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The double random phase encryption (DRPE) technique is a known all-optical architecture that has 
many advantages especially in terms of encryption efficiency. However, the technique presents 
some vulnerabilities against attacks and needs a large quantity of information to encode the complex 
output plane. Encrypt the optical image using chaotic Baker map and DRPE. This scheme is 
implemented in two layers to improve the security level of the classical DRPE. A pre-processing 
layer is a first layer of this method that is performed along with the chaotic baker map on the 
original image. In the second layer, the classical DRPE is utilized. However, low speed problem and 
number representation problems due to the utilization of floating point values over other number 
representations. Hence, we propose an Optical Image Encryption using Loxodromic Cat Map with 
Double Random Phase Encoding (LCMDRPE). Theoretical analysis and experimental results show 
that our proposed method is providing better results in terms of maximum deviation, correlation 
coefficient, peak signal-to-noise ratio and mean square error. 
 
 
  

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

INTRODUCTION 
 

Now a days, development of communication and network 
technologies, both the secure communication and the 
information security have become one of the most challenging 
problems. Recently, optical information security methods, 
particularly optical image encryption methods, have attracted 
significant interest as they possess superior advantages, such as 
arbitrary parameter selection and high-speed parallel 
processing of information. The various methods proposed for 
optical image encryption, the double random phase encoding is 
the most well-known method. This method uses two random 
phase masks respectively placed on the input plane and the 
Fourier plane to encrypt the input image into a stationary white 
noise. During the past decades, a number of DRPE-based 
optical encryption methods have been presented, such as the 
Gyrator transform encryption scheme (Singh and Sinha, 2009), 
the Fresnel transform encryption scheme (Situ and Zhang, 
2004), and the fractional Fourier transform encryption scheme 
(Unnikrishnan et al, 2000). However, due to the inherent linear 
property, the DRPE-based encryption schemes have been 
proved to be vulnerable to different types of attacks.  
 

An optical image encryption based on chaotic baker map and 
double random phase encoding (CBMDRPE) was proposed 
(Elshamy et al, 2013). In this method, implemented in two 
layers to improve the security level of the classical DRPE. The 
first layer is a pre-processing layer that is executed with the 
chaotic Baker map on the original image. The second layer, the 
classical DRPE is utilized. In chaotic baker map, low speed 
problem and number representation problems due to the 
utilization of floating point values over other number 
representations. Hence, we propose an optical image 
encryption based on Loxodromic Cat Map with Double 
Random Phase Encoding (LCMDRPE) which structurally 
invariant systems are known as Anosov maps, they are ergodic, 
mixing and have positive entropy. Loxodromic behaviour 
appears as a new alternative with respect to usual cat maps with 
one degree of freedom. Loxodromic behaviour has been 
quantized. The quantum periodicity function has been found to 
be insensitive to the structural stability.  
 

The rest of the article is organized as follows: In Section 2, 
description of different optical encryption schemes is given. In 
Section 3, detailed information of the proposed Loxodromic 
Cat Map with Double Random Phase Encoding scheme is 
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described. In Section 4, results of experimental results are 
presented. In Section 5, conclusion of the research work is 
given. 
Related Work 
 

Simple and reliable criteria to give feedback in the brute-force 
attack on DRPE (Nalegaev and Petrov, 2015) was proposed 
that allowing to perform more accurate investigations of the 
particularities of such numerical task. In this technique, criteria 
were applied, if the gray scale, binary or color images are used 
as a source. A criterion based on the statistical analysis of the 
reconstructed images was considered. Then it was used for the 
recovery, if the statistical distribution of the original data 
follows the known law. Another criterion is based on the 
enlarged sampling frequency of the histogram. However, the 
computational complexity of this method was increased.            
A novel optical interference-based encryption algorithm (Wang 
et al, 2015) was proposed in which the primitive image was 
encoded into two encoded complex field functions whose 
amplitude parts have rotational symmetric configuration via 
using circular harmonic component (CHC) expansion 
technique and iterative retrieval gyrator transform (GT) 
algorithm. However, in this scheme not used scale invariant 
recognition. 
 

An innovative hybrid method to improve the performance of 
DRPE method in terms of compression and encryption (Neji                         
et al, 2016) was proposed. In this method consists in using an 
innovative randomized arithmetic coder (RAC) that was well 
compress the DRPE output planes and simultaneously improve 
the encryption. Moreover, arithmetic coding was used to reduce 
the quantity of information of the DRPE output plane and RAC 
was employed to enhance the security level of the DRPE 
method. An Optical Image Encryption using Chaotic Kicked 
Rotator Map with Double Random Phase Encoding (Sivamalar 
and Sharma, 2016) was proposed. This method decreases the 
complexity in computations and increases the speed of 
mapping through employing bit-wise representation thus 
improving the encryption process. This approach was not 
affected via the known-plaintext attack. 
 

A practical scheme for optically encrypting and decrypting a 
gray-scale image based on QR codes (Jiao et al, 2017) was 
proposed that compatible with common QR code generators 
and readers. In this method, optically encrypting and 
decrypting a gray-scale image employing QR codes. A gray-
scale image was transformed to a decimal number sequence 
and the decimal number sequence was converted to multiple 
QR codes. However, many users that have mobile phones that 
have cameras are unable to get QR reading software for their 
phones. Optical image encryption using Kronecker product and 
hybrid phase masks (Kumar and Bhaduri, 2017) was proposed. 
The Kronecker product of two random matrices together with 
the double random phase encoding (DRPE) method in the 
Fresnel domain for optical image encryption. This method 
provides multiple levels of security for image encryption.   
Other security keys in this method were Fresnel propagation 
distances, two random matrices used for known plaintext attack 
(KP) and the randomization operator. 
 

Secret shared multiple-image encryption based on row 
scanning compressive ghost imaging and phase retrieval in the 
Fresnel domain (Li et al, 2017) was proposed. By applying the 

wavelet transformation, Arnold transformation, and row 
scanning compressive ghost imaging for the target image, the 
ciphertext matrix can be detected via a bucket detector (BD). 
The measurement key used in row scanning compressive ghost 
imaging can be decomposed and shared into two pairs of sub-
keys through a (t, n) threshold secret sharing algorithm; they 
are then reconstructed into two phase-only mask (POM) keys 
with fixed pixel values, which are used for the phase-retrieval 
scheme in the Fresnel domain, and the other POM key was 
generated and updated by the iterative encoding of each 
plaintext image. Optical encryption scheme for multiple color 
images using complete trinary tree structure (Su et al, 2017) 
was proposed. In this scheme, the encryption modules (EMs) 
are taken as branch nodes, and the color components of plain 
images are input as leaf nodes. In every EM that consists of 
phase truncated Fresnel transforms and random amplitude-
phase masks, three input images are subsequently encoded into 
a complex function and finally encrypted to a real-value image. 
In this scheme was encrypt multiple color images into a real-
value grayscale cipher image, and make different color images 
have different encryption and decryption paths. 
 

MATERIALS AND METHODS 
 

In this section, the proposed Enhanced Loxodromic Cat Map 
and Double Random Phase Encoding (LCMDRPE) are 
explained. A unitary evolution operator or propagator 
characterizes the quantum dynamics. The chord and centre 
demonstration of an operator on the torus from its counterpart 
on the plane. The quantum propagator indicating cat maps in 
the centre or chord representation obtains simple expressions. 
Torus quantization implies that the Hilbert space 
ேܪ]

ఞ]௅	associated with the 2L-torus has finite dimension ܰ௅ and 
is characterized by a vector Floquet parameter ߯ = (߯௣ ,߯௤) 
whose components are real numbers belonging to [0, 1]. The 
fact that [ܪே

ఞ]௅ has finite dimension implies that position and 
momentum eigenstates can only take on a set of discrete values 
that form a discrete lattice called quantum phase space (QPS). 
Any point ݔ in this QPS has coordinates 
 

ݔ = 	 ቀ௣೘௤೙ቁ = 	 ଵ
ே
	ቀ௠ା	ఞ೛௡ା	ఞ೜

ቁ                                                          (1) 
 

Chords are of the form 
 

௥,௦ߦ = 	 ଵ
ே
	൫௥௦൯ = 	 ଵ

ே
   (2)                                                                 ̅ߦ	

 

With r and s integer numbers and̅ߦ = 	 ൫௥௦൯, while the centre 
points ݔ௔,௕ are labelled by half-integer numbers a and b, 
 

௔,௕ݔ = 	 ଵ
ே
	ቀ௔ା	ఞ೛௕ା	ఞ೜

ቁ                                                                     (3)     
 

The Floquet parameters 	߯ = (0,0). The matrix M must satisfy    
 

∑ ௜,௝ା௅ܯ௜,௝ܯ
௅
௝ୀଵ  = even integer for all i.                                  (4) 

 

N is coprime numbers and ߬క  is invariant with respect to 
general similarity transformations, a complete representation of 
the propagator is obtained having the symbol on a lattice of 
chords ߌ such that 
 

ߌ = ߦ	 + ݊ = 	
ଶఛ഍
′

ே
 ത                                                                 (5)ߌ

where the components of  ߌത are integer numbers up to N. So 
for any chord ߦ there is an equivalent chord ߌ. For the allowed 
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values of N, the propagator for cat maps in the chord 
representation takes the form 

ܷெ(ߌ) = (߬క)ିଵ ଶ⁄ ݁ି௜ଶగ	ேቂ
భ
ర	௻ఉ௻ቃ∑ ݁ି௜ଶగ	ே	

భ
ర	௠(ఉି෩ॅ)௠

௠∈◊഍       (6) 
 

Where ߬క  is the number of fixed points of the classical map. 
For ߚ matrices that fulfil the feline conditions, the symbol 
ܷெ(ߌ) must represent a unitary operator. 
 

ܷெ(ߌ) = 	 ௘
೔കಿ(ಾ)

√ே
ಽ ݁ି௜ଶగேቂ

భ
ర௻ఉ௻ቃ                                                (7) 

 

that restricts 
 

௘೔കಿ(ಾ)

√ே
ಽ = 	 (߬క)ିଵ ଶ⁄ ∑ ݁ି௜ଶగ	ே	

భ
ర	௠(ఉି෩ॅ)௠

௠∈◊഍                           (8) 
 

The phase ߮ே(ܯ) is only an unimportant global phase factor, 
but the interference of the different ߮ே(ܯ௟) for the different 
powers l of the map will have a crucial importance for the 
density of states. 
 

 (ߌ)and ܷெ (ߦ)are equivalent chords, the symbols ܷெ ߌ and ߦ
are related through symmetry relations. So that 
 

ܷெ(ߦ) = 	 ௘
೔കಿ(ಾ)

√ே
ಽ ݁ି௜ଶగே[ௌ(క,௡)]                                                (9) 

 

where  ܵ(ߦ, ݊) is the action of the classical orbit whose chord is 
 .and that executes n loops around the torus ߦ
 

The symplectically invariant form ݃(݉) = 	 ଵ
ସ
-ߦ for the ݉ߚ݉

independent part of the chord generating function, instead of 
݂(݉) = 	 ଵ

ସ
݉൫ܤ + ෩ॅ൯݉ and ݃(݉) = 	 ଵ

ସ
݉൫ߚ − ෩ॅ൯݉. We 

would have in (9) a supplementary phase factor ݁௜ଶగ	ே
భ
ర௡
෩ॅ௡ =

	݁௜ఊ೙  with ߛ௡ a ‘Maslov index’ for the orbit. This observation is 
true for all of the following quantum theory.  
 

The centre representation, for 2߬క  described in ܤ = 	 ஻ത

ௗ௘௧(ெାଵ) =

± ஻ത

ఛೣ
= 	± ஻ത

ఛೣ′
  and ߚ = 	 ఉഥ

ௗ௘௧(ெିଵ) = ± ఉഥ

ఛ഍
= 	± ఉഥ

ఛ഍
′  , and N coprime 

numbers, a complete representation of the propagator is 
obtained by performing a transformation to centre points X that 
are integer multiples of ߬௫′ ܰ⁄  , 
 

ܺ = ݔ + 	ଵ
ଶ
݆ = 	 ఛೣ

′

ே
തܺ                                                               (10) 

 

where the components of തܺ are integer numbers up to N. On 
these points the centre representation of the propagator takes 
the form 
                                     

ܷெ(ܺ) = (߬௫)ିଵ ଶ⁄ ݁ି௜ଶగ	ே[௑	஻	௑]∑ ݁௜ଶగ	ே	
భ
ర	௠(஻ା෩ॅ)௠

௠∈◊ೣ       (11) 
 

= 	 ݁௜ఝಿ′ (ெ)݁௜ଶగ	ே[௑	஻	௑]                                                          (12) 
 

where the last equality is obtained by imposing the unitarity of 
෡ܷெ and using ቀଵ

ே
ቁ
ଶ
∑ ே(௫ି௫భ)⋀(௫ି௫భ)	௜ସగ݁(ଶݔ)∗ܷ(ଵݔ)ܷ
௫భ,௫మ =

(ݔ)1 = 	 ே݂(ݔ). Hence, we describe the angle ߮ே′  so that (ܯ)
 
݁௜ఝಿ′ (ெ) = 	 (߬௫)ିଵ ଶ⁄ ∑ ݁௜ଶగ	ே	

భ
ర	௠(஻ା෩ॅ)௠

௠∈◊ೣ                          (13) 
 

From the symmetry 

relations			ܣ ቀݔ + ଵ
ଶ
݉ቁ = 	 ݁௜ଶగ	ேቂ(௫ିఞ ே⁄ )⋀௠ାభర௠

෩ॅ௠ቃ(ݔ)ܣ, we 
find that the symbols on the original points ݔ are 
 

ܷெ(ݔ) = 	 ݁௜ఝಿ′ (ெ)݁௜ଶగ	ே[ௌ(௫,௝)]                                              (14) 
 

where here ܵ(ݔ, ݆) is the centre generating function, described 
in  
 

(݉,ݔ)ܵ = ݔܤݔ + ܤ)ݔ −ॅ)݉+ ଵ
ସ
݉൫ܤ + ෩ॅ൯݉		ܽ݊݀	ܵ(ߦ,݉) =

ଵ
ସ
ߦߚߦ + ଵ

ଶ
ߚ)ߦ + ॅ)݉ + ଵ

ସ
݉൫ߚ − ෩ॅ൯݉, on a centre point ݔ for an 

orbit performing j loops. The cases above are then special cases 
where the propagator on the torus has the same form as its 
equivalent on the plane; thus, they are ideally suited for the 
comparison of classical and quantum motion. 
 

The more the more familiar position representation of the 
propagator from its chord representation, we use		ݍ)ܣ௠ (௡ݍ, =
ଵ
ே	
∑ భݔ,௣ݔ)ܣ

మ(௠ା௡)݁
௜ଶగ	ே௫೛(௤೘ ,௤೙)	)

భ
మ(ேିଵ)
௫೛ୀ଴

, 
 

ܷெ(ݍ௠ (௡ݍ, = ௘೔കಿ(ಾ)

(ே)యಽ మ⁄ ∑ ݌ݔ݁ ቄ−݅2ߨ	ܰ ቂܵ൫ߦ௣,௠ି௡, ݊൯+ ଵ
ଶ

௠ݍ) + ௣ቃቅேିଵߦ(௡ݍ
క೛ୀ଴          (15) 

 

and ݍ)ܣ௠  ௡) equation allows us to obtain the positionݍ,
representation from the centre one: 
ܷெ(ݍ௠ (௡ݍ, = ௘೔കಿ

ᇲ (ಾ)

(ே)ಽ
∑ ݌ݔ݁ ൜−݅2ߨ	ܰ ൤ܵ ൬ݔ௣,భమ(௠ା௡), ݆൰ + ௠ݍ) − ௣൨ൠݔ(௡ݍ
భ
మ(ேିଵ)
௫೛ୀ଴       (16) 

 

Hence, the above equation explains the position representation 
from the centre one. In LCM, structurally invariant system are 
called as Anosov maps, they are ergodic, mixing and have 
positive entropy. Loxodromic behaviour appears as a new 
alternative with respect to usual cat maps with one degree of 
freedom. 
 

EXPERIMENTAL RESULTS 
 

In this section, the performance of the proposed approach is 
analyzed with the other techniques. The comparison is made 
between CBMDRPE and LCMDRPE in terms of Maximum 
Deviation (MD) value, Correlation Coefficient (CC), Mean 
Square Error (MSE) and Peak Signal-to-Noise Ratio (PSNR).  
 

Maximum Deviation (MD) Value 
 

The maximum deviation measures the quality of encryption in 
terms of how it maximizes the deviation among the original 
and the encrypted images. The steps of calculating this metric 
are: 
 

1. Count the number of pixels for each gray-scale value 
in the range of 0 to 255 and present the results 
graphically for both the original and encrypted images 
(i.e. get their histogram distributions). 

2. Calculate the absolute difference or deviation among 
the two curves and represent it, graphically.  

3. Estimate the area under the absolute difference curve 
that is the sum of deviations. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1 Maximum Deviation Value 
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Figure 1 shows the comparison of LCMDRPE and CBMDRPE 
in terms of maximum deviation. CBMDRPE has 57 while 
LCMDRPE 49 which means the LCMDRPE provides better 
result with decreased deviation value. 
 

Correlation Coefficient (CC) 
 

The correlation coefficient among the original and the 
encrypted images has been used as a tool for encryption quality 
evaluation. The correlation coefficient is estimated as: 
 

ݎ = ௖௢௩(௙,)
ඥ஽(௙)ඥ஽()

     

(݂)ܦ = ∑ܮ/1 ( ௟݂ − ଶ௅((݂)ܧ
௟ୀଵ      

(,݂)ݒ݋ܿ = ∑ܮ/1 ( ௟݂
௅
௟ୀଵ 			௧)(݂)ܧ− −    	((	)ܧ	

(݂)ܧ = ∑ܮ/1 ௟݂
௅
௟ୀଵ     

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 2 shows the comparison of LCMDRPE and CBMDRPE 
in terms of correlation coefficient. CBMDRPE has 0.85 while 
LCMDRPE 0.93 which means the LCMDRPE provides better 
result with increased value of correlation coefficient. 
 

Mean Square Error (MSE) 
 

Mean Square Error (MSE) among the decrypted and original 
images is computed. It is described as: 
 

ܧܵܯ =
1
ܻܺ

෍෍ −(ݕ,ݔ)݂| fመ(x, y)|ଶ
௒

௬ୀଵ

௑

௫ୀଵ

 

 

where X and Y are the image dimensions.݂(ݕ,ݔ)	and		fሚ(x, y) 
indicate the original and the decrypted images, respectively. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 shows the comparison of LCMDRPE and CBMDRPE 
in terms of MSE values. CBMDRPE has 0.1433 while 

LCMDRPE 0.0778 which means the LCMDRPE provides 
better result with decreased MSE values. 
 

Peak Signal-to-Noise Ratio (PSNR) 
 

The Peak Signal-to-Noise Ratio is estimated from the MSE 

ܴܲܵܰ = ଵ଴݃݋10݈ ቆ
255ଶ

ܧܵܯ
ቇ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 shows the comparison of LCMDRPE and CBMDRPE 
in terms of PSNR values. CBMDRPE has 57.65 while 
LCMDRPE 61.23 which means the LCMDRPE provides better 
result with increased PSNR. 
 

CONCLUSION 
 

In this paper, Loxodromic Cat Map with DRPE method was 
proposed. This scheme behaviour appears as a new alternative 
with respect to usual cat maps with one degree of freedom. 
This approach is providing better results in terms of maximum 
deviation, correlation coefficient, mean square error and peak 
signal-to-noise ratio. 
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