,3 \mathrm{i}$ assign the label $\mathrm{f}^{*}(3 \mathrm{i}-2,3 \mathrm{i}-1)=\left\lceil\frac{(3 \mathrm{i}-2)+(3 \mathrm{i}-1)+\sqrt{(3 \mathrm{i}-2)+(3 \mathrm{i}-1)}}{3}\right\rceil$ and $\mathrm{f}^{*}(3 \mathrm{i}-$ $1,3 i)=\left\lceil\frac{(3 i-1)+3 i+\sqrt{(3 i-1)(3 i)}}{3}\right\rceil$ respectively and since $3 \mathrm{i}-2<$ $\frac{(3 i-2)+3 \mathrm{i}+\sqrt{(3 \mathrm{i}-2)(3 \mathrm{i})}}{3}<3 i$ we may assign the edge label $3 i-1$ for the edge joining the vertices $3 \mathrm{i}-2$ and 3 i . Hence $\mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{i}}\right) \neq$ $f^{*}\left(e_{j}\right), i \neq j$ this implies f^{*} is injective and f is a Heron mean labeling on mK_{3}. There fore mK_{3} is a Heron mean graph.

Illustration: consider a graph $3 \mathrm{~K}_{3}$ The labeling is as shown in figure.

Theorem: $n K_{3} \cup P_{m}$ consists of n disjoint triangles and a path with m vertices is a

Heron mean graph.
Proof: Let the vertices of $n K_{3}$ be $V=V_{1} \cup V_{2} \cup \cdots \cup V_{n}$, where $V_{i}=\left\{v_{1}^{i}, v_{2}^{i}, v_{3}^{i}\right\}$ and P_{m} be the path with vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \cdots \mathrm{u}_{\mathrm{m}}$. Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{nK}_{3} \cup \mathrm{P}_{\mathrm{m}}\right) \rightarrow$ $\{1,2,3, \cdots, p\}$ by $f\left(V_{j}^{i}\right)=3(i-1)+j \quad 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq 3$, and $f\left(u_{i}\right)=3 n+i, 1 \leq i \leq m$. So that For K_{3} as explained in theorem 2.6 label the vertices. The edges of a path are labeled by $f^{*}(u v)=\left\lfloor\frac{u+v+\sqrt{u v}}{3}\right\rfloor$ Hence $f^{*}\left(e_{i}\right) \neq f^{*}\left(e_{j}\right), i \neq j$ there fore f^{*} is injective and f is a Heron mean labeling on $n K_{3} \cup P_{m}$. There fore $n K_{3} \cup P_{m}$ is a Heron mean graph.

Illustration: Consider a graph $2 \mathrm{~K}_{3} \cup \mathrm{P}_{5}$ consists of n disjoint triangles and a path of length 4 . The labeling is as shown in figure.

Theorem: The graph $G=C_{m} \cup C_{n}$ is a Heron mean graph for $\mathrm{m} \geq 3, \mathrm{n} \geq 3$.
Proof: Let C_{m} be the cycle with vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \cdots, \mathrm{v}_{\mathrm{m}}$ and . C_{n} be the cycle with vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \cdots, \mathrm{u}_{\mathrm{n}}$. Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{C}_{\mathrm{n}} \cup \mathrm{C}_{\mathrm{n}}\right) \rightarrow\{1,2,3, \cdots, \mathrm{p}\}$ by $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}, 1 \leq \mathrm{i} \leq$ m and $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{m}+\mathrm{i}, \quad 1 \leq \mathrm{i} \leq \mathrm{n}$. Then the set of labels of the edges C_{m} is
$\{1,2,3, \ldots, \mathrm{~m}\}$. The set of labels of edges of C_{n} is $\{\mathrm{m}+1, \mathrm{~m}+$ $2, \mathrm{~m}+3, \ldots, \mathrm{~m}+\mathrm{n}\}$ as explained in the theorem 2.2 and are all distinct. Therefore $\mathrm{C}_{\mathrm{m}} \cup \mathrm{C}_{\mathrm{n}}$ is a Heron mean graph.

Illustration: Consider a graph $\mathrm{C}_{5} \cup \mathrm{C}_{6}$ consists of cycle with 5 vertices and another cycle with 6 vertices. The labeling is as shown in figure.

Theorem: The $\mathrm{G}=\mathrm{nK}_{3} \cup \mathrm{C}_{\mathrm{m}}$ for $\mathrm{n} \geq 1, \mathrm{~m} \geq 3$ is a Heron mean graph.
Proof: Let the vertices of $n K_{3}$ be $V=V_{1} \cup V_{2} \cup \cdots \cup V_{n}$, where $V_{i}=\left\{\mathrm{v}_{1}^{\mathrm{i}}, \mathrm{v}_{2}^{\mathrm{i}}, \mathrm{v}_{3}^{\mathrm{i}}\right\}$ and C_{m} be the cycle with vertices
$\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \cdots, \mathrm{u}_{\mathrm{n}}$. we define $\mathrm{f}: \mathrm{V}\left(\mathrm{nK}_{3} \cup \mathrm{C}_{\mathrm{m}}\right) \rightarrow\{1,2,3, \cdots, \mathrm{p}\}$ by $\mathrm{f}\left(\mathrm{V}_{\mathrm{j}}^{\mathrm{i}}\right)=3(\mathrm{i}-1)+\mathrm{j} \quad 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq 3$ the labeling of the edges are done as explained in theorem 2.6 and the vertices of C_{m} are labeled by $f\left(u_{i}\right)=3 n+i, 1 \leq i \leq m$ and the edges are labeled as explained in theorem 2.2 are all distinct. Hence $n K_{3} \cup C_{m}$ is Heron mean graph.

Illustration: Consider a graph $2 \mathrm{~K}_{3} \cup \mathrm{C}_{5}$ consists of two copies of K_{3} and a cycle with 5 vertices. The labeling is as shown in figure.

Theorem: The graph $m C_{4}$ is a Heron mean graph.
Proof: Let the vertex set of $m C_{4}$ be $V=V_{1} \cup V_{2} \cup \cdots \cup V_{m}$, where $V_{i}=\left\{v_{1}^{i}, v_{2}^{i}, v_{3}^{i}, v_{4}^{i}\right\}$ we define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{mC}_{4}\right) \rightarrow$ $\{1,2,3, \cdots, p\}$ by $f\left(V_{j}^{\mathrm{i}}\right)=4(\mathrm{i}-1)+\mathrm{j} \quad 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq$ 4. Consider a graph with vertices $4 \mathrm{i}-3,4 \mathrm{i}-2,4 \mathrm{i}-1$ and 4 i for the edges joining the vertices $4 \mathrm{i}-3$ and $4 \mathrm{i}-2,4 \mathrm{i}-$ 2 and $4 i-1$ and $4 i-1$ and $4 i$ we may assign the labels $\left\lfloor\frac{(4 \mathrm{i}-3)+(4 \mathrm{i}-2)+\sqrt{(4 \mathrm{i}-3)(4 \mathrm{i}-2)}}{3}\right\rfloor, \quad\left\lceil\frac{(4 \mathrm{i}-2)+(4 \mathrm{i}-1)+\sqrt{(4 \mathrm{i}-2)(4 \mathrm{i}-1)}}{3}\right\rceil$ and $\left\lceil\frac{(4 \mathrm{i}-1)+(4 \mathrm{i})+\sqrt{(4 \mathrm{i}-1)(4 \mathrm{i}}}{3}\right\rceil$ respectively. Since $4 i-3<$ $\frac{(4 i-3)+(4 i)+\sqrt{(4 i-3)(4 i)}}{3}<4 i-1$ we assign the edge label $4 \mathrm{i}-2$ for the edge joining the vertices $4 \mathrm{i}-3$ and 4 i . So $m C_{4}$ has distinct edge labels. Hence m_{4} is a Heron mean graph.
Illustration: Consider a graph $3 C_{4}$ consists of 3 copies of C_{4}. The labeling is as shown in figure.

Theorem: The crown (cycle with pendent edge attached at each vertex) $\mathrm{C}_{\mathrm{n}} @ \mathrm{~K}_{1} \mathrm{n} \geq 3$ is a Heron mean graph.
Proof: let $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \cdots, \mathrm{u}_{\mathrm{n}}, \mathrm{u}_{1}$ be the cycle and V_{i} be the pendent vertices adjacent to each of $u_{i}, 1 \leq i \leq n$. Define f:V $\left(C_{n} @ K_{1}\right) \rightarrow$ $\{1,2,3, \cdots, p\}$ by $f\left(u_{i}\right)=2 i$ and $f\left(v_{i}\right)=2 i-1,1 \leq i \leq n$ we may assign the edges of the cycle as explained in the theorem 2.2 and the edges joining the vertices of cycle with the pendent vertices we use $f^{*}(u v)=\left\lceil\frac{u+v+\sqrt{u v}}{3}\right\rceil$ such that $f^{*}\left(e_{i}\right) \neq f^{*}\left(e_{j}\right), i \neq j$. Hence $C_{n} @ K_{1}$ is a Heron mean graph.
Illustration: Consider a graph $\mathrm{C}_{12} @ \mathrm{~K}_{1}$ consists of a cycle C_{12} with 12 vertices and a pendent vertices. The labeling is as shown in figure.

Theorem: Dragons $\mathrm{C}_{\mathrm{n}} @ \mathrm{P}_{\mathrm{m}}$ is a Heron mean graphs.
Proof: Let $u_{1}, u_{2}, u_{3}, \cdots u_{n}$ be the cycle C_{n} and $v_{1}, v_{2}, v_{3}, \cdots, v_{m}$ be the path P_{m}. Identify u_{n-1} with v_{1}. Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{C}_{\mathrm{n}} @ \mathrm{P}_{\mathrm{m}}\right) \rightarrow\{1,2,3, \cdots, \mathrm{p}\}$ by $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}, 1 \leq$ $\mathrm{i} \leq \mathrm{n}$ and $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)=\mathrm{n}+\mathrm{i}, \quad 1 \leq \mathrm{i} \leq \mathrm{m}-1$. The labeling of the edges are done as explained in theorem 2.2 and the labeling of edges of P_{m} are done as explained in the theorem 2.1 are all distinct. Hence $\mathrm{C}_{\mathrm{n}} @ \mathrm{P}_{\mathrm{m}}$ is Heron mean graph.
Illustration: Consider a graph $\mathrm{C}_{6} @ \mathrm{P}_{7}$ consists of C_{6} a cycle with 6 vertices and a path of length 6 . The labeling is as shown in figure.

Theorem: The square graph $\mathrm{P}_{\mathrm{n}}^{2}$ is a Heron mean graph.
Proof: Let P_{n} be the path with n vertices $u_{1}, u_{2}, u_{3}, \cdots u_{n}$ clearly $\mathrm{P}_{\mathrm{n}}^{2}$ has n vertices and $2 \mathrm{n}-3$ edges. Define $\mathrm{f}: \mathrm{V}\left(\mathrm{P}_{\mathrm{n}}^{2}\right) \rightarrow$ $\{1,2,3, \cdots, p\}$ by $f\left(u_{i}\right)=2 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}-1$ and $\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=$ $2 n-2$. The edges are labeled by $f^{*}(u v)=\left\lfloor\frac{u+v+\sqrt{u v}}{3}\right\rfloor$ for all $u v=e \in E\left(P_{n}^{2}\right)$ such that $f^{*}\left(e_{i}\right) \neq f^{*}\left(e_{j}\right), i \neq j$ there fore f^{*} is injective. Hence P_{n}^{2} is a Heron mean graph.
Illustration: Consider a path P_{8} with 8 vertices and P_{8}^{2} is a graph obtained by joining the vertices whenever $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 2$. The labeling is as shown in the figure.

How to cite this article:

Sampath Kumar R., Narasimhan G and Nagaraja K M.2017, Heron Mean Labeling Of Graphs. Int J Recent Sci Res. 8(9), pp. 19808-19811. DOI: http://dx.doi.org/10.24327/ijrsr.2017.0809.0763

[^0]: *Corresponding author: Sampath Kumar R
 Research \& Development Centre, Bharathiar University, Coimbatore, Tamilnadu, Department of Mathematics, R N S Institute of Technology, Uttarahalli-Kengeri Main Road, R R Nagar post, Bengaluru-98

