

Available Online at http://www.recentscientific.com

CODEN: IJRSFP (USA)

International Journal of Recent Scientific Research Vol. 8, Issue, 8, pp. 18954-18958, August, 2017 International Journal of Recent Scientific Re*r*earch

DOI: 10.24327/IJRSR

Research Article

A SURVEY OF BIOAERSOLES OVER GROUNDNUT FIELDS AT NEWASA DIST. AHMEDNAGAR (M.S.)

Sonawane B. N¹., Arsule C. S² and Pande B. N³

¹Shri Dnyaneshwar Mahavidayalya, Newasa, Dist. Ahmednagar (M. S.)
²New Arts, Commerce and Science College, Ahmednagar (M. S.)
³Department of Environmental Science, Dr. B.A.M. University, Aurangabad (M.S.) India

DOI: http://dx.doi.org/10.24327/ijrsr.2017.0808.0600

ARTICLE INFO

ABSTRACT

Article History: Received 05th May, 2017 Received in revised form 08th June, 2017 Accepted 10th July, 2017 Published online 28st August, 2017

Key Words:

Fungal morphotypes, Ground nut fields, Tilak Air Sampler, Airspora, Monitoring of bio aerosols over groundnut fields was undertaken for two consecutive Kharif crop seasons during the years 2012 and 2013 at Newasa, Dist. Ahmednagar (M.S.), to study a definite correlation between the air borne micro organisms, meteorological parameters, growth stages of the crop plants and their impact in bringing about the disease incidence to the ground nut crop plants. A volumetric Tilak Air Sampler was used to trap airborne biological components, which incidentally provided continuous quantitative and qualitative data. Present investigation also mainly aimed to study the population of fungal morphotypes prevailing in the ambient air over the ground nut fields in two Kharif Crop seasons. Prevailing weather conditions during two Kharif seasons showed significant influence on the genesis and liberation of spores of fungal morhotypes and eventually affected the total composition of airspora quantitatively and qualitatively. During the period of present study, many already known allergenic pollen and fungal spores were recorded and have been estimated for their percentage contribution.

Copyright © Sonawane B. N., Arsule C. S and Pande B. N, 2017, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Groundnut (*Arachis hypogea* L.) is an important food and oil seed crop in tropical and subtropical regions. It is native to South America, where, the genus *Arachis* is distributed over a wide range of environment from South of the Amazon to 34⁰s altitude and from the eastern coast to the eastern slopes of the Andes (Gregory *et.al.* 1980). Lukose *et.al.* (2008) reported this crop as the world's fourth most important source of edible oil and important source of vegetable protein. Patil *et.al.* (2009) reported ground nut as the single largest source of edible oils in India and constitutes roughly about 50% of the total oil seed production.

Groundnut is subjected to various fungal, viral and bacterial diseases which are airborne or soil borne. Of late, Alternaria Leafspot and veinal necrosis caused by *Alternaria alternata* (Fries) Keissler is becoming increasingly important. Among foliar fungal diseases, early and late leaf spots commonly called as "Tikka" disease and rust, are economically important. The forecasting of airborne fungal diseases can be attempted if the information of the airspora of this crop is available. In view of the above, the present aerobiological investigation was carried out at Newasa, Dist. Ahmednagar (MS.) over groundnut fields (*Arachis hypogea* L.) Var. JL-24 for two consecutive

Kharif seasons 2012 and 2013 using volumetric Tilak Air sampler. Besides, daily record of Rainfall, wind velocity, average mean temperature and wind velocity and this information was obtained from Mahatama Phule Krishi Vidyapeeth, Rahuri, Dist. Ahmednagar.

MATERIALS AND METHODS

An air monitoring was carried out by operating continuous volumetric Tilak Air Sampler (Tilak and Kulkarni, 1970) located in the centre of Groundnut field with its orifice facing the west and kept at a constant height of 0.75 meter, above the ground level. In the present study, the crop cultivated was Groundnut (*Arachis hypogea* L.) Var. JL-24 Two acres land area was devoted for cultivation of ground nut for two consecutive Kharif Seasons ie. First Kharif season from 15 th July 2012 to 8th November 2012 and Second Kharif season from 15th July 2013 to 7th Novebmer 2013 respectively.

Air sampling was initiated eight days prior to the sowing of seeds of groundnut in the experimental fields and continued for eight days even after its harvesting the same crop. The daily meteorological data of temperature, relative humidity ad rainfall was maintained as obtained from Mahatama Phule Krishi Vidyapeeth, Rahuri, Dist. Ahmednagar.

^{*}Corresponding author: Sonawane B. N

Shri Dnyaneshwar Mahavidayalya, Newasa, Dist. Ahmednagar (M. S.)

Table 1 Reveals Seasonwise Comparative Total Airspora And Its Percentage Contribution To The Total Airspora of Two Kharif SeasonsOver Groundnut Fields From July 2012 To November 2012 And From July 2013 To November 2013

See NO Server terror		I Kharif Season		II Khai	rif season	Total spore conc./ m ³ of air	% Contribution to the total airspora	
Sr. NU	Spore types	spore conc./ n of air	1 ³ % Contribution	spore conc./ m ³ of air	% Contribution			
MYXOMYCOTINA								
1	Physarum	1988	0.47	1428	0.38	3416	0.43	
2	Stemonitis	5502	1.29	3402	0.91	8904	1.11	
	TOTAL	7490	1.76	4830	1.29	12320	1.54	
ZY	GOMYCOTINA							
1	Albugo	3836	0.90	3556	0.95	7392	0.93	
2	Cunninghamella	3878	0.91	3472	0.93	7350	0.92	
3	Mucor	5194	1 22	4956	1 33	10150	1 27	
4	Phytophthora	3304	0.78	3458	0.93	6762	0.85	
5	Rhizonus	6258	1 47	5670	1.52	11928	1 49	
6	Sclerospora	5096	1.47	4942	1.32	10038	1.49	
0	ΤΟΤΑΙ	27566	6.48	26054	6.08	53620	6.71	
	Ascomycoting	27500	0.40	20034	0.70	33020	0.71	
1	Amphisphaovalla	2184	0.51	2002	0.54	1196	0.52	
1	Amphisphaerella	2104	0.31	2002	0.34	4160	0.52	
2	Apiornynchosioma	1019	0.12	2044	0.10	2062	0.14	
5	ASCOIFICHU Ditwimonognova	1918	0.43	2044	0.55	3902	0.50	
4	Durimonospora	2660	0.57	2240	0.00	2/94	0.46	
5	Dombaraia Chaotomium	2000	0.03	820	0.22	5460 9526	0.44	
0	Chaelomium	2804	0.91	4002	1.23	8320 7954	1.07	
/	Claviceps	3822	0.90	4032	1.08	/854	0.98	
8	Dil	2590	0.01	2520	0.08	5110	0.64	
9	Diaymosphaeria	4186	0.98	4312	1.16	8498	1.06	
10	Hypoxylon	3248	0.76	3808	1.02	/056	0.88	
11	Hysterium	2856	0.67	3220	0.86	6076	0.76	
12	Leptosphaeria	4550	1.07	4508	1.21	9058	1.13	
13	Lophiostoma	3892	0.91	3878	1.04	7770	0.97	
14	Massarina	2870	0.67	3612	0.97	6482	0.81	
15	Melanospora	3920	0.92	4270	1.14	8190	1.03	
16	Otthia	1988	0.47	784	0.21	2772	0.35	
17	Pleomassaria	3164	0.74	3878	1.04	7042	0.88	
18	Pleospora	3038	0.71	3878	1.04	6916	0.87	
19	Pringsheimia	4774	1.12	1778	0.48	6552	0.82	
20	Sordaria	4942	1.16	4592	1.23	9534	1.19	
21	Trematosphaeria	3066	0.72	2632	0.71	5698	0.71	
22	Valsaria	3682	0.87	3542	0.95	7224	0.90	
	TOTAL	69286	16.28	67620	18.12	136906	17.14	
B	asidiomycotina	10007			1.0.0			
1	Basidiospores	18886	4.44	7098	1.90	25984	3.25	
2	Smut spores	30898	7.26	25676	6.88	56574	7.08	
3	Uredospores	8918	2.10	8946	2.40	17864	2.24	
	TOTAL	58702	13.80	41720	11.18	100422	2.57	
D	euteromycotina							
1	Alternaria	23590	5.54	19488	5.22	43078	5.39	
2	Aspergillus	16282	3.83	15582	4.18	31864	3.99	
3	Beltrania	2870	0.67	4102	1.10	6972	0.87	
4	Bispora	3906	0.92	6342	1.70	10248	1.28	
5	Cephaliophora	714	0.17	1428	0.38	2142	0.27	
6	Ceratophorum	2632	0.62	3248	0.87	5880	0.74	
7	Cercospora	12894	3.03	13706	3.67	26600	3.33	
8	Chaetomella	2996	0.70	3206	0.86	6202	0.78	
9	Chlamydomyces	2464	0.58	2450	0.66	4914	0.62	
10	Cladosporium	64064	15.06	33698	9.03	97762	12.24	
11	Corynespora	2688	0.63	4018	1.08	6706	0.84	
12	Curvularia	8722	2.05	7448	2.00	16170	2.02	
13	Dictyoarthrinium	1806	0.42	2114	0.57	3920	0.49	
14	Dictyosporium	2758	0.65	3570	0.96	6328	0.79	
15	Diplodia	3430	0.81	4606	1.23	8036	1.01	
16	Epicoccum	9072	2.13	7378	1.98	16450	2.06	
17	Exosporium	2044	0.48	4494	1.20	6538	0.82	
18	Fusariella	5390	1.27	5124	1.37	10514	1.32	
19	Fusarium	7350	1.73	4158	1.11	11508	1.44	
20	Haplosporella	3150	0.74	3206	0.86	6356	0.80	
21	Helminthosporium	10892	2.56	11018	2.95	21910	2.74	
22	Heterosporium	6258	1.47	7126	1.91	13384	1.68	
23	Lacellina	2618	0.62	2324	0.62	4942	0.62	
24	Memnoniella	7252	1.70	6076	1.63	13328	1.67	
25	Nigrospora	10374	2.44	9800	2.63	20174	2.53	
26	Papularia	3024	0.71	3262	0.87	6286	0.79	

International Journal of Recent Scientific Research Vol. 8, Issue, 8, pp. 18954-18958, August, 2017

27	Periconia	2296	0.54	2772	0.74	5068	0.63
28	Pestalotia	1330	0.31	2030	0.54	3360	0.42
29	Pithomyces	5390	1.27	5880	1.58	11270	1.41
30	Pyricularia	4284	1.01	4508	1.21	8792	1.10
31	Sirodesmium	2590	0.61	2870	0.77	5460	0.68
32	Sporidesmium	2184	0.51	2226	0.60	4410	0.55
33	Tetraploa	4382	1.03	2940	0.79	7322	0.92
34	Torula	9114	2.14	7252	1.94	16366	2.05
35	Trichothecium	4494	1.06	5362	1.44	9856	1.23
	TOTAL	255304	60.00	224812	60.24	480116	60.11
(OTHER TYPES						
1	Hyphal Fragments	2506	0.59	2618	0.70	5124	0.64
2	Insect Parts	1750	0.41	2338	0.63	4088	0.51
3	Plant Parts	1316	0.31	1008	0.27	2324	0.29
4	Pollen grains	1554	0.37	2198	0.59	3752	0.47
	TOTAL	7126	1.67	8162	2.19	15288	1.91
	Grand Total	425474	100	373198	100	798672	100

The bio aerosols trapped over the groundnut field, were expressed as number of spores / m^3 of air. The identification of different spore types was mainly based on comparative spore morphological characters and spore description. It was further confirmed by comparing the characters of spore types with reference slides prepared from the fungal material in and around the experimental fields. This study is in relation to airborne bio components together with disease incidence at different growth stages of groundnut crop and its relevance with the prevailing meteorological parameters.

RESULTS

During period of present investigation, aerobiological surveys were conducted for two Kharif seasons i.e. First Kharif season from 15th July to 8th November 2012 and Second Kharif season from 15th July to 7th November 2013. In all 72- bioaersols were trapped with 68 -fungal spore types and 4- other types over groundnut fields respectively. The other types comprising hyphal fragments, insect parts, plant parts and pollen grains. From among the trapped 62 fungal spore types, in two Kharif seasons, 35 belonged to the group Deuteromycotina, 22 to Ascomycotina, 6 to Zygomycotina, 4 to other types, 3 to Basidiomycotina and 2 to Myxomycotina. During the period of investigation, in first and second Kharif seasons (2012 and 2013) the group Deuteromycotina contributed maximum 60.00% and 60.24% with 255304/m³ and 224812/m³ of air respectively, followed by Ascomycotina with 16.28% and 18.12% with 69286/m³ and 67620/m³ of air, Basidiomycotina and 11.18% with 58702/m³ and 41720/m³ of air. 13.80% Grand total of spores in first and second Kharif seasons was $425474/m^3$ and $373198/m^3$ of air respectively. (Table 1)

However, during the period of first and second Kharif seasons 2012 and 2013, it was evident that September 2012 and August 2013 months were found registered with maximum monthly average percent contribution by the group Deuteromycotina 30.48% and 31.27% with maximum concentration $77812/m^3$ and $70308/m^3$ of air was recorded in September in both the seasons (Table 1) respectively.

In both the Kharif crop seasons, the Deateromycotina dominated the total airspora. It may be due to high fecundity efficiency well attributed with the fungal spore types belonging to the group hypomycetes (15.06%), smut spores (7.26% and 6.88%), *Alternaria* (5.54% and 5.22%), *Aspergillus* (3.83 and 4.18%). *Cercospora* (3.03% and 3.67%), basidiospores (4.44% and 1.50%), *Helminthosporium* (2.56% and 2.95%).

Nigrospora (2.44% and 2.63%), Uredospores (2.10% and 2.40%) *Epicoccum* (2.13% and 1.98%), *Torula* (2.14% and 1.94%), *Curvularia* (2.05% and 2.00%) a contributed significantly to the total airspora during first as second Kharif seasons i.e. 2012 and 2013 respectively. These findings matched with the reports of Reddy (1990) and Goud (1993) from Andhra Pradesh, Thite (1998) Aher *et al* (2002) and Sonawane (2004) from Maharashtra, who reported these spores from the air over the groundnut fields from different regions. McElhenney and Mc Govern (1970) suggested the possible role of those spore types as inhalant allergens along with actinomycetes and airborne Algae. Arsule (2013) and Dere *et al* (2013) also recorded these spore types from the ambient air over groundnut fields and vegetable market respectively.

The effect of rains, relative humidity and wind velocity, was recorded immediately after the rainfall on Didymospheria, while spores of Leptosphaeria, Pleospora, Pringsheimia and Sordaria sometime after the raining. These results are in conformity with the results recorded by Tilak, 1988 and 1989, Spore types of group Basidiomycotina Quazi 19851. contributed 13.8% and 11.18% respectively during 1st and 2nd Kharif seasons. The occurrence of spore types of Basidiomycotina was also continuous in both the Kharif seasons. It may be due to rainy conditions with maximum relative humidity with moderate temperature ranging from 22.5 to 26.8° c. The occurrence of spore types of Basidiomycotina, therefore, could be correlated with the rainfall rather than the vegetation of the area. Earlier workers such as Sreeramulu and Ramalingam (1966), Sreeramulu(1967), Quazi (1985), Kalkar and Patil (1997), Kadam et al (2008) and Arsule (2013) also conducted the aerobiological surveys as obtained results which matched with the obtained present results.

The spore types such as *Cercospora* sp, rusts, *Alternaria* sp. etc. were recorded and found to be pathogenic and eventually were trapped in the air over the groundnut fields.

The *Cercospora* (with *C. personata* and *C. arachidicola*) spore types with 3.03% and 3.67% with 12894/m³ and 13706/m3 were recorded during first and second Kharif seasons. The Tikka disease was evident and severe in both the Kharif seasons. However, the occurrence of *Cercospora* spores in air and the disease incidence to the crop were noted in the month of October 2012. However, severe infection and infestation to the groundnut crop was observed in the month of October 2013 when there was outbreak of precipitation 119.3 mm probably the rainfall might be found congenial to detach and discharge the conidia from the infected leaves of the host (Table 2).

During both the Kharif seasons of 2012 and 2013 fungal spore types like *Rhizopus*, rust spores, *Alternaria*, *Aspergillus*, *Cercospora*, and *Fusarium* were recorded significantly throughout. *Alternaria* sp. showed its significant occurrence in the air over groundnut fields, so also the incidence of rust spores in the ambient air over Groundnut fields in both the Kharif seasons. Moderate range of temperature, Relative Humidity and precipitation might have been found responsible for the rust disease inception. (Table 2). Present results match with the findings of the earlier workers like Tilak, 1984, 1996, Kalkar and Patil (1997), Pande (2001) Mahajan and Pande (2002) Aher *et al* (2002, 2004), Aher and Pande (2004), Kadam *et al* (2008), Arsule and Pande (2012), Arsule (2012 and 2013).

- 2. Aher, S.K., Thite, S.V. and Pande, B.N. (2004). Aerobiology and epidemiology of certain diseases of groundnut. J. Curr. Sci., 5(1):229-232.
- 3. Aher, S.K. and Pande, B.N. (2004). Aerobiological approach to pathogenic fungal spores over groundnut field. *Eco. Env. and Cons.*, 10 (1):57-59.
- 4. Arsule, C.S. and Pande, B. N. (2012). Aeromycology of *Cercospora* on groundnut at Newasa (M.S.) *Internat. J. Plt. Protection* 5 (1): 8-11.
- Arsule, C.S. (2013). Fungal morphotypes contaminants over groundnut fields at Newasa Dist. Ahmednagar (M.S.), New vistas in Plt. *Sci. & Biotech*. ISBN978-81-924820-4-0 pp:9-15

Table 2 Reveals Monthly C	Concentration of Airborne	e Pathogenic Fungal Sp	ore Types During	First And Second Kharif Seasons
	(2012 And 2013	6) Over Groundnut Field	ls Respectively	

Sr. No	Spore Type	JU	LY	AUG	UST	SEPTE	MBER	ОСТО	OBER	NOVEMBER		Total Spore conc./m3 of air	Total Spore conc. /m3 of air	
		Spore conc./m3 of air		Spore conc./m3 of air		Spore conc./m3 of air		Spore conc./m3 of air		Spore conc./m3 of air				
		Ι	II	Ι	II	Ι	П	I	п	Ι	II	Ι	П	
1	Rhizopus	1148	1274	1750	1918	2226	1778	1134	700	0	0	6258	5670	
2	Uredospores	1624	882	1750	1862	4032	4172	1330	1610	182	420	8918	8946	
3	Alternaria	3892	2744	6622	6734	6748	6622	5978	3024	350	364	23590	19488	
4	Aspergillus	2982	2506	5670	5950	5628	5684	2002	1442	0	0	16282	15582	
5	Cercospora	0	0	2968	3220	3948	4746	4928	5474	1050	266	12894	13706	
6	Fusarium	1316	2548	1638	1610	2940	0	1456	0	0	0	7350	4158	
	TOTAL	10962	9954	20398	21294	25522	23002	16828	12250	1582	1050	75292	67550	

Summary

Aerobiological investigations were conducted for two consecutive Kharif seasons of 2012 and 2013 at Newasa, Dist. Ahmednagar, over Groundnut fields (*Arachis hypogea* L.) Var JL-24 by installing Tilak Air Sampler.

- Analysis of airspora study revealed 72 types of component. The order of dominance of spore group revealed Deuteromycotina group as the dominant followed by Ascomycotina, Basidiomycotina, Zygomycotina and Myxomycotina (Table 1).
- *Cladosporium* spore type was found to be the most dominant, followed by smut spores, *Alternaria*, *Aspergillus*, *Cercospora* etc.
- *Rhizopus*, rust spores, *Alternaria*, *Aspergillus*, *Cercospora* and *fusarium* etc. were recorded as pathogenic and occurred with high concentration.
- Prevailing weather conditions showed pronounced influence on genesis and liberation of spores and affected the airspora composition qualitatively and quantitatively.
- Already known allergenic and fungal spores were estimated for their percent contribution.

References

1. Aher, S.K., Thite, S.V. and Pande, B.N. (2002). Fungal airspora of a groundnut field. *Eco. Env. and Cons.*, 8(3):283-288.

- Dere, P. K., Pande, B. N., Arsule C.S., Pathade, G.M. and Venugopalachari (2013) "Fungal Morphotypes contaminants in vegetable market at Aurangabad (M.S.), New vistas in Plant Science and Biotechnology editors, Dr. C. S. Arsule, Prof. C. K. Bhalshankar PP : 16-19
- Goud, N.P. (1993). Environmental biopollution studies at Narayankhed (A.P.). Ph. D. Thesis, Marathwada University, Aurangabad.
- Gregory, W.C., Krapovickas, A. and Gregory, M.P. (1980). Structure, variation, evolution and classification in *Arachis*. (In) Advances in Legume Science. Edited by Summerfield, R.J. and Bunting, A.H. Royal Botanic Gardens, Kew, England, pp.469-481.
- Kadam, R.M., Reddy, N.J.M., Jhadav, B.S. and Nagpurne, V.S. (2008). Aerobiological approach to leaf spot and rust disease of groundnut (*Arachis hypogea* L.). *International Journal of Plant Protection*, 1(2):63-65.
- Kadam, R.M., Reddy, N.J.M., Banswadekar, V.R and Jhadav, B.S. (2008a). Atmospheric concentration of *Cercospora* sp. (Leaf spot pathogen) over groundnut (*Arachis hypogea* L.) *Bioinfolet*, 5(1):51-53.
- Kalkar, S.A. and Patil, G.V. (1997). Fungal airspora of a groundnut field at Nagpur. Aerobiology. Proceedings of the 5th Internat. Conf. Bangalore 1994. (Ed. S.N. Agashe). Oxford & IBH Publishing Co. Pvt.Ltd., pp.249-254.
- Lukose, C.M., Moradia, A.M. and Kunadia, B.A. (2008). Diseases of groundnut in Gujarat and their Management. Published Research Scientist (Groundnut).

Main Oilseeds Research Station, Junagadh Agricultural University Junagadh, pp.1-16.

- Mahajan, M.C. and Pande, B.N. (2002). Atmospheric incidence of rust spores over groundnut fields. *Eco. Env. and Cons.*, 8(3):257-259.
- McElhenney, T.R. and McGovern, J.P. (1970). possible new inhalant allergens. *Annals of Allergy*, 28(10):467-471.
- Pande, B.N. (2001). Incidence of airborne microbial components over groundnut fields. Frontiers in Fungal Biotechnology and Plant pathogen relations, (Ed. C. Manoharachary) Allied Publishers Limited, New Delhi, pp.129-135.
- Patil, B.N., Bhonde, S.R. and Khandikar, D.N. (2009). Trends in Area, Production and Productivity of Groundnut in Maharashtra. Financing Agriculture-A *National Journal of Agriculture and Rural Development*, 41(2):35-39.
- Quazi, S.M. (1985). Aerobiological approach to some crop diseases. Ph.D. Thesis, Marathwada University, Aurangabad.
- Reddy, A. (1990). Studies in Airspora at Zahirabad (A.P.). Ph.D. Thesis, Marathwada University, Aurangabad.
- Sonawane M.D. (2004). Aeromycological studies at Nashik. Ph. D. Thesis, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad.
- 20. Sreeramulu, T. (1967). Aerobiology in India. J. Sci. India. Res., 26:474-480.

How to cite this article:

Sonawane B. N., Arsule C. S and Pande B. N.2017, A Survey of Bioaersols over Groundnut Fields At Newasa Dist. Ahmednagar (M.S.). *Int J Recent Sci Res.* 8(8), pp. 18954-18958. DOI: http://dx.doi.org/10.24327/ijrsr.2017.0808.0600

- Sreeramulu, T. and Ramalingam, A. (1966). A two year study of the airspora of a Paddy field near Visakhapatnam. *Indian J. Agri. Sci.*, 36:111-132.
- 22. Thite, S.V. (1998). Studies in Environmental Biopollution at Shrigonda. Ph. D. Thesis, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad.
- Tilak, S.T. (1984) Aerobiology and Cereal Crop Diseases. (Edited by Raychaudhuri, S.P. and Verma, J.P.). Review of Tropical Plant Pathology, Vol. 1. Today and Tomorrow's Printers and Publishers: New Delhi, India. Illus, pp. 329-354.
- 24. Tilak, S.T. (1988). Aerobiology and epidemiology of groundnut diseases. In Perspectives in Mycology and Plant Pathology. Prof. R.S. Mehrotra Commemorative volume (Edited by Agnihotri, V.P., Sarbhoy, A.K. and Kumar, D.). MPA New Delhi, pp. 336-352.
- 25. Tilak, S.T. (1989). Airborne pollen and fungal spores, Vaijayanti Prakashan, Aurangabad, pp. 316.
- Tilak, S.T. (1996). Plant disease forecasting in IPM System in Agriculture. (Ed. R.K. Upadhyay, K.E. Mukherjee and R.K. Rajak, Aditya Books (Pvt.) Ltd., New Delhi), Pp. 235-263.
- 27. Tilak, S.T. and Kulkarni, R.L. (1970). A new Air Sampler, Experientia, 26(4): 443-444.